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Abstract: In the reliability analysis of a system, generally, the designer seeks a reliability index by employing
parameters such as mean and variance of the existing variables. The inverse of the above problem can be
stated as: “what are the mean and variance of the variables for a given rehability index B?”. Various methods
have been presented in the past regarding the solution of inverse reliability problems. The objective of this
article is to attain a numerical solution to the inverse reliability problems by the use of neural networks and
genetic algonthms. The results obtained from the sample problems presented in this article show that the
analysis of inverse problems using the aforementioned methods is highly efficient. These methods have been
presented in the framework of an example and then the results for additional numerical examples are compared

with the results obtained by other classical methods.

Key words: Inverse reliability method - neural networks -

parameters

genetic algorithms - reliability index - design

INTRODUCTION

The inverse reliability problem arises when a value for
design parameters related to a specific reliability level is
required. This analysis can be performed by trial and
error, using a forward reliability procedure like FORM
[1, 2] and wmterpolating the design parameters at the
required reliability level. More efficient methods for
approaching the inverse rehiability problems are reported
in the literature. A reliability contour method has been
described by Winterstein [3], which is applied to problems
m offshore environmental loads. To extend the method to
general limit state functions, Der Kiureghian [4] proposed
an 1terative algorithm based on the modified Hasofer-
Lind-Rackwits-Fiessler (HLRF) scheme. In a practical
application, the design variable may also be treated as
random when there is a requirement to provide tolerance
intervals. Tn this case, the actual design parameter could
be either the mean or the standard deviation of the
design variable. In addition, multiple design parameters
are required if multiple reliability and/or geometric
constraints are specified. In the work done by Li and
Foschi [5], a general inverse reliability method was
presented to approach not only for the single design
parameter case, but also for the multiple-parameter
problems with specific constraints. In their work, in order
to obtain a unique solution to the problem, it was

necessary that the number of design parameters be equal
to the number of geometric and/or reliability-based
In the work done by Sadovsky [6], an
investigation on the trend of convergence in the above
research has been presented In the work done by
Palaniaappan et al. [7], various inverse measures and their

constraints.

advantages along with the methods of computing the
inverse measures are described. Xiaoping et al [8],
proposed an integrated framework for optimization by the
employment of an inverse reliability strategy that uses
percentile performance for assessing both the objective
robustness and probabilistic constraints.

The method proposed in this article, in addition to its
simplicity, also solves the problem of non-convergency
and the problem which arises from the inequality of the
number of design parameters versus the number of
constraints. The use of any probability distribution
function and the correlation coefficient of the related
variables can simply be implemented m the proposed
method.

Neural networks: The basic concepts of neural networks
have broadly been presented by Haykin [9], Hagan ef al.
[10] and Fausett [11]. Neural networks are composed of
simple elements operating in parallel. These elements are
ispired by biological nervous systems. As in nature, the
network function is determined largely by the connections
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Fig. 1: A neuron model weights

between elements. We can train a neural network to
perform a particular function by adjusting the values of
the connections (weights) between elements.

Commonly, neural networks are adjusted, or tramned,
so that a particular input leads to a specific target output.
Such a situation 1s shown in Fig. 1. There, the network 1s
adjusted based on a comparison of the output and the
target, until the network output matches the target.
Typically, many such input/target pairs are used in this
supervised leaming to train a network.

For the solution of complex engineering problems,
where a mathematical approach is not available, the neural
networks are generally used in order to significantly
reduce the computing time. Neural networks might be time
consuming at the training stage, but its testing is
performed in an extraordinary short time.

Neural networks have been trained to approximate
complex functions in various fields of application
mcluding pattern recogmtion, identification, classificatiorn,
speech, vision and control systems. Generally, the neural
networks are considered as strong tools m case of inverse
problems. In other words, if there is a need for a linear or
nonlinear mapping in a learning process, the neural
networks can easily perform the task.

One of the most important neural networlks is Multi-
Layer Feed Forward (MLFF). The architecture of this
network is composed of an input layer, an output layer
and one or a mumber of hidden layers. Another important
network is Radial Basis Function (RBF). This network is
similar to the previous network, with the exception that it
15 composed of only one hidden layer. Radial basis
networks may require more neurons than standard feed-
forward networks, but often they can be designed m a
fraction of the time required to train standard feed-forward
networks. They work best when many traimng vectors are
available [9-11].

Genetic algorithm: The genetic algorithm 1s a stochastic
global search method that mimics the metaphor of natural
biological evaluation. In other words, GAs are based on
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the mechanism of natural selection and survival of the
fittest. At each generation, a new set of approximations 1s
created by the process of selecting individuals according
to their level of fitness m the problem domain and
breeding them together using operators borrowed from
natural genetics.

Individuals are encoded as strings, 1.e. chromosomes.
The most commonly used representation in GAs is the
binary alphabet {0,1}, although other representations can
be used The binary string can easily be changed into a
real value, which this 1 known as decoding. Having
decoded the chromosome representation into the decision
variable domain, it is possible to assess the performance,
or fitness of individual member of a population. This is
done through an objective function that characterizes an
individual’s performance in the problem domaimn.

During the reproduction phase, each individual
15 assigned a fitness value derived from its raw
performance measure given by the objective function.
The recombination operator is used to exchange genetic
information between pairs of individuals. The simplest
recombination operator is that of single-point crossover.

A further genetic operator, called mutation, 1s then
applied to the new chromosomes. In the binary string,
mutation will cause a single bit to change its state.

The application of the above operators waill
eventually result in formation of a new generation of
strings. The objective function improves as new
generations are created. This process is repeated to the
extent that convergence can be observed in the last
generation [12]. This method has broadly been employed
in different branches of science, e.g. the work done by
Kaveh and Rahami [13, 14] on the optimization of

structural trusses.
MATERTALS AND METHODS
The proposed method using the ANN and GA, 18

thoroughly explained in the framework of the following
example.
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Fig. 2: A continuous beam with three equal spans (1 = 5 m) under the umiformly distributed load (w)

Table 1: Extremum parameters used in the network

P
0.049e-3  1.4289
0.260e-3  3.5404

Ha He M
Min. 3.2536 0.1301 0.65¢7 1.63e6 0.0003
Max. 17.4425 0.6977 3.497 8726 0.0014

Ty Cr Or

Comnsider a continuous beam with three equal spans
(1 =3m) under the uniformly distributed load (@) as shown
m Fig. 2. The allowable and maximum deflection of the
beam are defined as /360 and 0.0069w!*/EI, respectively.
The design variables in this problem are @, E and . Tt is
assumed that only the span length, 7, 13 determimstic. In
case of considering the failure mode as the deflection
mode; for a given reliability mdex, P, compute the mean
and the variance {u, o) of the existing variables.

Neural networks: The mnverse of the above problem 15
numerically computable. For example, if w(u=10, =06.4),
E(2e7,0.5e7) and I(8e-4,1.5e-4), by using the HLRF
method, a $=3.18 is obtained. Tn this method, it is
assumed that @, F and [ have a specified range of
minimum and maximum, as llustrated in Table 1. Thery, by
choosing a value from the specified range for each
variable, the reliability index, P, will be evaluated.

The analysis will be repeated several times (one
hundred times mn this example) in order to prepare the
input and output data. Next, in this example, a neural
network composed of three input neurons (e.g. f, u, 6,)
and four output neurons (e.g. ¢z, G, 4, J forms the neural
architecture and then the training process begins. From
amongst the one hundred inputs, 80 are selected for
training and the rest are used for the testing process. The
number of hidden layers and their neurons are selected
randomly.

After training, for each testing data input (3, ,,0,),
four data outputs are achieved. These data outputs
together with the values of u, and o, using the HLRF
method, will lead to a new . The network with the least
testing error is considered the best. For example in this
problem, the testing error is 2.23%6 (for MLFF) which has
been obtamed by considering two layers with each
having six and five neurons, respectively. Using the RBF
network, an error of 2.26%6 was obtained. Figures 3 and 4
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show the results obtained from the comparison of the
input p with the new p.

The time consumption of RBF traiming is
significantly shorter than that by MLFF, as expected. The
reason is that the RBF in its first layer is trained
unsupervised to classify the mput data.

Now, we shall consider a different case for a further
investigation of this example. For mstance, we assume
that the parameters i, and; are given and the objective is
to find the g,and a;. In thus case, also, the neural network
can easily lead to a reasonable solution to the problem. Tt
is necessary to increase the inputs to five and reduce the
number of ocutputs by two, simply by transferring two of
the outputs to the inputs. Both of the networks MLFF
and RBF have been tested. After the traming stage, the
MILFF network gives an error of [.45%4 for the reliability
index, B, which corresponds to the testing data. Now, that
we are looking for the parameters y;, and g, it 1s
appropriate that the errors due to these two parameters be
obtained without considering the .

Figure 5 shows the comparison of the values of ;
obtammed from the network to its corresponding real
values. The maximum error in this case is 9.07%4. In Fig. 6,
the same comparison is made for 4, Also, in this case, an
error of 6.73% was evaluated. Both of the computed
errors are more than the errors corresponding to the J.

The reason 1s that, although for each value of g and
corresponding to the variables, one specific  can be
obtammed, but this 1s not a one-by-one mapping. In other
words, 1t 1s possible that for different values of y and 0, a
same [} be evaluated. Consequently, the error has slightly
increased, which means that even though there 1s a minor
variation of g,and o, but eventually the target B with a
negligible error has been calculated.

The RBF network, similar to the MLFF network,
gives appropriate tesults for the P. Therefore, it is
possible that with any combination of the inputs and the
outputs, the required results be achieved.
llustrate the capabilities of this
method, additional examples will be presented in the

In order to

followmmg section. In these examples the selected
networks are all MLFF. It should be noted that in the case
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Fig. 7. The trend of minimization in GA

where numerous data are available, the performance of
RBF is better than MLFF. Because, RBF, contrary to the
MLFF, performs a classification on the data.

Genetic alghorithm: In this method, an objective function
corresponding to the stated problem must be established.
The objective function that is used is as follows:
Ba = { Bl: BZ: s Bn} :F(X) = [HOI'ITI(B - Ba)]z

where n 15 the number of limit state functions,
B, is the given target reliability index vector, x is a
random variable vector (e.g. mean or/and variance ),
B is the reliability index corresponding to x and

F being the objective
minimized to zero.

function which must be

At first, x 15 selected from a specified range on a
random basis. Then, the corresponding 3 is determined
using the classical methods discussed earlier. Therefore
the objective function can be evaluated. This process 1s
repeated, using the GA method, so that the objective
function converges to zero or to a small value with a
desired tolerance.

In the above example, by choosmg the imtial
populaton as 30 and after 16 generations, by
minimization of the objective function for 5, = 3, we will
have I = 4e-6 corresponding to f=2.998. If choosing
B, =3.3, then we have F =2.5¢-5 corresponding to
=3.303.
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Numerical examples: Example 1. A limit state function
with a single design parameter, as shown in Der
Kiureghian et af. [4] 1s used to show the application of the
proposed method. The function is

G = exp[(-0 (u+2u,+3u,)]u,+1.5

In the first case, the network 15 composed of one
input and one output. After training and testing the
network, we have: ¢ = 0.3671 and 5=2.0000. In the
second case, that the random variable ¢ having a normal
Gauss distribution and a coefficient of variation of v = 0.3
has been considered, we will have: 0 = 0.3725 and
B = 2.0000. The above results are in agreement with the
results obtained from the method presented m the
reference [5]. The same results are to be evaluated when
using GA method.

Example 2. A set of three limit state functions G are
given involving random variables, x,x,,x; and x.

Gl = x%-4x,-2x.x,
GZ2=2%, % % X,
G3=x,x; %, -2%;

With given target reliability indeces 3, =3.0, B, =3.5
and §,=4.0.

In the first case, the mean value for each of the
variables x,, x,, x; is unknown. In the second case, where
the variables are not correlated, the mean of the variables
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Table 2: (Case 1) Statistics

Variable  Mean value Coefficient of variation — Distribution type
X ? 0.01 Normal

X, ? 0.2 Lognormal

X3 ? 0.1 Lognormal

X4 1.0 0.1 Gumbel

Table 3: (Case 1) Solution

Variable Mean value Cov B[4] [ ( Neural Net.)
X 4.3638 0.01 3.0000 3.0002
X 2.1617 0.2 3.4999 3.5000
X 1.7831 0.1 4.0011 4.0000

Table 4: (Case 2) Statistics

Variable Mean value CoefTicient of variation  Distribution type
X, 6.0 ? Normal
X, ? 0.2 Lognormal
X5 ? 0.1 Lognormal
X, 1.0 0.1 Gumbel
Table 5: (Case 2) Solution

p=0.0 p=08 p=0.0 B4 [ (Neural Net.)
S.D. of x 0.7682 0.8292 Xy 3.0009 3.0001
Mean of x;  2.1961 3.3061 X3 3.4999 3.5000
Mean of x;  2.0787 1.9924 X3 3.9996 3.9997

x; and x, and the coefficient of variation of x; are
unknown. Tables 2-5, show a comparisen of the results
obtained by using the method presented n this paper and
the results obtained by the other method [5].

Using the GA method in the second case for p=0.0,
the trend of minimization is illustrated in the Fig. 7.

In this example, the populaton of the imtial
generation is selected to be 530. After 30 generations, the
objective function becomes F=9.97¢-5 corresponding to
B ={2.9994, 3.4942, 3.9919}.

DISCUSSIONS

If the range of the expected outputs be known, by
training the network in the specified range, not only
the convergence of the networl will be enhanced, but also
the reduction of the input data can be achieved For
instance, in the examples presented previously, for an
unknown range of input data, the network outputs have
a 1.2 percent error in . To reduce this error, the network
input data will be selected close to the input data of the
previous network. Therefore, the precision of the results
will significantly be improved.

Generally, the training of a network is time
consuming and therefore it seems that the classical
methods perform better; but in reality when numerous
computations based on varying inputs are required
{e.g. in optimization problems), the networks exhibit
a much higher performance. The reason for thus 1s that the
networks take some time for traiming, but in case of having
numerous 1nput data, the network outputs will be
evaluated at a fraction of a second; while m the classical
methods the analysis will take a much longer time. Of
course, in addition to the above, the difficulties related to
the convergency confronted in the classical methods,
must also be taken into account.

In order to comapre the two methods on the basis of
time consumption, it can be stated that if the problem
consists of several cases, ANN 1s better swted for
application. But, for the problem with one case, GA would
be more appropriate to use.

CONCLUSIONS

In this
the solution of inverse

study new methods are proposed for
reliability problems using
neural networks and genetic algorithms. This method
15 significantly efficient and can easily be extended
for the
problems, it is
Monte
data. Some advantages of the proposed method are

solution of complex
highly
Carlo  Simulation for

systems. For these
convenient to apply the
creating the 1mtial
as follows:

»  Simple to follow and not requiring the application of
complex mathematical theories.

* o limitations are implemented in selecting the number
and the type of inputs and outputs.

»  The usual convergence difficulties present in the
classical methods do not exist here.

+ e distribution type and the correlation of the random
variables can easily be implemented in the proposed
method without the need to normalize or to
uncorrelate the variables.

For future studies, it is suggested that the
of Neural Networks
Algorithms be used m order to optimize the outputs

combination and Genetic
in case of having specific constraints (e.g. for a given Jj,
find the parameters of the variables to obtain the minimum

weight).
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