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UV Shielding Properties of Jarosite Vs. Gypsum: Astrobiological Implications for Mars
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Abstract: The discovery of liquid water-related sulfates on Mars is of great astrobiological interest. UV
radiation experiments, using natural Ca and Fe sulfates (gypsum, jarosite), demonstrate a large difference in the
UV protection capabilities of both minerals and also confirm that the mineralogical composition of the Martian
regolith is a crucial shielding factor. It is demonstrated that a thin (500 µm-thick) sample of jarosite prevents UV
transmission, providing suitable niches for life exploration.
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INTRODUCTION MARTIAN MINERALS: CA AND FE SULFATES

Unlike Earth, there is a significant amount of UV flux The search for life on Mars has been intimately
on Mars, mainly due to the influence of the shorter linked to the identification of unequivocal ancient or
wavelengths UVC (100-280 nm) and UVB (280-315nm). modern geomarkers [9, 10] of water (e.g. some water-
Various  works  on  the biological effects of UV radiation related minerals) on and inside the planet. Recently, some
[1-3] and the amount of Martian radiation [4] have water-related sulfates (e.g. jarosite, gypsum) were
established that even the present-day instantaneous discovered [11-13] on Mars surface. In particular, jarosite
Martian UV flux would not in itself prevent life. has proven to have a great astrobiological importance, not
Nevertheless, it is a fact that this UV flux contributes, only for its relation with liquid water, but also because it
coupled with the lack of liquid water and extreme low can act as a sink and source of Fe ions for Fe-related
temperatures, to the biologically inhospitable nature of chemolithoautotrophic microorganisms, such as those
the Martian surface. From the astrobiological point of encountered  in  numerous  extremophilic  ecosystems
view, these  factors  render a practical consequence for (e.g. Tinto river [14-16]). In the present report, we present
the exploration and detection of life on Mars: any living experimental results on the UV shielding capabilities of
organism, as we know it, should have preferentially the above mentioned minerals: jarosite (KFe (SO ) (OH) )
developed in a particular sub-surface microenvironment and gypsum (CaSO .2H O).
able to protect it from the harsh conditions on the surface. The samples of jarosite and gypsum used in this
Terrestrial endolithic communities that live in the work come from two selected areas of the SE
subsurface layers of rock that provide appropriate Mediterranean  region  of  Spain: Jaroso and Sorbas,
microenvironments against extreme external conditions which  have  been proposed as a relevant geodynamic
have been proposed [5-8] as possible analogs to life on and mineralogical model [17-21] to follow for the
Mars. Extant Martian life would require strong UV astrobiological exploration of Mars. The Jaroso
shielding, which, in accordance with our experiments, Hydrothermal System is a volcanism-related multistage
could be perfectly accomplished by certain minerals hydrothermal episode of Upper Miocene age, which
already discovered on Mars. includes     oxy-hydroxides     (e.g.    hematite),   base-and
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Fig. 1: Typical jarosite pellet. Jarosite sample from El Jaroso ravine, Cuevas del Almanzora Natural Area, Almería 
province, SE Spain. Each division on the left scale represents 1 mm
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Fig. 2: Light transmission spectrum (expressed as % transmitted light) of jarosite vs. gypsum samples
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precious-metal sulfides and different types of sulphosalts. a possible safe haven for life [1-3, 30-35]. Our experimental
Hydrothermal sulfuric acid weathering of the ores has results demonstrate a large difference in the UV shielding
generated  huge  amounts  of oxide and sulfate minerals capabilities of both minerals (Fig. 2). Whereas gypsum
[19, 22-24] of which jarosite is the most abundant. It is showed  a  much  higher  transmission percentage (with
important to note that jarosite was first discovered on an  error  in  the  absorption  coefficients  of  roughly
Earth at this area, in 1852, in the “Jaroso Ravine”, which 20%), jarosite samples, with a thickness of only 500 µm,
is the world type locality of jarosite [25, 26]. The Sorbas prevented transmission. Our mineralogical results
basin contains one of the most complete sedimentary complement other recent petrologic studies about
successions of the Mediterranean (gypsum karst) shielding effects on Mars surface environment (e.g.
reflecting  the increasing  salinity  during the Messinian basaltic dust, [36]) and have great astrobiological
salinity  crisis  (desiccation  of the Mediterranean Sea) relevance as: a) jarosite typically occurs on Earth as
[27-29] and showing a complex paleogeographical alteration crusts and patinas and b) a very thin crust of
evolution, being a signature of its progressive restriction jarosite on the surface of Mars would be sufficient to
and isolation. shield microorganisms from UV radiation.
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