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Abstract: In this paper, a Neuro-Fuzzy integrated system, which is based on fuzzy inference system using

on-line learningability of neural networle, is presented. By using on-line learning procedure, the proposed

Neuro-fuzzy integrated system (NFIS) can be used to construct an input-output mapping based on fuzzy if-then

rules and the tuning of the parameters of membership function. The activation and membership functions for

NFTS have been realized using differential amplifier and operational transconductance amplifier (OTA)

respectively. With a simple structure the sigmoidal activation and fuzzy membership function shows good

performance in low power and area consumption
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INTRODUCTION

Computational Intelligence combines neural network,
[1-8].
Neurofuzzy mtegrated system utilizes features of both

fuzzy systems and evolutional computing
Neural and Fuzzy networks together for better results by
which we can easily generalize the unseen data from seen
data by forming the fuzzy rules and tramning. Neural
networks are composed of a large number of highly
interconnected processing elements (nodes), which are
connected through the weights. When looking into the
structure and parameter leaming of neural networks, many
common points to the methods used in adaptive
processing can be found The backpropagation algorithm
used to train the neural network 1s a generalized Widrow’s
least mean square (LMS) algorithm and can be contrasted
to the LMS algorithm usually used in adaptive system.

In this paper, neuro-fuzzy mtegrated system and its
analog VLSI circuits for fuzzy membership and neural
activationfunctions have been presented. Neuro-Fuzzy
integrated system learmns system behavior by using
system input-output data and so does not use any
mathematical modeling. After learning the system’s
behavior, newro-fuzzy integrated system automatically

generates fuzzy rules and membership functions and thus
solves the key problem of fuzzy logic and reduces the
design cycle very sigmficantly.

Newo-Fuzzy mntegrated system then verifies the
solution (generated rules and membership functions).
It also optimizes the number of rules and membership
functions. Finally, automatic code converter converts the
optimized solution (rules and membership functions) mto
embedded controller’s assembly code.

The first fuzzy chip was reported in 1986 at AT&T
Bell Laboratories. Since then many different approaches
have been suggested [9, 10]. Depending on the design
techniques employed they are classified into two groups:
digital and analog. Generally a digital fuzzy system is
either a fuzzy (co-) processor [11, 12] or a digital ASIC
[13], which contains logic circuits to compute the fuzzy
algorithm memories to store fuzzy rules and generators or
look-up tables for membership functions of the mput and
output variables. Compared to its analog counterpart, the
digital approach has greater flexibility, easier design
automation and good compatibility with other digital
systems. However, most of the digital systems require
A/D and D/A converters to communicate with sensors
and/or actuators. Furthermore, the digital systems are
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more complex and need larger chip area, e.g. the synthesis
of a 4-bit maximum operation in [14] results in a CMOS
unit of nearly 100 transistors. The research on analog
fuzzy systems started with the pioneering work of
Yamakawa [15] and was followed by many researchers
[9, 10, 16]. With the nonlinear characteristics of the active
devices in analog circuit, the fuzzy elements can be
implemented in very simple structures. This brings a
reduction in the circuit complexity, which implies better
speed performance and reduced chip-area consumption.
Until now, the main drawback of the analog approaches
has been their poor flexibility [17, 18]. To overcome the
shortcomings encountered in analog circuit, while still
keeping their advantages, analog VLSI circuits for fuzzy
membership and neural activation functions have been
simulated.

In order to facilitate an easy and systematic
understanding of the proposed work, section II discusses
neuro-fuzzy integrated system; section III includes analog
VLSI circuit for activation functions using differential
amplifier;section IV includes analog VLSI circuit for
membership functions using
transconductance amplifier (OTA) and at the end section
V presents the conclusions and scope for future research.

operational

Structure of Neuro-fuzzy Integrated System: Fig. 1
shows the function diagram of the proposed neuro-fuzzy
integrated system (NFIS). Theneuro-fuzzy integrated
systempossessesthe advantages of both the neural and
fuzzy systems. It bringsthe learningand
computational power of neural networks into fuzzy
systems and provides the high-level human-like thinking
and reasoning of fuzzy systems into neural networks.

low-level

Both structure and parameter learning are used
concurrently for the construction of an adaptive neuro-
fuzzy integrated system. The structure learning includes
the pre-condition and consequent structure identification.
The pre-condition structure corresponds to the input
space partitioning and is formulated as a combinational
optimization problem with objective to minimize the
number of rules generated and number of fuzzy sets.
The main task of consequent structure identification is to
decide when to generate a new membership function and
which significant terms (input variables) should be added
to the consequent parts. Least mean squares (LMS) or
recursive mean squares (RLS) algorithms adjust the
parameters of the consequent parts and the pre-condition
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Fig. 1: Functional diagram of the proposed NFIS

part parameters are adjusted by using backpropagation
algorithm to minimize the cost function. During the
learning process the system can be used anytime for
normal operation without repeated training on the input
output patterns. Rules are created dynamically on
receiving on-line training data by performing following
processes:

¢ Input/ Output space partitioning;

¢ Fuzzy rules and membership function generator;
¢ Fuzzy rules verifier and optimizer;

e Parameter learning

In this learning process the first three steps belong to
structure learning and the last step belong to the
parameter learning. The various blocks of an adaptive
neuro-fuzzy integrated system can be explained as
follows:

Input / Output Space Partitioning: This block determines
the number of rules extracted from the training data as well
as the number of fuzzy sets on the universe of discourse
disclosure of each input variable. A rule corresponds to
a cluster in the input space with m;, and p, representing the
center and the variance of the cluster. For the incoming
pattern x the strength a rule is fired can be interpreted as
the degree of incoming pattern belonging to the
corresponding cluster. For computational efficiency, we
can use the firing strength as follows:

Fixy =] Ju=e W Ly Gxe=m;)] 0
1



World Appl. Sci. J., 16 {Special Issue on Recent Trends in VLSI Design): 53-62, 2012

Where F € [0, 1] and the argument of the exponential is
the distance between x and the cluster 7. The above
criteria can be used for the generation of new fuzzy rule.
Let x(¢) be the newly coming pattern then

J=arg max F’(x)
1< j=rit)

(2)
Where #(#) 13 the number of existing rules at time t. If

7l <Fny e then a new rule is generated where Fpye o1y -
Once a new rule is generated the next step is to
assign initial centers and widths of the corresponding

membership functions, which can be set as follows

3)
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In the system the width is taken into account in
degree measure so that a cluster with larger width, fewer
rules will be generated in its vicinity than a cluster with
smaller width.

Fuzzy Rules and Membership Function Generator:
The generation of a new 1nput cluster corresponds to the
generation of a new fuzzy rule, with its pre-condition part
constructed by the learming algorithm. At the same
time, the consequent part of the generated rule is decided.
The algorithim 15 based on the fact that differen tpre-
conditions of different rules may be mapped to the same
consequent fuzzy set. Since only the center of each
output membership function 1sused for defuzzification, the
consequent part of each rule may simply be regarded as
a singleton.

Fuzzy Rule Verifier and Optimizer: The generated fuzzy
rules and membership fimctions can be verified by using
neuro-fuzzy integrated rule verifier. Both training set as
well as a test set should be used for the verification
process. If the generated rules and membership functions
do not produce satisfactory result, one can easily
manipulate appropriate parameters (e.g. more data, smaller
error criterion, learning rate etc) so that the neural net
learns more about the system behavior and finally
produce satisfactory solution. The number of rules and
membership function can alse be optimized using the
neuro-fuzzy integrated rule verifier, which is another very
umportant feature. This reduces memory requirement and
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execution speeds-the two very desirable features for many
applications. The optimization process might lose some
accuracy and one can make some trade-offs between
accuracy and cost.

Parameter Learning: After the networl structure is
adjusted according to the current traimming pattern, the
network then enters the parameter learning phase to
adjust the parameters of the network optimally based on
the same training pattern. Parameter learning is performed
on the whole network after structure learning, irrespective
of whether the nodes (links) are newly added or are
existent originally. Using backpropagation for supervised
learming the error function as follow.

1
D=

= Jlow- T(f

(3

Where T(¢) 1s the desired output and O(f) 1s the current
output.

For each traiming data set, starting at the input nodes,
a forward pass is used to compute the activity levels of all
the nodes in the network to obtain the current output O(%).
Then starting at the output nodes, a backward pass is
used to compute aﬁyaw for all the hidden nodes. Noting

that w 1s the adjustable parameter i a node, the update
rule used is

Aw o ——

(6)

w(t+D)=w()+7 [aD]

B N

Where 1 is the learning rate, 22_22 & and g is the
ow  dz ow

activation function.

Learning with Fuzzy Input Vectorsfor Classification
Problems: In order to classify n-dimensional fuzzy
vectors, a multilayer feed forward neural network that has
ninput umits, n° hidden units and a single output umit
have been employed. When the fuzzy input vector
Ap=(Apj :....Ap ) 13 presented to the input layer, the fuzzy
input-output relation of each unit of the neural network is
defined as follows:

Tnput units:

&)



World Appl. Sci. J., 16 (Special Issue on Recent Trends in VLSI Design): 53-62, 2012

o

0. 469 0. 972

Output unit

unit unit 2
-2

Input .

unit . unit 2

Fig. 2: An example of fuzzy input-output relations of
neural networks.

Hidden units:

yl?/ :.f(Net/g/')a J= ],2, ..... n' (9)
n

Net,, = @Y, +6, (10)
i-1

Output units: Y, = f(Net,) (11
o

Netﬁ:zw./yn/ +6 (12)

J=1

Here the weights w,, w, and the biases 6, 0 are real
parameters which are updated in the learning phase of
the neural network. The inputs 4, Net, and Net ,and the
outputs ¥, ¥, and Y are fuzzy numbers.

The fuzzy input vector 4, = (4 A,,) is
mapped to the fuzzy output Y, by the neural network
defined by (8)-(12). In Fig. 2, a simple example of the
neural network where weights and biases are fixed as
follows:

;10 =2, 0y =3, Op=-Lwy=1
w0 =2, @ =5
6'/ :9] = —0.9, 92 =-0.3

60:0=-1.2

In Fig. 2, the weights and the biases are shown
beside the connections and inside the units, respectively.
The fuzzy input vector A, = (A, A,,) in Fig. 2 is as

pl>

A,=(1.5,0.5), A, = (2.5,0.5),,

Where A = (a, b), denotes a symmetric triangular fuzzy
number with the center aand the spread b defined by the
membership function:

,uA(x)zmax{l—lx—a|/b,0} (13)

The fuzzy input vector A, =((1.5,0.5),(2.5,0.5), is
mapped to the fuzzy number Y, as shown in Fig.2 by the
fuzzy input-output relations in (8)-(12). It should be noted
that the calculation of the actual output Y, is performed
on level sets while the input-output relation of the neural
network is defined by the extension principle in (8)-(12).
Since the level sets of fuzzy numbers are intervals, the
calculation of Y requires only interval arithmetic. In fact,
Y,, in Fig. 2 is drawn by interval arithmetic on 100 level
sets corresponding to h =0.01,0.02,..., 1.00.

The characteristic features of the architecture of
neural networks are as follows:

e Fuzzy numbers are propagated through neural
networks;

¢ A single unit is employed for representing a fuzzy
number.

These two features stand in contrast to other
approaches proposed for dealing with fuzzy sets as input
values to neural networks [19-26]. For example, in the
studies by Yager [20], Umano and Ezawa [21] and Keller
et al.[22-24], fuzzy sets on discrete base sets were used as
input values to neural networks. For a single fuzzy set,
A, on a discrete number base set with nelements, say
Q = (X Xpererennn X,), n input units were employed for
representing A. The membership value of the fuzzy set on
X;, i.€., #A(x,), was the input to the i" input unit. In their
architecture, a fuzzy set was represented by its
membership values and real numbers were propagated
through neural networks. In the study by Uehara and
Fujise [25], a fuzzy set is represented by a set of level sets.
That is, a fuzzy set A, was represented by its level sets:
[A]1.[ALrzseeneenees [A4],, and m was the number of level sets.
The input values of neural networks were the upper limits
and the lower limits of the m level sets. Therefore 2m input
units were required for representing a single fuzzy set.
Since the input values were real numbers, real numbers
were propagated through the neural networks of Uehara
and Fujise [25].
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4 Vin

Learning Algorithm of Neural Networks: First we define
the target output, t, corresponding to the fuzzy input
vector 4, = (4 A,,) as

piseeereees

(14

1 if Ap belongs to class 1
P~ o ipr belong to calss2

Let define a cost function to be minimized in the
learning of neural networks using the fuzzy actual output,
Yp and the corresponding target output, tp. For the h-
level set of Yp, a cost function is defined by the maximum
squared error as

e

o =max{(lp —op)2/2:op E[YPL}

(1s)

If the input vector Ap is a real vector, Yp is a real
number. In this case, the cost function is reduced to the
squared error used in the BP algorithm.

The h-level set of the fuzzy input vector
A, = (A A,,) is mapped to the h-level set of the fuzzy
output Yp. The h-level set of Ap is defined as

(16)

Therefore the h-level set [Y ],in is calculated from the

interval input vector [Ap]( [Apl }h ,«»»««[Apn] ) . This means

h
that the cost function [28] can be calculated only from
the operations on intervals. That is, the calculation

of the exact shape of Ypdefined by the extension
principle is not required in the learning of neural
networks.

The learning of neural networks involves minimizing
the cost function [28]. In a manner similar to that outlined
by Rumelhart et al. [29, 30], the weights w; and wjare
changed according to the following rules:

Aw(1+1)=1n(-0ep;, / 0w;) + A, (1) 17)

Aw (1 +1) =1n(-Cepy, / 0w);) + AW (1) (18)
Where t indexes the presentation number and 71 and « are
a learning constant and a momentum constant,
respectively. The biases 6 and 0,, are changed in the
same manner as w; and W;;.

Using the cost function (15), a neural network for a
fixed value of h has been trained. If the sum of the cost
functions over all the given fuzzy vectors becomes very
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small by the learning, the h-level sets of the given fuzzy
vectors can be correctly classified using the trained neural
network.

Automatic Code Converter: After a satisfactory
solution is obtained, automatic code converter
converts the solution to an embedded processors
assembly code. Various options can be provided to have
the code optimized for accuracy, speed and/or memory.
The definition and evaluation of instruction set extension
for neuro-fuzzy integrated processing have shown [31,
32].

Analog VIsi Circuit for Activation Function Using
Differential Amplifier

Large-Signal Analysis of CMOS Differential Amplifier
Using NMOS Transistor: Analysis of the differential
amplifier with the large-signal characteristics as in
Figure 3 showna CMOS differential amplifier that uses
n-channel MOSFETs M, and M, to form a differential
amplifier. M, and M, are biased with a current sink I
connected to sources of M, and M,. This configuration of
M, and M, is often called a source-coupled pair: M and
M, are an example of how the current sink 1 jnight be
implemented.

The large-signal analysis begins by assuming that M,
and M, are perfectly matched. It is also not necessary for
us to define the loads of M, and M, to understand the
difference large-signal behavior. The large-signal
characteristics can be developed by assuming that M, and
M, of Fig. 3 are always in saturation. This condition is
reasonable in most cases and illustrates the behavior even
when this assumption is not valid. The pertinent
relationship describing large-signal behavior are given as:

0 VW2 (g VW2
Vip = Vgs) —vGSy = (%} - (%) (19)
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and
L= ip +ip (20)
Substituting (20) into (19) and forming a quadratic
allows the solution for i, and iy, as:

12
2 24
,’Dlzﬁ_‘_& B B vip @1
2 2\ 1y 4l
12
2 24
ins = Iy Iyl Bvip  Bvip 22)
2 2\ Iy 412

Where these relationship are only useful for v,, < 2(/y /

ﬁ)I/Z.

Bipolar Sigmoidal Function: The desired range here is
between +1 and —1. This function is related to the
hyperbolic tangent function. The bipolar sigmoidal
function is given as,

) = 2f)  — | (23)
b(x)=2x .
" I+ exp(—sx) (24)
_ I—exp(—sx)
bx) = 1+ exp(—sx) (25)
On differentiating the function b(x),
1y S _
b'(x) = 5 [(1+b(x))(1-b(x)] 26)

Analog Activation Function Generator Circuit: Fig 5 is
built of a coupled differential amplifier which has two
differential pairs (DP1 and DP2) and a PMOS MS5.
The two-reference voltages, low-reference V, and
high-reference V,,, where V,< V,, define activation
function. Due to the coupling effect of the PMOS, the
subfunction generation and the final output combination
are completed within one stage.

Depending on the relative values between the input
voltage V; and the reference voltages V, and V,,, the
circuit operates in one of the three regions (I-V) shown in
Fig. 4. Assume that the current sources I in DP1 and DP2
are ideal and equivalent, the input devices in each
differential pair are symmetric, the half widths of the
transfer regions of DP1 and DP2 are T, and ot = 3T, 7B
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Fig. 5: Shows the schematic diagram of the proposed
activation function circuit.

and B, is the transconductance parameter of the input
devices in DPl and DP2 with i = 1 and i = 2, respectively,
then the three operating regions of the activation
function circuit illustrated in Fig. 4 can be described
as follows.

Region I: When V<V,-T|, M, and M, are in their cutoff
regions while M, and M, are in the saturation states.
The current through the PMOS is equal to 1. The output
voltage is V,, = Vpp-I,R=V’ which corresponds to a
activation function value -1.

Region II: When V,, — T, < V, < V,, + T\, DP1 is in its
transfer region. If V,, — V,, > T, + T,, then DP2 keeps the
same state as in region I. As V,, increases, the activation
function circuit gives a linear ascending answer between
-l and 1.

Region III: When V,, + T, <V, <V, —T,, both M, and M,
are in cutoff states, the current flowing through the PMOS
is zero. The output voltage is V,, = V,, = V,!, which
corresponds to activation function value 1.
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Normalized with (V,,, — V,))/(V,' + V) the generated
activation function can be summarized as

0, V=T, region |
2 2
1 ,+[ﬁ1(V, V) B0V ]
b(x)=42 Iss 415218‘ (27)
V=T, <V, <V, + T, region Il
I, Vgy+T; <V, <V, =T, region 111

As shown in Fig. 4 and (27), the definition of the
implemented activation function is dependent on the
reference voltages V,,, V,,, transconductance parameters
B, and current L.

Spice and Matlab simulation were perform to
confirm the performance of the proposed circuit

equations. Some partially program and glaring
results of differential amplifier  based circuits
generating a  bipolar  sigmoidal  function are
presented.

diffampr=newff([-1 1],[10 1],
{'tansig' 'purelin'},'traingdm');
diffampr.trainParam.show=50;
diffampr.trainParam.Ir=.05;
diffampr.trainParam.mc=.9;
diffampr.trainParam.epochs=500;
diffampr.trainParam.goal=1e-2;
Y=sim(diffampr,a);
plot(a,b,a,Y,'0")

¢ OPERATING POINT INFORMATION:

NAME M1 12 [irs w22
MODEL MOSN MOSN BOSH MOsN
i 1.00E-04 784613 5.00E-0% 5.00E-05
VGS 174804 S.23E40  GOME-N £.01E-01
vbs 7744 774804 6.01E-01 6.01E-01
VRS (.00E+00 0.00E+00  0.00E+00 0.00E+00
¥TH 1.808-01 1.808-01 1.808-01 1.80E-01
VDSAT 5 94E.0H 0.00E+00  4.21E-01 4.24E01

¢ TOTAL POWER DISSIPATION 2.10E-13 WATTS
e CHIP SIZE 0.27 mm x 0.23 mm (0.0621 mm®)
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Simulation Results

Analog Vlsi Circuits for Fuzzy Membership Functions:
In our proposed circuit as shown in Fig 11, we use two
types of OTA viz current mirror OTA (CMOTA) and
multiplier-type OTA (MTOTA). Operational
transconductance amplifiers (OTAs) have important
building blocks for analog and
systems. Depending on system needs, an OTA must
satisfy many design requirements. Fig. 8 shows the
basic two stage OTA which is often adopted to attain
both the desired gain and output swing. For a two stage
amplifier, the first stage is designed to the total gain and
second stage contributes a large output swing. To
evaluate the power consumption of Fig. 8, we consider a
desired gain-bandwidth (GB) and load capacitance (C,) .
Assuming all transistors have same overdrive voltage
(Vop=Vgs-Vr) and the nondominanat pole at the output is
at least three times of the GB, it can be shown that the
core current consumption of the two-stage OTA[33] is
given by

various circuits

lopy =27 %X GB X Vi x (4Cc +3C)) (28)
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Fig. 10: Multiplier-type OTA

A significant portion of the current is spent on
driving the compensation capacitors as seen in (28).
A current mirror OTA (CMOTA) is used to avoid the
compensation capacitors which is shown in Fig 9.
The current consumed by a CMOTA can be expressed as
[33, 34].

+
CMOTA ¢
o 0" wrom =
ln O—— Ve
Vss Vss
* cmoTA l,% + —N—I:O our
o—1- T mmoTa

Ve
Vs

Fig. 11: Circuit for generating a triangle function with
independent adjustable slopes
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Fig. 12: Triangular, left and right shoulder membership
functions

1

Where N is the size ratio between mirroring devices, Mn,
and Mn,. Comparing with (29), considerable power
reduction is achieved by eliminating the compensation
capacitors.

Fig. 10 shows a wvoltage controlled OTA
resistor using a multiplier-type OTA. MOSFETs, M9
and M10, are operating in the triode region. Under these
conditions, the output current Iy of the multiplier-type
OTA becomes.

Loyr = 4KV (Viy. = Vi) = Gol(Vive — Vi) (30)

WhereK is the transconductance parameter of the
MOSFET's, M9 and M10. From (30), the transconductance
Gm2 of this OTA is proportional to the control
voltage V.

The OTA based proposed circuit to generate
membership function is shown in Fig. 11.

60
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Table 1: Node analysis and features of proposed circuit

Node  Voltage Node  Voltage Node  Voltage Node — Voltage
(1 L6000 (2) 1825 (3) 5.0000 (4 -5.0000
5 -0597 (6) 31531 (D) 2.9758 (8) L6500

© -1825 (1) 0.0000 (X1.2) 4.7686 (X1.3) 4.7510
(X1.4) 45371 (X1.6) 20000 (X1.7) 1.8733 (X1.9) -1136
(X2.2) 4.6921 (X2.3) 46847 (X2.4) 43842 (X2.6) 2.0000
X2.7) 1.8405 (X290 .1967 (X3.2) 34503 (X33) 20492
(X3.4) 3.6965 (X3.6) 15000 (X3.7) 4281 (X38) 4170

(X1.10) -.0614 (X1.12) -4.6511 (X2.10) 1.9500 (X2.12) -4.6511
(X3.10) -3454 (X3.11) 1.0000 (X3.12) 1.6500 (X3.13) .2371

(X3.15) -3.6000 (X3.16) -3341 (X3.17) .2280
+ TOTAL POWER DISSIPATION 2.91E-03 WATTS
« CHIP SIZE 0.78 mm  0.83mm(0.6475 mu?)

SPICE simulations were performed to confim the
performance of the proposed circuit. Some glaring result
of OTA based circuits generating a triangle function with
independent adjustable slopes after being annotated with
subcircuit using SPICE are presented in the Table 1.

To venfy that the current mode cells work properly,
electrical simulations were done in Spice using parameters
of the standard AMI, 1-2-micron, n-well, MOS process.
The DC characteristic appears in Fig. 12.

Voltages V.
mdependently, were swept from 0 to 0-8Y, keeping the
current T; at 25uA. The left and right shoulders were also

responsible for changing slopes

simulated in DC, sweeping V. from 0 to 0-8V. The umverse
of discourse was 300pA and the power supply voltages
were V=5V and V=0V,

CONCLUSION

In this paper, a neuro-fuzzy integrated system is
presented. The NFIS can be trained by numerical data and
lnguistic information expressed by fuzzy if-then rules.
This feature makes the incorporation of « priori
knowledge mto the design of systems possible. Another
important feature of the NFIS is that, without any
giveimtial structure, the NFIS can construct itself
automatically from numerical trammng data. Neuro-Fuzzy
integrated system has been applied in a wide range of
fields for imaging, classification, diagnosis, prediction and
control in real life ambiguous situations. What is required
for setting up such a system 1s data that represents the
past history and performance of the real system and a
selection of a suitable model.

Analog VLSI circuit for generating fuzzy membership
and activation functions of neuro-fuzzy integrated system
(NFIS) has also been presented. Due to
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compact size and low power consumption of the circuit,
they are suitable for VLSI chip implementation. The field
of neuro-fuzzy integrated hardware implementations is
undoubtedly very vast and completely open for research
at this moment. Our contribution is merely a step forward
and an effort to explore such important technological field
with viable implementation technique.
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