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Abstract: Stabilization and tracking systems maintain the orientation of optical sensor” payloads™ so they are
pointed in the scenario dependent directions and held steady in inertial space along the selected orientation.
The stabilization-tracking systems are mechanical assemblies that precisely control the angular position of the
sensor’s line of sight (LLOS), so that it is isolated from its base-foundation dynamics and is pointed towards its
intended target. These system form part of modern fire control systems( FCSs ). The performance of fire control
system mounted on a mobile platform, decreases exponentially with increase n the disturbance on the line of
sight (LOS). The conventional controller designed to stabilize the LOS are dependent on mathematical model
of the plant. In this modeling process usually the higher order dynamics 18 ignored and plants are linearized
around the operating point. Fuzzy-knowledge-based-controller (FKBC) design presents a good methodology
to stabilize the line of sight against disturbances and nonlinearities present m the system, but tuning of 1nput
and output membership function parameters 1s quite a complex process. To overcome this, a choquet fuzzy
integral based control algorithm is developed for this servo system with nonlinear property and some
uncertainties. In this paper we present the design of FKBC and choquet fuzzy controller and their performance
comparison.
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INTRODUCTION

The electro-optical fire control system on movable
carrier causes the vibration in the azimuth and elevation
direction which induces causes the image blur and
leads the tracking performance to fail. Hence, the .OS
stabilization technology must be used to isolate the LOS
from carrier disturbance m order to make sure accurate
aiming, tracking and firing for the target.

The LOS stabilized systems are basically motion
control systems [1,2]. A few methods for the LOS
stabilized control have been proposed during recent
vears [2]. However, a majority of these algorithms are
complex and difficult to be realized.

Here, a choquet fuzzy integral based control strategy
is proposed. In this approach, fuzzy integral is treated as
the defuzzified output of the non-additive fuzzy rules [7].

These fuzzy rules involve input fuzzy sets having
overlapping [3,4]. This
information between adjacent fuzzy sets is captured

information overlapping
through A-measure [5]. As a result the overlapping fuzzy
sets are represented by the fuzzy measures that are used
for computing the Choquet fuzzy integral. Choquet fuzzy
control enables the system to have the quicker dynamic
responise and smaller overshoot. In this paper, firstly a
brief description of A-measure and g-measure followed by
Choquet itegral 1s given. After that the method of
identification is described and finally the results obtained
by choquet fuzzy controller are discussed.

Problem Statement

Simulation Results of Proposed Choquet Fuzzy Integral
Controller: Tn this paper, the plants under consideration
consist of a gimballed payload that is driven by
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Fig. 1: Basic structure of fuzzy control scheme

a permanent magnet DC torque drives. A dual axis
dynamically tuned gyro is used to sense the inertial
angular rate of the gimbal in elevation and azimuth. The
relevant parameters of gimbal system plant dynamics are
as follows:

¢ Gimbal inertia : 0.5 kg-sq m

¢ Weight of payload: 35 kg

e Loadpole: 1 Hz

e Gimbal resonance: 140 Hz

e Torque rating: 3.5nm (peak)

¢ Torque sensitivity(kt): 0.786 Nm/A

¢ Back emf constant(kb): 0.786 V/(rad/sec)

e Gyro scale factor: 5.73 V/rad.

e Gyro dynamics, singe pole : 100 Hz

e Data acquisition resolution:16 bits (max. input =
+10V)

e Dead band due to:10% stiction friction

* Digital-to-analog converter : 16 bits resolution,

The design considerations were as follows:

¢ Acceptable residual jitter on LOS <=100 micro radian
e Steady state error for step response <= 0.1%

¢ Overshoot <= 40%

¢ Rise time <=50 ms

e Typical disturbance frequencies 0.1 to 5 Hz

e Typical amplitude of disturbance input = 0.2 rad/sec

Fuzzy Controller: Figure 1 shows the basic structure of
the fuzzy controller whose algorithm is briefly explained
next. The input variables are error (e¢) and the rate of
change of error (e). The output of the fuzzy controller
gives the incremental control force (#). The membership
functions were defined using the standard Gaussian
function.
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flx, 0,¢) = exp[-(x-¢)*/20°]

The proposed membership functions are continuous
in the universe of discourse and therefore the inferred
control output is smooth. Further, Gaussian function is
not equal to zero anywhere and so provides a
continuously fading over-lap with all the other
membership functions. Figure 4 shows the membership
functions for input and output variables. The scaling
process is a trial- and- observation procedure. The
selection of membership function parameters (¢ and 6) for
different fuzzy sets of a variable is very important issue.
The system performance is very sensitive to this
selection. Since this selection depends heavily on the
knowledge base of the designer, the experience of the
designer is very vital. Table 1 indicates the definition of
membership functions for the input variables (e and ¢’)
and the output variable (1). These membership functions
were arrived at after a few iterations.

The rule base forms an important element to process
the fuzzified inputs. The expert knowledge is usually in
the form of ““‘if-then’’ rules, which are easily implemented
by fuzzy conditional statements in fuzzy logic. The
collection of fuzzy control rules constitutes the rule base.

Table 1: Parameters of fuzzy membership functions.

Variables e e e

Finction Paraneters

Fuzzy Sets c o c o c o
nb -1.0 035 -0.1 0.141  -0.1 0.141
nm -0.25 0.1 -0.66  0.141  -0.57 0.142
ns -0.1 0.04 -02 0.12 -0.15 0.1
z 0.0 0.013 0.0 0.05 0.0 0.007
ps 0.1 0.04 0.2 0.12 0.15 0.1
pm 0.25 0.1 0.66 0.141 0.57 0.142
pb 0.1 0.35 0.1 0.141 0.1 0.141
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Table 2: Rule base

e

e nb nm ns z ps pm pb
nb nb nb nb nb nm ns z
nm nb nb nb nm ns z ps
ns nb nb nm ns z ps pm
B nb nm ns z ps pm pb
ps

pm

pb

Fig. 2: Control surface of the fuzzy control law.

The aspect of rule base is discussed at length by Lee.
The set of rules are given in the form of a matrix in
Table 2. There are total 49 rules for all the possible
combinations of input fuzzy sets.

A detailed discussion on various
mechanisms is presented by Lee. In

inference
this paper

the most popular inference  mechanism by
Mamdani was used. The output of the fuzzy
inference block is a fuzzy output, which is to be
defuzzified. This defuzzified number represents the
incremental control voltage, to be fed to the
actuator. The defuzzification has been done using
centroid method. Figure 2 shows the control surface of
the fuzzy control law. Figure 3 shows the block diagram
for the simulation of control system using the fuzzy
controller.

Since the output of the fuzzy controller is

the incremental control output. The net control
output is obtained by integrating the output of
the fuzzy controller. The fuzzy  control law

computation is done in the digital domain. Therefore,
analog inputs are quantized to simulate the digitization
process.

The step response of the fuzzy control law is shown
in Fig. 5. Figure 6 illustrates the corresponding control
output. Figure 7 shows the residual jitter on LOS for
random disturbance signal. Figures 8 and 9 illustrate the
controller output corresponding to a random commanded
input signal and the corresponding error in command
following.

A Brief Description on Fuzzy Integral: In this section, we
briefly describe basic fuzzy measures and fuzzy integrals.
Several properties of the Choquet fuzzy integrals are then
discussed.

Let X={X,, Xpyueuverenrn x,} be a finite set and let P(X)
denote the power set of X or set of all subsets of X. A
fuzzy measure over a set X is a function.
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Fig. 3: Block diagram of the stabilization loop using fuzzy controller.
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Fig. 6: Control output for step command (fuzzy controller). Fig. 8: Control output for disturbance attenuation.

g: P(X)~[0,1] such that:
A, B < X with ANB =®

o g(®)=0, gX)=1; g (AUB)=g(A)+g(B)+ Ag(A)g(B), for some fixed A > -1
e IfA,BcP(X)and A c B, then g(A) = g(B).

Sugeno introduced the so called A fuzzy measure The value of A can be found from g(X) = 1, which is
satisfying the following additional property: for all equivalent to solving
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Fig. 9: Error in following random commanded input.
n
A+l =| | (I+ A g) (1

i=1
Let A= {X,X:1,...,X, . When g is a A fuzzy measure, the
values of g (A;) can be computed recursively as

g(A)=g({x.})=g,
g(A)=gte(A)+Agg(A,,), forl=i=n.

@
3

When a fuzzy measure is available on a finite set X,
one can express the fuzzy integral as a computational
scheme to integrate all values from the individual subset
nonlinearly. In other words, the fuzzy integral relies on the
concept of a fuzzy measure, which provides the degree to
which some subsets of elements satisfy some
characteristic.

We recall a general definition here. Given a class of
functions F c {h :X ~R }and a class of fuzzy measures m
c M a functional

IFxm~R, h,g-I(h,g) is a fuzzy integral.

Clearly, there are a number of interesting families of
fuzzy integrals in terms of the underlying fuzzy measures.
One particular interest that we consider in this work is the
Choquet fuzzy integral.

Description of Choquet Fuzzy Integral: Choquet Fuzzy
Integral: The Choquet fuzzy integral is a fuzzy integral
based on any fuzzy measure that provides alternative
computational scheme for aggregating information.
Assume h(x,),h(x,),....... h(x,) are the evidence provided by
the input sources X;,X,,...... JX,, respectively and g is a A
?fuzzy measure,then we can construct a Choquet Fuzzy
Integral as

Jxh()og() 4

74

For a finite set of X, the Choquet Fuzzy Integral
can be computed as follows:

Eg(h=)_[h(xi)-h(xi.]e(A) )

i=1
Where h(x,) = h(x,) = ...= h(x,) and h(x,)=0.

Another computation formula for the finite set case
can also be represented by

Eq(h) = i(xo[g(Ai)-g(Amn (©)
R*:Ifx,(j)is AF Izalnd x(j)is AF and x;(j)is , ... and
xn(j)is Arllc , such that

ANA,,=®, then y,(j)=h(X( )G @)

In (4) the input information for the kth rule is
aggregated as

h( X(j ) = Bo T M (§) + s F ()
By (X(J ) = Bok+ Y Riki () ®)

i=1

Where pOK= 1, k varies from 1 to r, r being the
number of rules, n is the total number of inputs, j is the jth
training sample, pik is the fuzzified value of ith input and
for the kth rule , defined as

pik(X)=exp(-jaki(xi - cki )jlki ) 9

Where indices i, k indicate ith and kth rule,
respectively. cki is the central value of the fuzzy set for
the ith premise variable xi corresponding to kth rule, 1/aki
represents the width of the fuzzy set.

Now, hk(X( j)) is the combined input which is the
s-norm of the weighted input for the kth fuzzy rule and
fuzzy measure Gk is defined corresponding to hk( X(j )).
The final output is calculated using Choquet integral,
which is a nonlinear addition of the new inputs hk( X(j )).
The final output of the model given by Choquet integral
in (6), aggregates yk from (7) as

Y)Y i (X)Gk= Y (XM e ghgery)  (10)

k=1 k=1

as the input information is combined in hk( X(j )), Gk is
chosen as in (7) such that fuzzy measures are related by
the A-measure as follows:
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ghkzgk+gh(k+1)+/1gk Gy =T 1)

(3), it is obvious that the calculation of the Choquet
Fuzzy Integral with respect to ? fuzzy measure requires
the knowledge of the fuzzy density g and the imput
value h.

the the
consequent part of the rule makes use of the Choquet

Fuzzy Modeling: In fuzzy modeling,

integral and g-measure, s0 as to combine the input
information non-linearly. The use of g-measure males

both A and fuzzy density independent. A rule of the
following form explains the model.

The fuzzy measures are computed using the new rule
inputs as they correspond to rules. Initially we combine
two single element sets h,( X( j)) and hy( X(j ). Then we
obtain a two element set. Next we combine this with a
single element set to yield a three element set. This is
continued until all rule mputs are covered. When we deal
with single element sets we require their fuzzy densities.
If the set 1s of more than two elements we need to
consider their fuzzy measure. f is the scaling function and
A-measure brings in the interaction effect. First g,’s which
are fuzzy densities are randomly initialized and gy, is
calculated, ie. g, = g.. Then g, 1s recursively calculated
by (11), by varying k from r-1 to 1. h{ X(j )) gives the
overall grade of the premise part of the kth rule. Using g-
measure in (8), the fuzzy densities and measure are

modified as

g = g/fand Engerny gh(kﬂ)/ f
hence new gy, 1s calculated according to (8).

Given a set of density generator values [f', £, ... ,f],
the g-measure is given in (9):

q: Q- [0,1] on W by q(h) = fh)/f(3), ¥ h=X  (12)

Using the above normalization, a fuzzy measure can
be constructed for any choice of the variable Ae [-1, « ).
The Sugeno A-measure is a special case that arises when
A 1s selected subject to the constraint, AX) = 1. As in [13]
the solution to A is simplified with the use of g-measure
discussed here.

The value of 4 1s learned by taking the derivative of
fin [11] with respect to 4 (as the scaling function should
be converging one and hence A should converge).
However, in the literature, initially A calculations were
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tedious time consuming [2]. By using g-measure, this
problem can be eliminated. As 4 is learned with respect to
scaling function the problem of its choices does not arise.
So, A 1s updated as

A G+1) = AG) - 3f /G (13)

Where
f/dh= B Bngiri)

The proposed fuzzy rule is similar to that of T-S
model as far as premise part is concerned but is different
in the consequent part. The formation of hy(x,) which is
the input to the Choquet Integral is entirely unique thus
giving better output. This input information is obtained
by fuzzifying the input data and then sorting the fuzzified
data to form the source of mformation to the Choquet
integral system.

Learning of the Model: Fuzzy curve method [18] 1s
employed along with a heunistic approach for the
We then
specify the membership function and initialize the
of the
The count of the maxima and minima of

determination of the number of rules.
parameters of the membership functions
model.
the fuzzy curve gives the minimum number of rules
needed to approximate each fuzzy curve. This is a
heuristic devised on the concept that fuzzy model
If the

maxima and mimma are far apart, or the curve is

unterpolates between maxima and mimma.

not smooth, a rule may be added. For n we will have #
fuzzy curves that will vyield » different numbers
m,, m,, .... m, The mimmimum number of rules needed to
construct the model is m_;,= max (m,, m,,..........m,) and
the maximum number of rules is m_,, = (m, x m, X....x m,).
The approaches for determining the minimum number of
rules are discussed in [2].

Fine tuning of rules can be achieved by minimizing
the objective function J. Tt is a function of normalized
mean square error with respect to the parameters ay, oy

and g;. The following form 1s assumed for J.

A
oL

= (14)
20y, 71

e*(j)

Where, e(/)= yi{/) - »j) and y, = [max {y;} - min{y;} [
Here, yd is the desired output and y is the actual
output.
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The reason for using normalized mean square error is
that it provides a universal platform for model evaluation
irrespective of application and target value specification
while selecting an input to the model. Choquet fuzzy
integral is the output of the model that we are seeking to
build.

The parameter update equation is

w(j + 1) =w(j) + Aw (15)
B. Parameter Update Formula: We apply well-known
gradient descent learning law [20] to update the
parameters, aki, cki and gk by finding the respective
increment as follows:

Aaki = -2n dJ/daki, Acki = -2 d)/dcki, Agk = -2n dJ/ dgk

We will use the chain rule to compute the derivative
of J with respect to aki given by

33/ daki = 8J/de. de/dy. dy/daki

Where is the learning rate and 1 > 0. Similarly, we can
derive derivatives of J with respect to cki and gk.

By using the chain rule in above given equations, we
obtain

dJ/ daki =e/M yr(-1) x (ghk -gh(k+1)) wik (1- Iki)| aki(xi-
cki)| Iki-1 (xi- cki)
aJ/ ocki =e/M yr(-1) x(ghk -gh(k+1)) wuik (Iki-1)| aki(xi-
cki)| lki-1 aki
aJ/ ogk =e/M yr(-1) xiuik (1+ Agh(k-+1))

Fuzzy Partitioning of Premise and Consequent
Variables: For the proposed architecture of the model, the
number of fuzzy partitions of all the variables is equal to
the number of rules. As per the Lin’s method [11],
initially the middle points of the first and the last fuzzy
partitions are at the beginning and at the end of range of
each variable and the middle points of the rest of the
fuzzy partitions are located at the interval of
{range/(m-1)}. We take an adaptive membership
function for each input partition. The width is taken as
{o* interval}; where o € [0.5,2].

Initialization of Parameters: Following are the steps to
initialize the membership functions for premise variable:

¢ Divide the domain of each fuzzy curve into m
intervals, i.e, a,, ¢y andl;(i=1ton, k=1,...... ,T)
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e For any

such that the width of each interval is equal to the
range of x,/ r-1, except the widths of first and last
intervals both of which are half of the range of x; / r-1.
curve, label the centers of intervals
x( k=2,...k 1), for k=1 the centre value is the
beginning of the range and for k=r the centre value is
at the end of the range. Order x; by the
corresponding value of the fuzzy curve, then x,
corresponds to the interval containing the largest
value.

¢ The length of an interval over which a rule is applied

in the domain of the fuzzy curve is denoted by ?x;
Initial fuzzy membership function of x; for rule k is
defined as p*(x;) = exp{-|(x;- x) / (@AX,)[\; }, where &
is typically in the range of [0.5, 2]. The initial
parameters are a,;, = 1 / ¢Ax; and ¢,;= x,;

e Setl,=1or2.

Performance Comparison and Discussion: Table 3 shows
the comparison of the choquet fuzzy controller and fuzzy
controller based LOS stabilization loops. In this
application, overall performance can be divided in two
main categories, namely, disturbance attenuation
characteristics and dynamic time response.

It can be verified easily that for this design, the
choquet fuzzy controller scores over the fuzzy controller.

Table 3. Results of choquet fuzzy controller and fuzzy controller LOS

stabilization loop

Choquet-fuzzy integral
based controller

30.4 37
Settling Time(ms) 44 70
% Overshoot 1 2

Characteristics Fuzzy Controller

Rise Time(ms)

Steady State Error(%) 0.01 0.05
Residual jitter for 0.2 rad/s
disturbance rate(urad) 34.25 44
1.
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Fig. 10: Step Response Choquet Fuzzy Integral

Controlled Stabilization Loop
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Fig. 11: Residual Jitter on LOS for random signal
(Choquet Fuzzy Controller)

The disturbance attenuation of the system is much better
in the choquet fuzzy control system for both deterministic
and random disturbance inputs. It can be observed that
choquet fuzzy controller performs well in the presence of
nonlinearities also.

Here, Table 3. has the summary of the results of
proposed controller and meet the desired specifications.
The Fig. 3 shows the block diagram of choquet
Fuzzy Controlled stabilization loop. Fig. 10 shows
the step response of choquet fuzzy controller of
stabilization loop of the proposed plant and Fig.11
depicts the LOS Jitter characteristics of Choquet Fuzzy
Controller

CONCLUSION

Control laws using fuzzy control technique and
choquet fuzzy integral technique were designed for a LOS
stabilization problem. Very stringent requirements of
disturbance attenuation and command following were met
through both the approaches. Simulated results for both
the designs were presented incorporating different
nonlinearitiessuch as dead band, saturation, quantization,
etc. The fuzzy control laws, which were chosen for this
study, gave results that were not as good as the choquet
fuzzy integral controller, particularly in the presence of
system nonlinearities. However, this fact cannot be
generalized and results may vary from system to system.
Till now, choquet integral has been widely used in the
areas of pattern recognition and image processing. In this
paper, we have tried to use it for dynamical plants to
control the line of sight. Very stringent requirements of
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fast response and very less steady state error are met
through this approach of choquet fuzzy integral control.
Simulated results are presented incorporating different
nonlinearities such as dead band, saturation, quantization
etc. It has been seen that in terms of dynamic time
response characteristics, choquet fuzzy controller is
performing as per desired specifications.
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