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Abstract: In this paper, an analytical approximation to the solution of higher order Korteweg-de Vries 
(KdV) equations has been studied. The Homotopy Perturbation Method (HPM) introduced by He is 
employed to drive this analytical solution and the results will be compared with those of the Adomian 
decomposition method. Numerical results reveal that the HPM provides highly accurate numerical
solutions for higher order KdV equations.
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INTRODUCTION

There are many nonlinear partial differential
equations which are quite useful and applicable in 
engineering and physics such as the well-known KdV 
equation [1], Modified KdV (MKdV) equation [2],
Benjamin-Bona-Mahony (BBM) equation [3], Burgers 
equation [4], Regularized-Long-Wave (RLW) equation 
[5] and so on. Nonlinear partial differential equations 
are generally difficult to be solved and their exact 
solutions are difficult to be obtained. The exact and 
numerical solutions of this kind of equations play an 
important role in physical sciences and in engineering 
fields. Therefore, there have been attempts to develop 
new techniques for obtaining analytical solutions which 
reasonably approximate the exact solutions. In recent 
years, several such techniques have drawn particular 
attention, such as Hirota’s bilinear method [6], the
homogeneous balance method [7, 8], the inverse
scattering method [9], the Adomian decomposition
method [10], the variational iteration method [11], the 
homotopy analysis method [12] and the homotopy 
perturbation method [13].

Perturbation techniques are widely used in science 
and engineering to handle nonlinear problems [14]. The 
HPM was first proposed by He in [15] and further
developed and improved by him in [16-19]. This
method is based on the use of traditional perturbation 
method and the homotopy technique. By using this 
method, a rapid convergent series solution can be
obtained in most cases. Usually, a small number of 
terms of the series solution can be used for numerical 
purposes with a high degree of accuracy. The
applications of the HPM in nonlinear problems have 
been demonstrated by many researchers, cf. [20-24].

Recently, the HPM was employed for solving singular
second order differential equations [25] and nonlinear
population dynamics models [26]. Very recently, the 
standard HPM was successfully applied to the Klein-
Gordon and sine-Gordon equations [27]. The
applicability of the HPM has also been extended to 
fractional equations [28-30]. In general, this method has 
been successfully applied to solve many types of linear 
and nonlinear problems in science and engineering by 
many authors [31-35]. Accordingly, it can be said that 
He's homotopy perturbation method is a universal one 
and is able to solve various kinds of nonlinear
functional equations.

The higher order wave equations of KdV type
model strongly nonlinear long wavelength and the short 
amplitude waves. It is a just reason for the strongly 
nonlinear character and integrability of these equations 
attracts many researchers to study them. In recent years, 
a lot of attention has been devoted to the study of 
higher order KdV equations. For example, Abbasbandy
et al. in [36] applied the homotopy analysis  method for
the fifth-order KdV equation. Ugurlu et al. obtained the 
exact and numerical solutions of the fifth order KdV 
equations and couple KdV system by using to direct 
algebraic method [37]. Alvaro et al. in [38] obtained the 
exact solutions for a third-order KdV equation with
variable coefficients and forcing term. In the present 
study, we employ the homotopy perturbation method to 
obtain the solution of higher order KdV equations.

The paper is organized as follows: In section 2, the 
analysis of the HPM for nonlinear differential equations 
is explained in detail. The HPM is presented for the 
third-and fourth-order KdV equations in section 3 and 
4, respectively. In section 5, we briefly discuss the
conclusion.
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Analysis of the method: In this section, the HPM is 
described for the solution of nonlinear differential
equations. Toward this end, we consider

A(u) g(r)= (1)

where A is a general differential operator and g(r) is a 
known analytic function on a Hilbert space. The
operator A can be decomposed as L′+N, where L′ is
linear and N is nonlinear part of A. Therefore, Eq. (1)
can be written as

L u Nu g(r)′ + = (2)

and L′ can be divided into G+R, where G, as an easily 
invertible operator, is generally taken as the highest-
order derivative in order to avoid difficult integrations 
when complicated Green's functions would be involved
and the linear remainder, which is denoted as R.
Therefore, Eq. (2) may be expressed as

Gu Ru Nu g(r)+ + = (3)

solving Eq. (3) for G(u), we have

Gu g(r) Ru Nu= − − (4)

Operating with its inverse G-1 yields

1 1 1u G g(r) G Ru G Nu− − −= − − (5)

An equivalent expression is

1 1 1u K G g(r) G Ru G Nu− − −= + − − (6)

where K incorporates the constants of integration and 
satisfies GK = 0. In order to apply the HPM, we can 
define a homotopy H(U,p) with properties

H(U,0) F(U),   H(U,1) L(U)= = (7)
where

F(U) U K= − (8)
and

1 1 1L(U) U K G g(r) G RU G NU− − −= − − + + (9)

Classically, we choose a convex homotopy by

H(U,p) (1 p)F(U) pL(U) 0= − + = (10)

and continuously trace an implicitly defined curve from 
a starting point H(U,0) to the solution function H(U,1),
where u is the solution of Eq. (1). The embedding

parameter p monotonically changes from zero to unity 
as the trivial problem F(U) = 0 is continuously
deformed to the original problem L(U) = 0. If the
embedding parameter p is considered as a "small
parameter", applying the classical perturbation
technique, we can assume that the solution of Eq. (1)
can be given by a power series in p, i. e.

2
0 1 2U U pU p U= + + + (11)

and setting p = 1 results in the approximate solution of 
Eq. (1) as

0 1 2p 1
u(r) limU U U U

→
= = + + + (12)

HPM for the third-order nonlinear KdV equation: 
In this section, we consider the third-order nonlinear 
KdV equation

m
t x xxx

1
2 m

0

u u u u 0

u(x,0) Asech (Kx x )

+ + =

 = − 

(13)

with the initial condition

1
2 mu(x,t) Asech (Kx ct) = − 

where m, K, d and x0 are constants ,

2
2

2(m 1)(m 2)
A K

d
+ +

=

2

2
4Kc
m

=

and the subscripts in t and x denote partial derivatives 
with respect to these independent variables [39] and 
apply the HPM to solve it. To this end, we rewrite Eq.
(13) in the form

t 3xG u Nu G u 0+ + = (14)

with m = 4 where the notation Nu = u4ux symbolizes the
nonlinear terms, the notations 

3

t 3x 3
G ,G

t x
∂ ∂= =
∂ ∂

symbolizes the linear differential operators. We assume 
that the inverse of the operator 1

tG−  exists and it can
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conveniently be taken as the definite integral with 
respect to t from 0 to t. Thus, applying the inverse 
operator 1

tG−  to both equations (14) yields

1 1
t t t 3xG G u G (Nu G u)− −= − + (15)

Applying the initial condition
1

2 4u(x,0) f(x) Asech (Kx) = =  
we obtain

1
t 3xu(x,t) f(x) G (Nu G u)−= − + (16)

By the homotopy technique, we construct a
homotopy H(U, p) which satisfies

H(U,p) (1 p)F(U) pL(U) 0= − + = (17)

where p∈[0,1] is an embedding parameter. The
embedding parameter p monotonically changes
from zero to unity as the trivial problem F(U) = 0
is continuously deformed to the original problem
L(U) = 0. If the embedding parameter p is considered 
as a "small parameter", applying the classical
perturbation technique, we can assume that the 
solution of Eq. (13) can be given by a power
series in p, i. e.

2
0 1 2U = U pU p U .+ + + (18)

Clearly, from Eq. (17) we have

H(U,0) F(U),   H(U,1) L(U)= = (19)
where

1
t 3x

F(U) U f(x)

L(U) U f(x) G (NU G U)−

= −

= − + +
(20)

By substituting Eq. (20) into Eq. (17), we obtain

1
t 3xU f(x) pG (NU G U)−= − + (21)

By replacing Eq. (18) into Eq. (21) and equating 
the terms with identical powers of p, we get

[ ]
1

0 4
0p : U f(x) A sech Kx= = (22)

1
1 2 24

1
1

p : U A Kt(8A 29K K cosh[2Kx])
16

= − +

[ ] [ ]
7
2sech Kx sinh Kx (23)

Table 1: Absolute errors of solution obtained by the HPM

t/x 0.1 0.2 0.3 0.4 0.5

0.1 1.11E-16 1.11E-16 1.11E-16 5.55E-16 2.55E-16
0.2 1.11E-16 1.11E-16 2.22E-16 4.44E-16 1.44E-15
0.3 0.00E-00 0.00E-00 2.22E-16 7.77E-16 2.10E-15
0.4 1.11E-16 0.00E-00 0.00E-00 2.22E-16 8.88E-16
0.5 1.11E-16 0.00E-00 0.00E-00 0.00E-00 1.11E-16

1
2 2 24

2
1

p : U A K t
4096

=

2 2 4( 3328A 59488AK 179306K− + −
2 2 4(2304A 48256AK 148527K )+ − +

[ ] 2 4cosh 2Kx (2080AK 7806K )+ −

[ ] [ ]4cosh 4Kx K cosh 6Kx )+

[ ]
13
2sech Kx (24)

in a similar manner, the components Un are calculated 
for n = 3,4,… but for simplicity they will not be listed 
here. Finally, by calculating Maclaurin series seven 
terms of the series solution, the approximate solution of 
Eq. (13) is calculated as:

6
n7

n 0
u U

=
≅ ϕ = ∑

6 2(0.762199 8.68192 10 t−= − × 10 41.15375 10 t )−+ × 
8 3(0.000771727t 2.0511 10 t )x−+ − × +

6 2( 0.0171495 1.3674 10 t−+ − + ×
1 1 4 25.15478 10 t )x−− × + ( 0.0000405156t+ −

9 3 33.05468 10 t )x−+ × + (25)

In order to verify the efficiency of the HPM for Eq. 
(13), we report the absolute errors of the solution 
obtained by this method for t∈[0.1, 0.5] relative to the 
exact solution with c = 0.00675, K = 0.3 and A = 
0.3375 in Table 1.

Results reveal that the obtained solutions by the 
HPM for the thired-order nonlinear KdV equation are 
exactly the same as those obtained by the Adomian 
decomposition method [39]. In order to have a visual 
comparison, the solution approximant by the HPM to 
Eq. (13) for various m are plotted in the same system of 
coordinates shown in the Fig. 1.

HPM for the fourth-order nonlinear KdV equation: 
In this section, we consider the fourth-order nonlinear 
KdV equation

1
m 2 mt x xxxxu (m 1)u u u 0,u(x,0) A sech (Kx) + + + = =   (26)
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(a) (b)                                                         (c)

(d)         (e) (f)
Fig. 1: The numerical results for ϕl(x,t): (a) for p = 4 with c = 0.00675, K = 0.3 and A = 0.3375, (c) for p = 6 with 

c = 0.003, K = 0.3 and A = 0.28 and (e) for p = 8 with c = 0.0016875, K = 0.3 and A = 0.253125 in
comparison with the analytical solutions u(x,t): (b) for p = 4, (d) for p = 6 and (f) for p = 8, for the solitary 
wave solutions with the initial condition of Eq. (13).

with the initial condition

1
2 mu(x,t) A sech (Kx ct) = − 

where m, K, c and A are constants and the subscripts in
t and x denote partial derivatives with respect to these
independent variables [39] and apply the HPM to solve 
it. To this end, we rewrite Eq. (26) in the form

t 4xG u (m 1)Nu G u 0+ + + = (27)

with m = 4 where the notation Nu = u4ux symbolizes the 
nonlinear terms, the notations 

4

t 4x 4
G ,G

t x
∂ ∂= =
∂ ∂

symbolizes the linear differential operators. We assume 
that the inverse of the operator 1

tG−  exists and it can 
conveniently be taken as the definite integral with 
respect to t from 0 to t. Thus, applying the inverse 
operator 1

tG−  to both equations (27) yields

1 1
t t t 4xG G u 5G (Nu G u)− −= − + (28)

Applying the initial condition

1
2 4u(x,0) f(x) A sech (Kx) = =  

we obtain
1

t 4xu(x,t) f(x) 5G (Nu G u)−= − + (29)

By the homotopy technique, we construct a
homotopy H(U,p) which satisfies

H(U,p) (1 p)F(U) pL(U) 0= − + = (30)

where p∈[0,1] is an embedding parameter. The
embedding parameter p monotonically changes from
zero to unity as the trivial problem F(U) = 0 is
continuously deformed to the original problem
L(U) = 0. If the embedding parameter p is considered as 
a "small parameter", applying the classical perturbation 
technique, we can assume that the solution of Eq. (26) 
can be given by a power series in p, i. e.

2
0 1 2U = U pU p U .+ + + (31)

Clearly, from Eq. (30) we have

H(U,0) F(U),   H(U,1) L(U)= = (32)

where
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                             (a)                                                           (b)                                                         (c)

                              (d)                                                        (e)                                                        (f)
Fig. 2: The numerical results for ϕl(x,t): (a) for p = 4, (c) for p = 6 and (e) for p = 8, in comparison with the 

analytical solutions u(x,t): (b) for p = 4, (d) for p = 6 and (f) for p = 8, for the solitary wave solutions with 
the initial condition of Eq. (26) with c = 0.05, K = 0.1 and A = 0.2

1
t 4x

F(U) U f(x)

L(U) U f(x) 5G (NU G U)−

= −

= − + +
(33)

By substituting Eq. (33) into Eq. (30), we obtain

1
t 4xU f(x) 5pG (NU G U)−= − + (34)

By substituting Eq. (31) into Eq. (34) and equating 
the terms with identical powers of p, we get

[ ]0
0p : U f(x) A sech Kx= = (35)

9
1 2

1
1

p : U AKtsech[Kx]
128

= −

3 3(531K 308K cosh[2Kx]− (36)
3 4K cosh[4Kx] 160A sinh[2Kx])+ −

[ ]

[ ]
[ ] [ ]

[ ]

17
2 2 2

22

8 6

8 6

8 6

6

6

1p : U AK t sech Kx
65536

             ( 435200A 120851555K

 8(25600A 15491243K )

             cosh 2Kx 4(57600A 3620599K )

             cosh 4Kx 195304K cosh 6Kx

 K cosh 8Kx 176

=

− +

− +

+ +

−

+ −

[ ] [ ]

4 3

4 3

15040A K

             sinh 2Kx 4320000A K sinh 4Kx+

[ ]4 3100800A K sinh 6 K x )− (37)

Table 2: Absolute errors of solution obtained by the HPM

t/x 0.1 0.2 0.3 0.4 0.5

0.1 5.55E-6 1.10E-5 1.65E-5 2.20E-5 2.74E-5
0.2 5.78E-6 1.15E-5 1.72E-5 2.29E-5 2.86E-5
0.3 6.01E-6 1.20E-5 1.79E-5 2.38E-5 2.97E-5
0.4 6.23E-6 1.24E-5 1.86E-5 2.47E-5 2.74E-5
0.5 6.45E-6 1.28E-5 1.92E-5 2.56E-5 2.20E-5

in a similar manner, the components Un are calculated 
for n = 3,4,… but for simplicity they will not be listed 
here. Finally, by calculating Maclaurin series seven 
terms of the series solution, the approximate solution of 
Eq. (26) is calculated as

6

7 n
n 0

u U
=

≅ ϕ = ∑
7 2(0.2 0.000035t 3.10062 10 t−= − + ×

8 31.74817 10 t )−− × + 6 8 2(8 10 t 9.06 10 t− −+ × − ×
9 3 6

8 2 9 3 2

4.90812 10 t )x ( 0.0005 1.7375 10 t

5.34139 10 t 6.06856 10 t )x

− −

− −

+ × + + − + ×

− × + × +




(38)

7( 1.26667 10 t−+ − × 9 24.7765 10 t−+ ×
10 3 35.50174 10 t )x−− × + + 

In order to verify the efficiency of the HPM for 
Eq. (26), we report the absolute errors of the solution 
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obtained by this method for t∈[0,1, 0.5] relative to the 
exact solution with c = 0.05, K = 0.1 and A = 0.2 in 
Table 2.

Results reveal that the obtained solutions by the 
HPM for the fourth-order nonlinear KdV equation is 
exactly the same as with those obtained by the
Adomian decomposition method [39]. In order to have 
a visual comparison, the solution approximant by the 
HPM to Eq. (26) for various m are plotted in the same 
system of coordinates shown in the Fig. 2.

CONCLUSION

The main goal of this paper has been to drive an 
analytical solution for the third-and fourth-order KdV 
equations. We have achieved this goal by applying He's 
homotopy perturbation method. Results are compared 
with those in open literature [39], revealing that the 
obtained solutions are exactly similar to those obtained 
by the Adomian decomposition method [39]. However, 
applying the HPM overcomes the difficulties arising 
in calculation of Adomian’s polynomials. A clear
conclusion can be draw from the numerical results that 
the HPM algorithm provides highly accurate numerical 
solutions for higher order KdV equations.
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