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Abstract: Selecting the right technology is always a difficult task for decision-makers. Technology 
selection models help decision makers choose between evolving technologies. The objective of this paper is 
to present a new methodology for selecting technology by integration of fuzzy decision-making trial and 
evaluation laboratory (DEMATEL) and assurance region-data envelopment analysis (AR-DEA). A
numerical example demonstrates the application of the proposed method.
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INTRODUCTION

Selecting the right technology is always a difficult 
task for decision-makers. Technologies have varied
strengths and weaknesses which require careful
assessment by the purchasers. Technology selection 
models help decision makers choose between evolving 
technologies. The reason for a special focus on
technology selection is due to the complexity of their 
evaluation which includes strategic and operational
characteristics [1]. Tools  that  consider  a  wide range 
of  dimensions  have  been developed for evaluating 
these  many  characteristics,  which  include cost,
quality, flexibility, time, etc. Some mathematical
programming approaches have been used for
technology selection in the past. Chan et al. [2]
presented a fuzzy GP approach to model the machine 
tool selection and operation allocation problem of
flexible manufacturing systems (FMSs). Khouja [3]
proposed a decision model for technology selection 
problems using a two-phase procedure. In phase 1, 
DEA  is  used  to  identify  technologies  that  provide 
the  best  combinations  of  vendor  specifications  on 
the  performance  parameters  of  the  technology. In 
phase 2, a MADM model is used to select a technology 
from those identified in phase 1. To select the best 
technologies in the existence of both cardinal and
ordinal data, Farzipoor Saen [4] proposed an innovative 
approach, which is based on IDEA. To select the best 
advanced manufacturing technologies, Karsak and
Ahiska [5] introduced a multi-criteria decision
methodology  that  can  integrate  multiple  outputs
such as various technical characteristics and qualitative 
factors  with  a  single  input  such  as cost. Their model
is  derived  from  the  cross-efficiency analysis, which 

is  one  of  the  branches  of  DEA  model. Farzipoor 
Saen [1] used imprecise data and weight restrictions for
technology selection.  The objective of this paper is to 
propose a new method that integrates assurance region-
data envelopment analysis (AR-DEA) with fuzzy
DEMATEL for selecting the best technology. This
paper proceeds as follows. The following section
describes the methodology of this paper and explains 
the principle of fuzzy DEMATEL and AR-DEA
methods. Numerical example and concluding remarks 
are discussed in Section 3 and 4, respectively.

RESEARCH METHODOLOGY

The integrated approach, composed of Fuzzy
DEMATEL and AR-DEA methods, for the Technology 
selection problem consists of 6 stages: (1) determine the 
inputs and outputs for technology selection, (2) collect 
the data for inputs and outputs, (3) derive ordinal
ranking of inputs and outputs weights via Fuzzy
DEMATEL, (4) transform the weights of inputs and 
outputs into interval scales, (5) incorporate interval
scales as weight restrictions to DEA model and (6) 
solve AR-DEA model. Various stages of research and 
data analysis are shown in Fig. 1. 

In this section; we present a concise treatment of 
the basic concepts of fuzzy set theory and we present 
the methodology of fuzzy DEMATEL and AR-DEA
model.

FUZZY SETS AND FUZZY NUMBERS

Fuzzy  set  theory, which  was  introduced  by 
Zadeh  [6]  to  deal  with  problems in which a  source 
of   vagueness   is    involved,    has   been   utilized   for 
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Fig. 1: Algorithm of the proposed model

Fig. 2: A triangular fuzzy number A

incorporating imprecise data into the decision
framework. A fuzzy set A  can be defined
mathematically by a membership function (X)Aµ  ,
which assigns each element x in the universe of
discourse X a real number in the interval [0, 1]. A 
triangular fuzzy number A can be defined by a triplet
(a, b, c) as illustrated in Fig. 2.
The membership function (X)

A
µ   is defined as

x a a x b
b a
x c

(X) b x cA b c

otherewise0
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−
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µ = ≤ ≤
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                          (1)

Basic arithmetic operations on triangular fuzzy
numbers A1 = (a1,b1,c1), where a1≤b1≤c1 and A2 = 
(a2,b2,c2), where a2≤b2≤c2,can be shown as follows:

Addition:
                    A1⊕A2 = (a1 + a2,b1 + b2,c1 + c2) (2)

Subtraction:
                       A1 θ A2 = (a1-c2,b1-b2,c1-a2) (3)

Multiplication: if k is a scalar

k⊗A1 = ( )
( )

, k 0
, k 0

k a kb kc1 1 1
k c kb ka1 1 1

 >


<

             A1⊗A2 ˜ (a 1a2, b1b2, c1c2), if a1≥0, a2≥0 (4)

Division: A1 Ø A2 ˜ a b c1 1 1, ,
c b a2 2 2

 
   

, if a1≥0, a2≥0 (5)

Although  multiplication  and  division  operations
on  triangular  fuzzy  numbers  do  not  necessarily 
yield a triangular fuzzy number, triangular fuzzy
number  approximations  can  be  used  for  many 
practical  applications  [7]. Triangular fuzzy numbers 
are appropriate for quantifying the vague information
about most decision. The primary reason for using 
triangular fuzzy numbers can be stated as their intuitive 
and computational-efficient representation [8]. A
linguistic variable is defined as a variable whose values 
are not numbers, but words or sentences in natural or 
artificial language. The concept of a linguistic variable 
appears as a useful means for providing approximate 
characterization of phenomena that are too complex or 
ill defined to be described in conventional quantitative 
terms [9].

THE FUZZY DEMATEL METHOD

The Decision Making Trial and Evaluation
Laboratory (DEMATEL) method is presented in 1973 
[10], as a kind of structural modeling approach about a 
problem. DEMATEL is an extended method for
building and analyzing a structural mo del for analyzing 
the influence relation among complex criteria.
However, making decisions is very difficulty in fuzzy 
environment to segment complex factors. The current 
study uses the fuzzy DEMATEL method to obtain a 
more accurate analysis. The steps of Fuzzy DEMATEL 
as follow:

Step 1: Set up fuzzy matrix which is shown by bz  and 
called Assessment Data Fuzzy Matrix.

For forming fuzzy matrix, we use fuzzy linguistic 
variables as shown in Table 1. 

Next [11], it must acquire and average the
assessment of executives’ preferences using

Table 1: The fuzzy linguistic scale

Linguistic terms Triangular fuzzy numbers
No influence (No) (0.00, 0.00, 0.25)
Very low influence (VL) (0.00, 0.25, 0.50)
Low influence (L) (0.25, 0.50, 0.75)
High influence (H) (0.50, 0.75, 1.00)
Very high influence (VH) (0.75, 1.00, 1.00)

Level 1: Determine the inputs and outputs for technology selection

Level 2: Collect the data for inputs and outputs

Level 3: Derive ordinal ranking of inputs and outputs weights via 
fuzzy DEMATEL

Level 4: Transform the weights of inputs and outputs into interval 
scales

Level 5: Incorporate interval scale as weight restriction to DEA 
model

Level 6: Solve AR-DEA model

)(~ XA
1

0    L       M                 U
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Then, fuzzy matrix z  is produced which is shown as

0 z z12 1n
z 0z z21 2n

0z zn1 n2
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(7)

which is called initial direct-relation fuzzy matrix. In 
this matrix, zij = (lij, mij, uij) are triangular fuzzy

numbers and zij  = (i = 1,2,…,n) will be regarded as 
triangular fuzzy number (0, 0, 0) whenever is
necessary. Then, by normalizing initial direct-relation
fuzzy matrix, we acquire normalized direct-relation
fuzzy matrix x  by using

x x x11 12 1n
0x x x11 22 2nx

x x xn1 n2 nn

 
 
 =
 
 
 

  
  
   

  

(8)

uz l mij ij, ij, ij,, ,xij r r r r
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n
R max u1 i n ij

j 1

 
 ∑= ≤ ≤  = 

(10)

It is assumed at least one i such that

n
uij 1

j 1
∑ <
=

After computing the above matrices, the total-
relation fuzzy matrix T  is computed. Total-relation
fuzzy matrix is defined as [11]

( )1 2 nT ...lim x x xk= + + +→∞    (11)

Then,
t t t11 12 1n

0t t t11 22 2nT

t t tn1 n2 nn

 
 
 =
 
 
  

  
  
   

  

(12)

In which

( ), ,ul mt ij ij ijij = ′′′′ ′′

and

( )1IX X1 ll ij 
  

−= × −′′  , ( )m ij 1IX X1 m ′′ 
−= × −

( )u ij 1IX X1 u ′′ 
−= × − (13)

By producing matrix T  then it is calculated
( Di + Ri ) and (Di - Ri ) in which Di  and Ri  are the 

sum of row and the sum of columns of T  respectively. 
To finalize the procedure, all calculated (Di + Ri

~ ) and 

( Di - Ri ) are defuzified through suitable defuzification 
method. Then, there would be two sets of numbers:

( ) d e fi iD R+   which shows how important the strategic 

objectives are and( ) defi iD R−   which shows which

strategic objective is cause and which one is effect. 
Generally, if the value( ) defi iD R−   is positive, the

objectives belong to the cause group and if the
value ( ) defi iD R−   is negative, the objectives belong to 

the effect group.

AR-DEA MODEL

DEA proposed by Charnes [12] (Charnes-Cooper-
Rhodes (CCR) model) and developed by Banker [13] 
(Banker-Charnes-Cooper (BCC) model) is an approach 
for evaluating the efficiencies of DMUs. One serious 
drawback of DEA applications in technology selection 
has been the absence of decision maker judgment,
allowing total freedom when allocating weights to input
and output data of technology under analysis. This 
allows technologies to achieve artificially high
efficiency scores by indulging in inappropriate input 
and output weights. The most widespread method for 
considering judgments in DEA models is, perhaps, the 
weight restrictions inclusion. Weight restrictions allow 
for the integration of managerial preferences in terms of 
relative importance levels of various inputs and outputs. 
The idea of conditioning the DEA calculations to allow 
for the presence of additional information arose first in 
the context of bounds on factor weights in DEA’s 
multiplier side problem. This led to the development of 
the cone-ratio [14] and assurance region models [15]. 
Both methods constrain the domain of feasible
solutions in the space of the virtual multipliers. To 
introduce the method for technology selection, Table 2 
lists the nomenclature used to formulate the problem 
under consideration. The discussions in this paper are 
provided with reference to the original DEA
formulation by Charnes [12] below, which assumes 
constant returns to scale and that all input and output 
levels for all DMUs are strictly positive. The CCR
model measures the efficiency of DMUo relative to a 
set of peer DMUs:
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Table 2: Nomenclature
Problem parameters

( ), , , , , , ,i i i rr r i r iρ η ψ ξ ϕσ τ α θ  User-specified constants

j = 1,...,n collection of suppliers (DMUs)
r = 1,...,s the set of outputs
i = 1,...,m the set of inputs
yrj = the rth output of jth DMU
xij = the ith input of jth DMU
yro = rth outputs of t he DMUo under investigation
X1o = ith inputs of the DMUo under investigation
ur = weight of the rth output
v1 = weight of the ith input

s   u yr 1 r ro max  ,Eo m  xi 1 i io
s   u yr 1 r rj      s.t:    1, j 1, ... ,n ,
m  xi 1 i ij

   u 0  ,i and  ri r

∑ ==
ν∑ =

∑ =
≤ =

ν∑ =

ν ≥ ∀

(14)

where there is a set of n peer DMUs, {DMUj:
j=1,2,...,n}, which produce multiple outputs
yrj(r=1,2,...,s), by utilizing multiple inputs
xrj(i=1,2,...,m). DMUo is the DMU under consideration. 
ur is the weight given to output r and vi is the weight 
given   to  input  i.  e  is   a   positive  non-Archimedean
infinitesimal. DMUo is said to be efficient (Eo = 1) if 
no other DMU or combination of DMUs can produce 
more than DMUo on at least one output without
producing less in some other output or requiring more 
of at least one input. The linear programming
equivalent of (14) is as follows:

s max   u y ,Eo r 1 r ro
m      s.t: x ,i 1 i io

s m  u y   x    1    , jr 1 i 1r rj i ij
  0  ,ii

     u 0  .rr

= ∑ =

ν∑ =

− ν ≤∑ ∑ ∀= =

ν ≥ ∀

≤ ∀

(15)

In (16, 17, 18) the various types of weight
restriction that can be applied to multiplier models are 
shown [16]. 
Absolute weight restrictions

( )
( )

 ,gi i ii
 u  .gr r or

≤ ν ≤σ τ

≤ ≤ρ η
                       (16)

Assurance region of type I (relative weight restrictions)

( )
( )

 ,hii ii
 u  .hor rr

≤ ν ≤ ψα

≤ ≤ ξθ
(17)

Assurance regions of type II (input-output weight 
restrictions)

( ) u  l .i i rν ≥ϕ (18)

The Greek letters ( ), , , , , , ,i i i rr r i r iρ η ψ ξ ϕσ τ α θ are
user-specified constants to reflect value judgments the 
decision maker wishes to incorporate in the assessment. 
They may relate to the perceived importance or worth 
of input and output factors. The restrictions (g) and (h)
in (16, 17) relate on the left hand side to input weights 
and on the right hand side to output weights. Constraint 
(l) links directly input and output weights. Absolute 
weight restrictions are the most immediate form of
placing restrictions on the weights as they simply
restrict them to vary within a specific range. Assurance 
region of type I, link either only input weights (h i) or 
only output weights (ho). The relationship between 
input and output weights are termed assurance region of 
type II.

In this paper, we propose a new type of weight 
restriction which is called ordinal weight restriction.
Imagine that there are three inputs and outputs. Using 
fuzzy DEMATEL, we can obtain the following weight 
restriction regarding the weights of inputs and outputs:

1 2 i.ν ≥ ν ≥ ≥ ν (19)

u1 u2 ur.≥ ≥ ≥ (20)

In order to incorporate 19 and 20 into the DEA 
model, we transform them into cardinal (interval) scale. 
To this end, there are some transformation methods 
which are not all discussed here. Wang [17] proposed a 
method to deal with both cardinal and ordinal data in 
DEA models. Wang used an innovative method to 
transform the ordinal inputs or outputs into cardinal 
scale and then solved the DEA model with only
cardinal data. One of the main contributions of our 
paper is to use Wang’s strategy to translate ordinal 
weight restrictions 19 and 20 into cardinal scale.
Suppose weights of Vi and Ur for DMUs are given in 
the form of ordinal preference information. Usually,
there may exist three types of ordinal preference
information: (1) strong ordinal preference information 
such as Uj>Uk or Vj>Vk which can be further expressed 
as Uj≥χUk and Vj≥χVk, where χ>1 and is the
parameters on the degree of preference intensity
provided by decision maker (DM); (2) weak ordinal
preference information such as Up≥Uq or Vp≥Vq; (3)
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indifference relationship such as U1=Ut or V1=Vt. We 
can conduct a scale transformation to ordinal input
and output index so that its best ordinal datum is 
less than or equal to unity and then give an interval 
estimate for each ordinal datum. For transforming
ordinal scale to interval scale, we use the following 
formula:

n r 1 r 1 nur , r 1, ,n  with  ,− − − ∈ δ = δ ≤χ χ χ  
 (21)

n i 1 i 1 nvi , r i, ,n   with  ,− − − ∈ δ = δ ≤χ χ χ  
 (22)

where χ is a preference intensity parameter satisfying 
χ>1 provided by the DM and σ is the ratio parameter 
also provided by the DM. According to the simplest 
order relation between two interval numbers, i.e. A≤B
if and only if aL≤bL and aU≤bU, where A = [aL, aU] 
and B = [bL, bU] are two interval numbers, the
transformed interval data still reserve the original
ordinal preference relationships [17]. Finally, the output 
of restriction (21) and (22) like a restriction (16) are an 
absolute numbers that indicate the lower and upper 
bounds for input and output weights but with this 
difference that reflects the priorities weight of inputs 
and outputs. So we have a special kind of restriction 
(16) that reflects the priorities weight of inputs and 
outputs . So we have introduced the third type of AR 
model. Now, instead of restricts of linear programming 
equivalent of (15), weighted restricts of Eq.16 is add 
and model (23) is obtain as follows:

s max   u y ,Eo r 1 r ro
m      s.t: x ,i 1 i io

s m  u y   x    1    , jr 1 i 1r rj i ij
 ,ii ii

 u  .rr rr

= ∑ =

ν∑ =

− ν ≤∑ ∑ ∀= =

≤ ν ≤σ τ ∀

≤ ≤ρ η ∀

(23)

Adding the weighted restricts are also make broblems.
First,   the   problem   may   not   be solved.  Second, 
relative efficiency may  not  be  calculated.  For solving
these problems, we should  multiply  the fix numbers of
restricts in p and q variables. This idea is presented and 
demonstrated by Podinovski [18]. Podinovski [18]
proved that by adding these variables, all of the
problems will be solved. By adding p and q variables to 
the model (23), model (24) is obtained as follows:

s max   u y ,Eo r 1 r ro
m      s.t: x ,i 1 i io

s m  u y   x    1    , jr 1 i 1r rj i ij
 p  p  ,ii ii

 q  u q  .rr rr

= ∑ =

ν∑ =

− ν ≤∑ ∑ ∀= =

≤ ν ≤σ τ ∀

≤ ≤ρ η ∀

(24)

Table 3: Inputs and outputs for robot selection
Input: Outputs:
x1 = Cost (10000$) y1j = Repeatability(mm)

y2j = Load capacity (kg)
y3j = Velocity (m/s)
y4j = Amount of know-how transfer

Table 4: Related attributes for 20 robots
y2j = Load y4j = Amount of

(DMU) x1 = Cost (10000$) y1j = Repeatability (mm) capacity (kg) y3j = Velocity (m/s) know-how transfer
1 3.0 0.35 55 1.20 4
2 2.0 0.65 24 1.30 3
3 3.5 1.19 26 1.30 2
4 5.0 0.65 30 0.70 2
5 4.5 0.43 30 0.90 5
6 1.9 0.53 21 0.75 5
7 2.2 0.62 25 0.92 2
8 3.0 0.72 28 1.00 3
9 4.7 0.17 26 1.30 3
10 2.3 0.88 26 1.10 5
11 3.0 0.47 30 0.97 4
12 5.0 1.00 12 0.82 2
13 3.3 0.75 18 1.76 1
14 3.5 0.75 32 1.88 3
15 3.5 0.82 27 0.71 4
16 4.8 1.10 46 0.71 2
17 3.65 1.74 10 1.89 5
18 2.87 0.48 19 1.25 4
19 3.21 0.64 18 1.04 2
20 3.16 0.80 22 0.80 3
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A NUMERICAL APPLICATION 
OF PROPOSED APPROACH

In this paper, the proposed methodology that may 
be applied to a wide range of technology selection 
problems is used for robot selection. We considered 
cost as an input and Repeatability, Load capacity,
Velocity and Amount of know-how transfer as outputs 
for Technology selection. These inputs and outputs are 
taken from Farzipoor saen [1, 4].These inputs and 
outputs are shown in Table 3.

After that we collect data for inputs and outputs. 
Data about inputs and outputs for each robot is shown 
in Table 4.

After that we rank outputs separately by using of 
Fuzzy DEMATEL. At the next step, subject to the 
fuzzy linguistic scale, everyone should make pair wise 
relationships between each output.  Then, we will   have
a   lot   of assessment data fuzzy matrix in hand. Using 
(6) to average all these assessments matrices, we will 
have initial-direct fuzzy matrix z  for outputs. Our
partial results are shown in Table 5. Then, using (9), the

normalized direct-relation fuzzy matrix x  will be
produced. The partial results are depicted in Table 6.

Following (13), we will acquire the total-relation
fuzzy matrix which will be the last step for
transforming crisp data into the fuzzy environments. 
Our matrix partially depicted on Table 7.

To access the casual relationships between outputs, 
we will calculate (Di + Ri ) and (Di - Ri ) in which Di

and Ri  are the sum of row and the sum of columns of 
our total-relation fuzzy matrix respectively. Our partial 
results and the result of ranking are shown in Table 8.

Using of Eq. (14) outputs which are ranked and 
transformed into interval scale. These intervals identify 
the range of outputs. For example, interval scale of U1

with (χ = 1.5, σ = 0.1) is calculated as below:

( ) [ ]1 14 1u1 0.1 , 0.338,11.5 − −∈ =χ  

Similar to U1, the interval weight of other outputs 
are calculated and shown in the Table 9.

Table 5: The Initial direct -relation fuzzy matrix z for outputs

Z O1 O2 O3 O4

O1 (0,0,0.25) (0.44,0.69,0.81) (0.31,0.56,0.81) (0.44,0.69,0.88)
O2 (0.56,0.81,1) (0,0,0.25) (0.38,0.63,0.88) (0.19,0.44,0.69)
O3 (0.13,0.38,0.63) (0.13,0.38,0.63) (0,0,0.25) (0.19,0.44,0.69)
O4 (0.19,0.44,0.69) (0.31,0.56,0.75) (0.25,0.5,0.75) (0,0,0.25)

Table 6: The normalized initial direction-relation fuzzy matrix x for outputs

X O1 O2 O3 O4

O1 (0,0,0.21) (0.37,0.58,0.68) (0.26,0.47,0.68) (0.37,0.58,0.74)
O2 (0.47,0.68,0.84) (0,0,0.21) (0.32,0.53,0.74) (0.16,0.37,0.58)
O3 (0.11,0.32,0.53) (0.11,0.32,0.53) (0,0,0.21) (0.16,0.37,0.58)
O4 (0.16,0.37,0.58) (0.26,0.47,0.63) (0.21,0.42,0.63) (0,0,0.21)

Table 7: The total-relation fuzzy matrix T

T O1 O2 O3 O4

O1 (0.74,1.32,1.74) (0.39,0.95,0.99) (0.46,0.97,1.04) (0.39,0.92,0.95)
O2 (0.37,0.89,1.04) (0.73,1.3,1.71) (0.45,0.99,0.99) (0.48,0.82,0.99)
O3 (0.37,0.41,0.69) (0.34,0.41,0.69) (0.64,0.96,1.33) (0.33,0.43,0.64)
O4 (0.4,0.63,0.82) (0.35,0.69,0.78) (0.41,0.69,0.83) (0.67,1.08,1.45)

Table 8: The value of ( Di + Ri ), ( Di - Ri ) and the result of ranking

Ranking R+C R-C C R RANK R

O1 10.98 0.07 5.45 5.52 2
O2 10.96 -0.03 5.50 5.46 4
O3 11.11 0.27 5.42 5.69 1
O4 10.93 0.02 5.45 5.47 3
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Table 9: Ordinal scale and interval scale for Ur

Interval scale for its ur with χ = 1.5 σ = 0.1
Ordinal ----------------------------------------------------

Outputs: scale L U

U1 2 0.225 0.667
U2 4 0.100 0.296
U3 1 0.338 1.000
U4 3 0.150 0.444

Table 10:Efficiency scores with weight restrictions and without 
weighted restrictions

Score Rank Score new Rank new
DMU CCR CCR AR-CCR AR-CCR

1 1.000000 1 1.000000 1
2 1.000000 1 0.941314 4
3 0.831904 7 0.568178 12
4 0.440585 19 0.353476 19
5 0.500906 17 0.490411 16
6 1.000000 1 0.983235 2
7 0.881059 6 0.748216 5
8 0.731976 11 0.644385 8
9 0.440480 20 0.393231 18
10 1.000000 1 0.974498 3
11 0.710946 13 0.695737 6
12 0.446652 18 0.246284 20
13 0.820513 9 0.508067 15
14 0.826374 8 0.686111 7
15 0.649328 15 0.569936 11
16 0.730280 12 0.544743 13
17 1.000000 1 0.591760 10
18 0.758762 10 0.629637 9
19 0.548241 16 0.445845 17
20 0.650454 14 0.530371 14

Then model (21) for the first Technology will be 
solved. The solution of two models for the first
Technology and other Technology are provided in the 
Table 10:

As it can be seen in the second column of Table 
10, by solving an input oriented CCR model (model 15) 
without  weight  restrictions, five DMUs are efficient 
and in model 15, the opinion of managers and
consultants are not considered, therefore, this model is 
completely free to determine the weights of inputs and 
outputs. In this paper, the opinion of managers and 
consultants are considered but the domains specified for 
the weight of input and output are not efficient as seen 
in the third column of Table 10 and the efficiency score
for DMU is not changed and this matter is occurred in 
AR-CCR model but in spite of other papers, this
problem did not occur in our method. In this way, by 

increasing the amount of parameters σ, χ, we  can
increase  the  influence of Manager’s opinion. As you 
can see in the fourth column of Table 10, technology 1 
is the most efficient technology between other
technologies and the technology 12 has the lowest 
efficiency. The results of this paper show that the
method provided by the authors is completely flexible 
and by increasing the opinions of managers and
consultants, the power of differentiation this model will 
increase.

CONCLUSIONS

DEA models without weight restrictions will
evaluate the efficiency of DMU in the best conditions 
and input and output weights are set up so that the 
efficiency of DMU will be maximum (The results of 
solving CCR problem is provided in the Table 10). In 
some cases, we may want to give weights for input and 
output, so the use of weight restrictions is the proper 
way for these cases. In this paper, in order to reach the 
weight restrictions, the opinions of managers and
experts   about the importance of indicators have been 
identified by using of questionnaire. After that the
rating scale transformed to interval scale and then these 
interval data added to DEA model and solved. Then the 
efficiency of technology is calculated. According to 
new method, technology 1 is the most efficient
technology between other technologies. As a future
direction, other decision-making methods such as fuzzy 
ELECTRE and Fuzzy TOPSIS can be used in this area. 
Fuzzy TOPSIS method is used by Momeni et al. [19] in 
other area that can be used in Technology selection.
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