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Abstract: Mathematical modeling of numerous physical phenomena often leads to high-dimensional
partial differential equations and thus the higher dimensional nonlinear evolution equations come into 
further attractive in many branches of physical sciences. In this article, we propose a new technique of the 
(G′/G)-expansion method combine with the Riccati equation for searching new exact traveling wave 
solutions of the (3+1)-dimensional Kadomtsev-Petviashvili (KP) equation. Consequently, some new
solutions of the KP are successfully obtained in a unified way involving arbitrary parameters. When the 
parameters take special values, solitary waves are derived from the traveling waves. The obtained solutions 
are expressed by the hyperbolic, trigonometric and rational functions. The method can be applied to many 
other nonlinear partial differential equations.
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INTRODUCTION

In 1834, John Scott Russell [1] first observed the 
solitary waves. The significant observation motivated 
him to conduct experiments to underline his observance 
and to study these solitary waves. In 1965, Zabusky and 
Kruskal [2] studied the interactions between the solitary 
waves and the reappearance of initial states and since 
the KdV equation was solved by Gardner et al. [3] by 
the inverse scattering method, finding the solitary wave 
solutions of Nonlinear Evolution Equations (NLEEs)
has turned out to be one of the enthusiastic and greatly 
lucrative areas of research. The appearance of solitary 
wave  in  nature  is  rather  frequent,  especially  in 
fluids, plasmas, solid state physics, condensed matter 
physics, optical fibers, chemical kinematics, electrical 
circuits, bio-genetics, elastic media etc. Therefore, the 
researchers conducted a huge amount of research work 
to  investigate  the  exact  traveling  wave  solutions  of 
the  phenomena.  Consequently,  they  established
many methods and techniques, such as, the Backlund 
transformation method [4], the Hirota’s bilinear
transformation method [5], the variational iteration
method [6], the Adomian decomposition method [7], 
the tanh-function method [8], the homogeneous balance 
method [9], the F-expansion method [10], the Jacobi 

elliptic function method [11], the variable separation
method [12], the Lie group symmetry method [13], the 
homotopy analysis method [14, 15], the homotopy
perturbation method [16], the first integration method 
[17], the Exp -function method [18-21], the (G′/G)-
expansion method [22-31] and so on.

It is significant to observe that there exist some 
fundamental relationships among numerous complex
nonlinear partial differential equations and some basic 
and soluble nonlinear Ordinary Differential Equations 
(ODEs), such as the sine-Gordon equation, the sinh-
Gordon equation, the Riccati equation, the Weierstrass 
elliptic equation etc. Therefore, it is natural to use the 
solutions of these nonlinear ODEs to construct exact 
solutions of various intricate nonlinear partial
differential equations. Based on the relationships of 
complex nonlinear partial differential equations and
ODEs, a number of methods, such as, the Riccati
equation expansion method [32, 33], the projective
Riccati equation method [34, 35], the algebraic method 
[36], the sinh-Gordon equation expansion method [37], 
the generalized F-expansion method [38, 39] etc. have 
been developed.

In the present article, we make use of the Riccati 
equation with the (G′/G)-expansion method for
obtaining  some  new  exact  traveling wave solutions to
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the (3+1)-dimensional Kadomtsev-Petviashvili (KP).
The Riccati equation has not been used by anybody 
before to solve the KP equation by (G′/G)-expansion
method.

DESCRIPTION OF THE (G′/G)-EXPANSION
METHOD WITH THE RICCATI EQUATION

Suppose the general nonlinear partial differential
equation

t x y z tt xx(u ,u ,u , u , u , u , u , ) 0Φ = (1)

where u = u (x,y,z,t) is an unknown function, Φ is a 
polynomial in u (x,y,z,t) and its partial derivatives in 
which the highest order partial derivatives and the
nonlinear terms are involved. The main steps of the 
(G′/G)-expansion method combined with the Riccati
equation is as follows:

Step 1: The travelling wave variable ansatz

u(x,y,z,t) v( ), x y z Vt= η η = + + − (2)

where V is the speed of the traveling wave, allows us to 
convert the Eq. (1) into an ODE:

( v , v , v , ) 0′ ′′ψ = (3)

where the superscripts stands for the ordinary
derivatives with respect to η.

Step 2: If Eq. (3) is integrable, integrate term by term 
one or more times, yields constant(s) of integration.

Step 3: Suppose the traveling wave solution of Eq. (3) 
can be expressed by a polynomial in (G′/G) as follows:

m n

n m
n 0

Gv( ) , 0
G

=

′ η = α α ≠ 
 ∑ (4)

where G = G(η) satisfies the Riccati equation,

2
1 2 2G h h G ,h 0′ = + ≠ (5)

where αn = (n = 0,1,2,…,m), h1 and h2 are arbitrary 
constants to be determined later.

The Riccati Eq. (5) plays important role in
manipulating nonlinear equations to get exact solutions 
by the (G′/G)-expansion method. It has the following
twenty one exact solutions [40].

Family 1: When h1 and h2 have same sign and h1h2 ≠ 0, 
the solutions of Eq. (5) are:

( )1 1 2 1 2
2

1
G h h tan h h

h
 = η 

( )2 1 2 1 2
2

1
G h h cot h h

h
 = − η 

( ) ( )( )3 1 2 1 2 1 2
2

1
G h h tan 2 h h sec 2 h h

h
 = η ± η  

( ) ( )( )4 1 2 1 2 1 2
2

1
G h h cot 2 h h csc 2 h h

h
 = − η ± η  

5 1 2 1 2 1 2
2

1 1 1
G h h tan h h cot h h

2 h 2 2
     = η − η     

     

( )
( )

2 2
1 21 2

6
2 1 2

(M N ) Mcos 2 h hh h
G

h Msin 2 h h N

 − − η =  η +  

( )
( )

2 2
1 21 2

7
2 1 2

(M N ) Msin 2 h hh h
G

h Mcos 2 h h N

 − + η =  η +  

where M and N are two non-zero real constants and 
satisfies the condition M2-N2>0.

( )
( )

1 1 2
8

1 2 1 2 1 2

h cos 2 h h
G

h h sin 2 h h h h

− η
=

η ±

( )
( )

1 1 2
9

1 2 1 2 1 2

h sin 2 h h
G

h h cos 2 h h h h

η
=

η ±

1 1 2 1 2

10
2

1 2 1 2 1 2

1 12h sin h h cos h h
2 2G

12 h h cos h h h h
2

   η η   
   =

 η − 
 

Family 2: When h1 and h2 possess opposite sign and 
h1h2≠0, the solutions of Eq. (5) are:

( )11 1 2 1 2
2

1
G h h tanh h h

h
 = − − − η 

( )12 1 2 1 2
2

1
G h h coth h h

h
 = − − − η 
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( ) ( )( )13 1 2 1 2 1 2
2

1
G h h tanh 2 h h isech 2 h h

h
 = − − − η ± − η  

( ) ( )( )14 1 2 1 2 1 2
2

1
G h h coth 2 h h csch 2 h h

h
 = − − − η ± − η  

15 1 2 1 2 1 2
2

1 1 1
G h h tanh h h coth h h

2h 2 2
     = − − − η + − η     

     

( )
( )

2 2
1 21 2

16
2 1 2

(M N ) Mcosh 2 h hh h
G

h Msinh 2 h h N

 + − − η−  =  − η +  

( )
( )

2 2
1 21 2

17
2 1 2

N M Msinh 2 h hh h
G

h Mcosh 2 h h N

 − + − η−  = −  − η +  

where M and N are two non-zero real constants and 
satisfies the condition N2-M2>0.

( )
( )

1 1 2
18

1 2 1 2 1 2

h cosh 2 h h
G

h h sinh 2 h h i h h

− η
=

− − η ± −

( )
( )

1 1 2
19

1 2 1 2 1 2

h sinh 2 h h
G

h h cosh 2 h h h h

− η
=

− − η ± −
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20
2
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 

Family 3:  When h2≠0  but h1=0,  the  solution  of
Eq. (5) is:

21
2

1
G

h d
=−

η+

where d is an arbitrary constant.
The above solutions help to generate various

traveling wave solutions, including solitary, periodic
and rational solutions, in elementary functions.

Step 4: To determine the positive integer m, put Eq. (4) 
along with Eq. (5) into Eq. (3) and consider the
homogeneous balance between the highest order
derivatives   and  the  nonlinear  terms  appearing  in 
Eq. (3).

Step 5: Substituting Eq. (4) together with Eq. (5) into 
Eq. (3) along with the value of m obtained in step 4, we 

obtain polynomials in Gi and Gi(i = 0,1,2,3…). Setting 
each coefficient of the resulted polynomial to zero,
yields a set of algebraic equations for αn, h1, h2 and V.

Step 6: Suppose the value of the constants αn h1, h2 and 
V can be obtained by solving the set of algebraic
equations obtained in step 5. Since the general solutions 
of Eq. (5) are known (arranged in step 3), substituting 
αn h1, h2 and V into Eq. (4), we obtain new exact 
traveling  wave  solutions  of  the  nonlinear  evolution
Eq. (1).

APPLICATION OF THE METHOD

In this section, we apply the proposed approach of 
the (G′/G)-expansion method to construct new exact 
traveling wave solutions to the Kadomtsev-Petviashvili
(KP) equation which is an important nonlinear equation
in mathematical physics.

Let us consider the (3+1)-dimensional KP
equation,

t x x x x x y y zz(u 6 u u u ) 3u 3u 0+ + + + = (6)

We investigate solutions the KP equation by the 
method described in section 2. Utilizing the traveling 
wave variable ansatz organized in Eq. (2), we obtain

( Vv 6vv v ) 6 v 0′ ′ ′′′ ′ ′′− + + + =  (7)

Eq. (7) is integrable, therefore, integrating twice, 
we obtain

2(6 V)v 3v v C 0′′− + + + = (8)
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where C is a constant of integration.
According to step 3, the solution of Eq. (8) can be 

expressed by a polynomial in (G′/G) as follows:

2
0 1 2

m
m m

v( ) (G / G ) (G / G )

(G / G ) , 0

′ ′η = α + α + α

′+ + α α ≠
(9)

where αn, (n = 0,1,2,…,m) are constants to be
determined and G = G(η) satisfies the Riccati Eq. (5). 
Considering the homogeneous balance between the 
highest order derivative ν″ and the nonlinear term ν2 we 
obtain m = 2.
Therefore, solution Eq. (9) become

2
0 1 2 2v( ) ( G / G ) (G / G ) , 0′ ′η = α + α + α α ≠ (10)

By means of Eq. (5), Eq. (10) can be rewritten as,

1 1 2
0 1 1 2 2 1 2v( ) (h G h G) (h G h G)− −η = α + α + + α + (11)

Substituting Eq. (11) into Eq. (8), the left hand side 
of the equation is converted into polynomials in Gi and 
G-i, (i = 0,1,2,…). Setting each coefficient of these
polynomials  to  zero, we obtain an over-determined set 

of algebraic equations (we will omit to display them for 
simplicity) for α0, α1, α2, h1, h2, V and C.

Solving the over-determined set of algebraic
equations by using the symbolic computation software, 
such as Maple, we obtain

2 1 0 02, 0,α = α = α = α

2
1 2 0 0 1 2V 6 1 6 h h 6 andC 3 1 6 h h= − − α = α + (12)

where α0, h1 and h2 are arbitrary constants.
Now on the basis of the solutions of the Riccati Eq. 

(5), we obtain the following cluster of traveling wave 
solutions of Eq. (6).

Cluster 1: When h1 and h 2 have same sign and h1h2≠0,
the periodic form solutions of Eq. (6) are,

2
1 0 1 2 1 2u 8h h csc (2 h h )= α + η

where η = x+y+z-(6-16h1h2-6α0)t and α0,  h1,  h2 are 
arbitrary constants.

2
3 0 1 2 1 2u 8h h sec (2 h h= α + η

{ }
{ }{ }

2
2 2

1 2 1 2 1 2
6 0

2 2
1 2 1 2

2 h h M M Nsin(2 h h ) M N cos(2 h h )
u 2

Msin(2 h h ) N Mcos(2 h h ) M N

 + η − − η 
= α +  

 η + η − − 
 

{ }
{ }{ }

2
2 2

1 2 1 2 1 2
7 0

2 2
1 2 1 2

2 h h M M Ncos(2 h h ) M N sin(2 h h )
u 2

Mcos(2 h h ) N Msin(2 h h ) M N

 + η + − η 
= α +  

 η + η + − 
 

where M and N are two non-zero real constants satisfies the condition M2-N2>0.

{ }

2

1 2
10 0 2

1 2 1 2 1 2

h h
u 2

2sin(( h h )/2)cos(( h h )/2) 2cos (( h h ) / 2) 1

 
 = α +   η η η −
 

The solutions corresponding to G2, G4, G5 and G9 are identical to the solution u1 and the solution corresponding 
to G8 is identical to the solution u3.

Cluster 2: When h1 and h2 possess opposite sign and h1h2≠0, the soliton and soliton-like solutions of Eqs. (6) are,

2
11 0 1 2 1 2u 8 h h csch (2 h h )= α − − η  where 1 2 0x y z (6 16h h 6 ) tη = + + − − − α

and α0, h1, h2 are arbitrary constants.
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2
13 0 1 2 1 2u 8 h h sech (2 h h )= α + − η

{ }
{ }{ }

2
2 2

1 2 1 2 1 2
16 0

2 2
1 2 1 2

2 h h M M Nsinh(2 h h ) M N cosh(2 h h )
u 2

Msinh(2 h h ) N Mcosh(2 h h ) M N

 − − − η − + − η 
= α +  

 − η + − η − + 
 

{ }
{ }{ }

2
2 2

1 2 1 2 1 2
17 0

2 2
1 2 1 2

2 h h M M Ncosh(2 h h ) N M sinh(2 h h )
u 2

Mcosh(2 h h ) N Msinh(2 h h ) N M

 − + − η − − − η 
= α +  

 − η + − η + − 
 

where M and N are two non-zero real constants and satisfies the condition M2-N2>0.

{ }

2

1 2
20 0 2

1 2 1 2 1 2

h h
u 2

2sinh(( h h )/2)cosh(( h h )/2) 2cosh (( h h )/2) 1

 − = α +   − η − η − η −
 

Fig. 1: Periodic solution corresponding to u1 for α0 = 1, 
h1 = 2, h2 = 1

The  solutions  corresponding  to  G12,  G14,  G15
and  G19 are  identical  to  the solution u11 and the 
solution  corresponding  to  G18  is  identical to the 
solution u13.

Cluster   3:   When h1=0  but h2≠0,  the  solution  of 
Eq. (6) is,

2
2

21 0
2

h
u 2

h d
 

= α +  η + 

where d is an arbitrary constant.
Because  of  the  arbitrary  constants α0,  h1,  h2

and V, in the above obtained solutions, the physical 
quantity u might possess physically significant rich 
structures.

Fig. 2: Periodic solution corresponding to u3 for α0 = 3, 
h1 = 2, h2 = 2

Fig. 3: Periodic solution corresponding to u6 for α0 = 5, 
h1 = 5, r = 5, M = 2 and N = 1
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Fig. 4: Soliton solution corresponding to u11 for α0 = 10, 
h1 = -2, h2 = 2

Fig. 5: Soliton solution corresponding to u17 for α0 = 1, 
h1 = 0.1, h2 = -1, M = 1 and N = 5

Fig. 6: Soliton solution corresponding to u21 for α0 = 1, 
h2 = 5 and d = 100

GRAPHICAL REPRESENTATIONS

Graph is an influential tool for communication and 
it illustrates clearly the solutions of the problems. We
consider the evolutions of the soliton, periodic and
rational-like  solutions  u1, u3, u6, u11, u17 and u21 along
x = 0 and y = 0. The graphs readily have shown the 
periodic and solitary wave forms of the solutions.

CONCLUSION

The (G′/G)-expansion method is an advance
mathematical tool for investigating exact solutions of 
nonlinear partial differential equations associated with 
complex physical phenomena wherein, in general the 
second order linear ordinary differential equation is 
employed as an auxiliary equation. But, in this article, 
we utilize the Riccati equation as an auxiliary equation; 
as a result, some new explicit solutions of the
Kadomtsev-Petviashvili equation are obtained in a
unified way. The obtained exact solutions might be
important and significant in the field of water waves of 
long wavelength with weakly nonlinear restoring forces 
and frequency dispersion. The algorithm presented in 
this article is effective and more powerful than the
original (G′/G)-expansion method and it can be applied 
for other kind of nonlinear evolution equations in
mathematical physics.
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