Finite Groupoids Using Z_n

Saleh M.A. Mustafa and Shaban A. Tranina

Department of Mathematics, Faculty of Science, University of Garyounis

Abstract: In this paper we obtain conditions on n and on the pair t and u for the groupoid $Z_n(t,u)$ to be normal, semi-normal, conjugate and ideal groupoid. We were able to find all sub-groupoids and their order. These groupoids show interesting properties. Some of their properties are studied and some interesting results are obtained and provided, throughout this paper.

Key words: Groupoid - Sub-groupoid - Ideal - Normal - Conjugate

INTRODUCTION

In this paper, we introduce groupoids using Z_n let $Z_n = \{0, 1, 2,...,n-1\}$ for the groupoid $Z_n(t,u)$ where t, u are two distinct integers in Z_n, $’+$' is the usual addition of two integers and ta means the product of the two integers t and a.

We denote this groupoid by $\{Z_n(t,u),’+$\} or in short by $Z_n(t,u)$.

These groupoids show interesting properties. Some of their properties are studied and some interesting results are obtained and provided, throughout this paper.

Remarks:

- For varying $t, u \in Z_n\{0\}$ we get a collection of groupoids for a fixed integer n.
- This collection of groupoids is denoted by $Z(n)$.
- The number of groupoids in $Z(n)$ is even, since, if $Z_n(t,u)$ is a groupoid in $Z(n)$, then $Z_n(t,u)$ is also a groupoid.

Example: Let $Z_3 = \{0, 1, 2\}$, $Z_3(1,2) \in Z(3)$, is a groupoid given by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

This groupoid is also non commutative and non associative. Hence, in Z_3 we have only two groupoid of order 3 using Z_n.

Finite Groupoid Using Z_n: In this section, we introduce some special properties of Z_n and obtain some interesting results.

Remark: $Z_n(t,u)$ be a groupoid given by the following Table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$n-1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>t</td>
<td>$2u$</td>
<td>$3u$</td>
<td>$(n-1)u$</td>
</tr>
<tr>
<td>1</td>
<td>t</td>
<td>$t+u$</td>
<td>$t+2u$</td>
<td>$t+3u$</td>
<td>$(t+(n-1)u)$</td>
</tr>
<tr>
<td>2</td>
<td>$2t$</td>
<td>$2t+u$</td>
<td>$2t+2u$</td>
<td>$2t+3u$</td>
<td>$2t+(n-1)u$</td>
</tr>
<tr>
<td>3</td>
<td>$3t$</td>
<td>$3t+u$</td>
<td>$3t+2u$</td>
<td>$3t+3u$</td>
<td>$3t+(n-1)u$</td>
</tr>
<tr>
<td>$n-1$</td>
<td>$(n-1)t$</td>
<td>$(n-1)t+u$</td>
<td>$(n-1)t+2u$</td>
<td>$(n-1)t+3u$</td>
<td>$(n-1)(t+1)$</td>
</tr>
</tbody>
</table>

- If $x \in Z_n(t,u)$, then $x = a_i * b_j$, $i, j = 0, 1, 2,...,n-1$.
- $a_i = I$ and $b_j = j$.
- $a_i * b_{j+1} = (a_i * b_j) + u$.

Proof: Let $H. S = a_i * b_{j+1} = ta_i + ub_{j+1} = ta_i + ub_j + u = (a_i * b_j) + u = R. H. S$.

Theorems and Corollary

Theorem 2.1: In the groupoid $Z_n(t,u)$, if $a_i * b_j = a_i * b_{j+1}$, then $a_i * b_{j+1} = a_i * b_{j+k}$.

Proof: Since, $a_i * b_j = a_i * b_{j+k}$, then $ta_i + ub_{j+k} = (mod n) = ta_i + ub_{j+k} (mod n)$.

So, $ta_i + ta_j - ub_j + ub_{j+k} (mod n)$.

Now, $a_i * b_{j+1} = ta_i + ub_{j+k} (mod n)$.

Let $a_i * b_{j+1} - ta_i + ub_{j+k} (mod n) = ta_i + ub_{j+k} = a_i * b_{j+k+1}$

Theorem 2.2: In the groupoid $Z_n(t,u)$, all rows (columns) have the same number of distinct elements.

Corresponding Author: Saleh M.A. Mustafa, Department of Mathematics, Faculty of Science, University of Garyounis.

Tel. +21891 774 3026.
Proof: Suppose that the number of distinct elements in two rows are not equivalent, then \(a_u \ast b_j = a_u \ast b_{j+1} \), such that, \(\alpha \beta \ast b_j \neq a \beta \ast b_{j+1} \), where \(\alpha, \beta, k \in \mathbb{Z}_n \).

Now,
\[
a_u \ast b_j = ta_u + ub_j \mod n = a_u \ast b_{j+1} = ta_u + ub_{j+1} \mod n.
\]

Then,
\[
ta_u + ub_j \mod n = ta_u + ub_{j+1} \mod n
\]
\[
ub_j \mod n = ub_{j+1} \mod n
\]
(1)
\[
a_u \ast b_j = ta_u + ub_j \mod n \quad \text{and} \quad a \beta \ast b_{j+1} = ta \beta + ub_{j+1} \mod n
\]
But,
\[
a \beta + ub_j \mod n \neq ta \beta + ub_{j+1} \mod n
\]
Hence,
\[
b_{j+1} \mod n \neq ub_j \mod n, \text{ from (1) this is a contradiction.}
\]

We will get a similar result for the columns.

Theorem 2.3: In the groupoid \(Z_s(t, u) \),

- If \((n, u) = d \), then the number of distinct elements in each row is equal \((n/d) \).
- If \((n, u) = d \), then the number of distinct elements in each column is equal \((n/d) \).

Proof: (1) Let \((n, u) = d \), take \(a = 0 \), then,
\[
a \ast b_j = ta + ub \mod n = ub \mod n
\]
Since, \(d \mid n \), then there exist \(b_j \in \mathbb{Z}_n \) such that, \(b_j = n/d \).
Thus,
\[
a \ast b_j = ub \mod n = (u)(n/d) \mod n = 0, \text{ since, } (n, u) = d/j.
\]
Now, let \(D = \{ x \in \mathbb{Z}_n : 0 < x < \frac{n}{d} \} \) and suppose that \(xu = 0 \mod n \) for some \(x \in D \).
Thus, \(xu = kn \) where, \(k \) is a positive integer, but \(x < (n/d) \), then,
\[
\frac{kn}{u} \leq \frac{n}{d} \Rightarrow \frac{k}{u} \leq \frac{1}{d} \Rightarrow \frac{u}{k} > d.
\]
Since, \(x < n \) and \(u < n \), then, \(xu = 0 \mod n \) only if \(x/n \) or \(u/n \).

Now, if \(x \mid n \) then, \(k \mid u \), implies that, \(\frac{u}{k} = \frac{n}{d} \), which is a contradiction.

Also, if \(k \mid n \), then \((n, u) = u \), which is a contradiction, then \(ux \neq 0 \mod n \) for all \(x \in D \).

Therefore, \(b_i \) is the smallest integer, such that, \(b_i = 0 \mod n \).

Nevertheless, the number of distinct elements between \(b_i \) and \(b_{i+k} \) is \(b \) by theorem (2.1) and the number of distinct elements between \(b_i \) and \(b_i \) is equal to the number of distinct elements between \(2b_i \) and \(3b_i \) which means the first row has only \(b_i \) elements. By theorem (2.2), the number of distinct elements in each row is equal to \(b_i = n/d \).

- Similar result will be obtained for the columns.

Corollary 2.4: In the groupoid \(Z_s(t, u) \),

- If \((u, n) = 1 \), then the elements in each row are distinct.
- If \((u, n) = 1 \), then the number of distinct elements in each column is equal \(n \).

Proof: Suppose that the number of distinct elements in each row are not equal, then, there exist \(i, j \), such that, \(a_i \ast b_j = a_i \ast b_{j+1} \), where \(k = 1, 2, \ldots, n - 1 \). Now, take \(i = 0 \) then, \(ub_j = ub_{j+1} \) implies that, \(b_j = b_{j+1} \) if and only if, \(k = 0 \) or \(k = n \); which is a contradiction. Hence, the order of the rows is equal.

Theorem 2.5: In the groupoid \(Z_s(t, u) \), if \(n \) is even, then

- If \(t \) is even and \(u \) is odd, then we have four sub-groupoids as follows,
 \[
 H_1 = \{ x \in \mathbb{Z}_n : x \text{ is even} \} \quad |H_1| = \frac{n}{2}
 \]
 \[
 H_2 = \{ x \in \mathbb{Z}_n : x \text{ is odd} \} \quad |H_2| = \frac{n}{2}
 \]
 \[
 H_3 = \left\{ 0, \frac{n}{2} \right\}, \quad H_4 = \left\{ \frac{n}{2} \right\}
 \]
- If \(t \) and \(u \) are both even or odd, then we have two sub-groupoids
 \[
 H_1 = \{ x \in \mathbb{Z}_n : x \text{ is even} \} \quad |H_1| = \frac{n}{2}, \quad H_2 = \left\{ 0, \frac{n}{2} \right\}
 \]

Proof: (1) If \(t \) is even and \(u \) is odd, Let \(a, b_j \in H_1 \), \(i, j = 0, 1, 2, \ldots, n - 1 \). Since, \(a_i \ast b_j = ta_i + ub_j \mod n \), then \(a_i \ast b_j \) is even and \(a_i \ast b_j \in H_1 \) thus, \(H_1 \) is a sub-groupoid and its order is \(\frac{n}{2} \).
Also, let \(a_2, b_2 \in H_2 \), then \(a_2 \ast b_2 = ta_1 + ub \text{mod} n \). So,
\(ta_1 \) is even and \(ub \) is odd, which means that \(a_2 \ast b_2 \in H_2 \).
Hence \(H_2 \) is a sub-groupoid and its order is \(\frac{n}{2} \).

\[
\left\{ \left(\frac{0}{2}, \frac{n}{2} \right) \right\}
\]
is a sub-groupoid since,
\[
0 \ast \frac{0}{2} = \frac{n}{2} \text{mod} n = \frac{n}{2} \text{mod} n,
\]
since \(u \) is odd,

Now, \(\frac{1}{2} \ast 0 = i \frac{n}{2} \text{mod} n = 0 \), since \(t \) is even.

\[
\left\{ \frac{n}{2} \right\}
\]
is a sub-groupoid since,
\[
\frac{n}{2} \ast \frac{n}{2} = \frac{n}{2} \text{mod} n = \frac{n}{2} \text{mod} n,
\]
since \(u \) is odd.

- If \(t \) and \(u \) are odd, let \(a_2, b_2 \in H_2 \), then \(a_2 \ast b_2 = ta_1 + ub \text{mod} n \) is even. Hence, \(a_2 \ast b_2 \in H_2 \), so \(H_2 \) is a sub-groupoid and its order \(\frac{n}{2} \).

\[
\left\{ \left(\frac{0}{2}, \frac{n}{2} \right) \right\}
\]
is a sub-groupoid.

Since, \(\frac{n}{2} \ast \frac{n}{2} = i \frac{n}{2} + \frac{n}{2} \text{mod} n = (t + u) \frac{n}{2} \text{mod} n = 0 \text{mod} n \), where \(t, u \) is odd and,
\[
\frac{n}{2} \ast 0 = i \frac{n}{2} \text{mod} n = \frac{n}{2} \text{mod} n = \frac{n}{2} \text{mod} n,
\]
since \(t \) and \(u \) are odd.

In a similar way, it can be proved all cases if \(t \) and \(u \) are even.

Theorem 2.6[3]: \(P \) is a left ideal of \(Z_4(t,u) \), if and only if, \(P \) is a right ideal of \(Z_4(t,u) \).

Theorem 2.7: In the groupoid \(Z_4(t,u) \), if \((n,t) = d_1 \) and \((n,u) = d_2 \), then the first column and the first row are sub-groupoids of order \((n/d_1), (n/d_2) \) respectively.

Proof: \(\{x \} = \{ y \in Z_4(t,u) : y = x \text{mod} n \} \).
We can write the first row and the first column as follows:

\[
R_0 = \{(u_i) : i = 0, 1, 2, ..., n-1 \}, \quad C_0 = \{(t_i) : j = 0, 1, 2, ..., n-1 \}. \]

Let \(\{ux\}, \{uy\} \in R_0 \), \(x, y = 0, 1, 2, ..., n-1 \), \(ux \ast uy = tx + u(y \text{mod} n) = tx + uy \text{mod} n \) take \(tx + uy = m \), \(ux \ast uy = mu \text{mod} n \) \(\in R_0 \) and by theorem \(2.5.3 \), \(R_0 = (n/d) \).

Similarly we can proof the first column and a sub-groupoid of order \((n/d). \)

Corollary 2.8: In theorem 2.7, if \((n,u) = d_1 \) and \((n,t) = d_2 \) then,

- \(R_0 \) is a right ideal.
- \(C_0 \) is a left ideal.

- \(R_0 \) is not conjugate with \(C_0 \).

- \(R_0 \) and \(C_0 \) are normal sub-groupoids, Where \(R_0 \) the first is row and \(C_0 \) is the first column.

Proof: (1) \(R_0 = \{(u_i) : i = 0, 1, 2, ..., n-1 \}, \) let \(x \in Z_4(t,u) \) and let \(uy \in R_0 \), \(0 \leq y < n \) \(uy \ast x = uy + ux \text{mod} n = u(tx + y) \text{mod} n \). Since, \(x, y, t \in Z_4 \), \(0 \leq y + x < n \), then \(uy \ast x \in R_0 \), thus, \(R_0 \) is a right ideal.

- Similar to the proof of (1).

- Since, \(0 \in R_0 \), then \(R_0 \) is not conjugate with \(C_0 \).

- For all \(x \in R_0 \), \(xR_0 = R_0x = R_0 \) and all \(y \in C_0 \), \(yC_0 = C_0 \), then \(R_0 \) and \(C_0 \) are normal sub-groupoids.

Theorem 2.9: In the groupoid \(Z_4(t,u) \), if \((n,u) = d \), then every row is a sub-groupoid of order \(\frac{n}{d} \).

Proof: We can write any row as, \(R_i = \{(i + u_j) : i, j = 0, 1, 2, ..., n-1 \} \).
Now, let \(x + uy_1, x + uy_2 \in R_i \) such that, \(x, y_1, y_2 = 0, 1, 2, ..., n-1 \) then

\[
(x + uy_1) \ast (x + uy_2) = x + uy_1 + u(x + uy_2) \text{mod} n = x + u(x + y_1 + uy_2) \text{mod} n.
\]

Take \(m = x + y_1 + uy_2 \), then \((x + uy_1) \ast (x + uy_2) = x + um \in R_i \).
Therefore, \(R_i \) is a sub-groupoid and by theorem \(2.5.4 \), \(|R_i| = \frac{n}{d} \).

Corollary 2.10: In the above theorem if \((n,t) = d \), then every column in \(Z_4(t,1) \) is a sub-groupoid as \(C_i = \{(ti + j) : i, j = 0, 1, 2, ..., n-1 \}, \) \(|C_i| = \frac{n}{d} \).

Corollary 2.11:

1. In \(Z_4(1,u) \), if \((n,u) = d \), then

- \(R_i \) is a right ideal for all \(i \).
- Any two distinct rows are conjugate with each other.
- \(R_0 \) is a normal sub-groupoid for each \(i \).

2. In \(Z_4(t,1) \) if \((n,t) = d \), then

- \(C_0 \) is a left ideal for all \(i \).
- Any two distinct columns are conjugate with each other.
- \(C_0 \) is a normal sub-groupoid for all \(i \).
Theorem 2.12: In the groupoid \(Z(t,u) \), if \(t + u \equiv 1 (mod \ n) \), then

- If \((n, t) = d \), then each column is a sub-groupoid of order \((n/d) \).
- If \((n, u) = d \), then each row is a sub-groupoid of order \((n/d) \).

Proof: (1) We can write any column as follows,

\[
C_a = \{ [it + au] : i = 0, 1, 2, \ldots, n-1 \}.
\]

Now, let \(x + iu, y + au \in C_a \),

\[
(x + au + y + au) = x + y + au = (y + au) (mod \ n).
\]

Let \(t + u \equiv m (mod \ n) \), since, \(t + u \equiv m (mod \ n) \),

\[
(x + iu)(y + au) = x + au (mod \ n).
\]

(2) Similar result applied for the row.

Corollary 2.13: In theorem 2.12, if \((n, u) = d \), then each column is a left ideal, a normal sub-groupoid and every two distinct columns are conjugate with each other.

Moreover, if \((n, u) = d \), then each row is a right ideal, a normal sub-groupoid and every two distinct rows are conjugate sub-groupoids with each other.

Note: In the groupoid \(Z(t,u) \) if \(n \) and \(t + u \equiv 1 (mod \ n) \), then each row and column has the same distinct elements. Therefore, each row (column) is an ideal and normal sub-groupoid, but not conjugate.

Corollary 2.14: In the last theorem if \((n, t) = d \), then each column is a left ideal, a normal sub-groupoid and every two distinct columns are conjugate with each other.

In addition, if \((n, t) = d \), then each column is a right ideal, a normal sub-groupoid and every two distinct rows are conjugate sub-groupoids with each other.

Theorem 2.15: In \(Z_n(1,1) \) if \(n = p_1^{k_1}p_2^{k_2} \ldots p_r^{k_r} \), then \(Z_n(1,1) \) has \(r \) sub-groupoids defined by

\[
H_i = \{ [xp_i] : x = 0, 1, 2, \ldots, n-1 \} \quad (1 \leq i \leq r).
\]

Proof: Let \(x p_i y p_i \in H_i \), where \(x, y = 0, 1, 2, \ldots, n-1 \). Define * by,

\[
x p_i * y p_i = (px + y)(mod \ n) \in H_i,
\]

then, \(H_i \) is a sub-groupoid and since \(n = p_1^{k_1}p_2^{k_2} \ldots p_r^{k_r} \), thus \(Z_n(1,1) \) has \(r \) sub-groupoids.

Corollary 2.16: In theorem 2.15, each sub-groupoid \(H_i \) is neither left (nor right) ideal, nor normal sub-groupoid. In fact, \(Z_n(1,1) \) is simple.

Theorem 2.17[3]: Let \(Z_n = \{0,1,2,\ldots,n-1\} \). A groupoid in \(Z(n) \) is a semi-group if and only if \(t^2 \equiv t (mod \ n) \) and \(u^2 \equiv u (mod \ n) \) for \(t, u \in Z_n \) and \((t, u) = 1 \).

Proof: Suppose that \(t^2 \equiv t (mod \ n) \), then we can say that \(u + t = n + 1 \) and \(u = n - t + 1 \). So, \((n - t + 1)^2 \equiv (n - t + 1)^2 (mod \ n) \) implies that \(t^2 + t^2 - 2nt - t + n \equiv 0 (mod \ n) \).

Clearly, \(n^2 - 2nt - n \equiv 0 (mod \ n) \), thus, \(u^2 \equiv u (mod \ n) \).

Theorem 2.18: Let \(Z_n(t,u) \) be collection of groupoids and \(t \in Z_n \) \{0, 1\}, such that, \(t^2 \equiv t (mod \ n) \) and \(u \in Z_n \) \{0, 1, t\},

such that, \(u + t = n + 1 \), then \(u^2 \equiv u (mod \ n) \).

Proof: Suppose that \(t^2 \equiv t (mod \ n) \), then \(x \equiv x (mod \ n) \) and \(x \notin \{0, 1\} \), then \(x \equiv 1 (mod \ n) \) or \(x \equiv 1 (mod \ n) \). This is a contradiction. As a result, \(Z(p^k) \) contains no semi-group.

Theorem 2.19: If \(n = p^k \), where \(p \) is a prime and \(k \) is a positive integer, then \(Z(p^k) \) contains no semi-group.

Proof: Suppose that \(x^2 \equiv x (mod \ n) \) and \(x \notin \{0, 1\} \), then \(x \equiv 1 (mod \ n) \) or \(x \equiv 1 (mod \ n) \). This is a contradiction. As a result, \(Z(p^k) \) contains no semi-group.

Theorem 2.20: If \(n \) is odd, then \(Z_n(n,n + 1) \) is a semi-group.

Proof: (1) \(n^2 \equiv n (mod \ 2n) \), since \((n, 2) = 1 \) and \(n = 1 (mod \ 2) \) so, \(n^2 = n (mod \ 2n) \).

And since, \(n^2 = n (mod \ n) \), then \(n^2 = n (mod \ n) \).

(2) \((n + 1)^2 \equiv (n + 1) (mod \ 2n) \), since \(n = 1 (mod \ n) \) so, \(n^2 \equiv n (mod \ 2) \), or \((n + 1)^2 \equiv (n + 1) (mod \ 2) \). Also, \((n + 1)^2 \equiv (n + 1) (mod \ n) \), then \(n + 1 = 1 (mod \ n) \).

Theorem 2.21: If \(Z_n(t,u) \) is a semi-group with \(t \neq 1 \), then either \(n, t = d \) or \((n, u) = d \).

Proof: Suppose that \((n, t) = 1 \) \((n, u) \) and \(Z_n(t,u) \) is a semi-group, then \(t^2 = t (mod \ n) \) and \(u^2 = u (mod \ n) \).

Now, if \(n, t = 1 \) \((n, u) \), then \(t = 1 (mod \ n) \) and \(u = 1 (mod \ n) \), which is impossible, since \(n \) and \(u < n \). Then either \((n, t) = d \) or \((n, u) = d \).

Theorem 2.22: Let \(Z_d(t, u) \) be a semi-group with \(t + u = 1 \) \((mod \ n) \), then

(1) There are \(d_1 = (n, t) \) sub-groupoids of order \(d_2 = (n, u) \).
(2) There are \(d_1 = (n, u) \) sub-groupoids of order \(d_1 = (n, t) \).

Proof: (1) Since \(t + u = 1 (mod \ n) \), which means that both of \(t \) and \(u \) does not equal to 1, then \((n, t) = d \) or \((n, u) = d \). So, by theorem (2.5) each column is a sub-groupoid of order \(n/d_1 \) or each row is a sub-groupoid of order \(n/d_1 \).
Finally, we can see that \(\frac{n}{d_1} = d_2 \) and \(\frac{n}{d_2} = d_1 \).

(3) Same as (1).

Corollary 2.23: From theorem 2.22 we have the following.

- Each \(R_i \) is a right ideal.
- Each \(C_i \) is a left ideal.
- Any two distinct rows are conjugate to each other.
- Any two distinct columns are conjugate to each other.
- \(R_i, C_i \) are normal sub-groupoids.
- \(R_i, C_i \) are not conjugate.

Theorem 2.24: Let \(Z(n) \) be a collection of groupoids and \(n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \), then the number of semi-groups in the collection is \(2^{2^r} - 1 \).

Proof: this is trivial, since the number of idempotent elements is \(2^r \).

CONCLUSION

In this paper we started by providing a general description of \(Z_t(u) \) by representing a table of the finite to prove that any row or column is sub-groupoid and then determining the order of the groupoid. On top of that, we have discussed and checked which of these are, ideal, normal or sub-groupoids. Also, which of the two distinct columns (or rows) are conjugate and finally, which of the groupoids is a semi-group.

REFERENCES