Determination of Mercury in Fish (*Otollites ruber*) and Canned Tuna Fish in Khuzestan and Shiraz, Iran

Ebrahim Rahimi and Asma Behzadnia

1Department of Food Science and Technology, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
2Graduated Student of Food Science and Technology, Faculty of Agriculture, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran

Abstract: In this study mercury was determined in canned tuna fish produced and distributed in Iran after digestion by the standard methods of AOAC. Mercury contents in fish and canned tuna fish were determined by cold vapor atomic absorption spectrophotometer. The metal content, expressed in mg/kg wet weight for mercury varied from 0.017 to 0.394 (average of 0.089) and 0.023 to 0.529 (average of 0.146) in fish and canned tuna fish, respectively. The values were comparable and in the range of with the literature values. The results of this study indicate that fish and tuna fish of produced and marketed in Iran have concentrations well below the standards FAO/WHO levels of these toxic metals and only one tuna samples exceeded the European dietary limit of 0.5 mg Hg/kg.

Keywords: Fish • Canned Tuna Fish • Mercury • Iran.

INTRODUCTION

Fish is widely consumed in many parts of the world by humans because it has high protein content, low saturated fat and also contains omega-3, calcium, phosphorus, iron, trace elements like copper and a fair proportion of the B-vitamins known to support good health [1, 2].

At the same time, levels of contaminants in fish are of considerable interest because of potential effects on the fish themselves or the organisms that consume them, including top-level receptors, including people. Contaminant levels, particularly methylmercury (CH₃Hg) and polychlorinated biphenyls (PCBs) are sufficiently high in some fish to cause adverse human health effects in people consuming large quantities [3-5]. Methylmercury is reported to counteract the cardioprotective effects [6] and to damage developing fetuses and young children [7, 8]. Fish consumption is the only significant source of methylmercury for the public [9, 10].

Recently the US Food and Drug Administration [11, 12] issued a series of consumption advisories based on methylmercury that suggested that pregnant women and women of childbearing age who may become pregnant should avoid eating four types of marine fish, shark, swordfish, king mackerel and tilefish and should limit their consumption of all other fish to just 12 ounces per week [11]. These recent FDA advisories have raised concern about the safety of fish and fish products available in markets, yet there are very few data on contaminant levels in commonly available commercial fish and fish products [10].

Currently, there is limited information regarding the contaminant levels of mercury in fish and fish products in Iran. Therefore, the present study was conducted to analysis and determines the content of mercury by precise methods in fish and canned tuna fish marketed in Iran.

MATERIALS AND METHODS

All glassware used were soaked in detergent solution overnight before being rinsed and soaked in 10% (v/v) HNO₃ overnight, followed by rinsing with distilled water. All reagents used were of analytical reagent grade Merck, Germany. Standard stock solutions of mercury, cadmium and lead were prepared by diluting concentrated solutions to obtain solutions of 1000 mg l⁻¹ Canned tuna samples.
were purchased from popular supermarkets in Shiraz and Khuzestan, Iran, during July 2010 - February 2011. Forty five tuna cans and thirty five fish were used in this study. The working solutions were freshly prepared by diluting an appropriate aliquot of the stock solutions through intermediate solutions using 1M HCl for diluting mercury solution. Stannous chloride was prepared fresh by dissolving 10g in 100 ml of 6M HCl. The solution was boiled for about 5 min, cooled and nitrogen bubbled through it to expel any mercury impurities. Diluting solution for mercury determination was prepared by diluting 100 ml of conc HNO3 and 25 ml of conc H2SO4 to 1000ml with distilled water [13].

Mercury was determined in all the digests using cold vapour atomic absorption spectrophotometry flow infection mercury/ hydride analyzer (FIAS 4100, Perkin Elmer, USA), equipped weigh hollow cathode mercury lamp operated at a wave length of 253.7 nm. Quartz absorption cell was used for the mercury determination.

The recoveries of the metals were determined by adding increasing amounts of mercury to samples which were then taken through the digestion procedure. The resulting solutions were analyzed for the metal concentrations. The mean recoveries for mercury were 96.6%.

RESULTS AND DISCUSSION

The results indicated that the concentration varied from 0.017 to 0.394 mg/kg (average of 0.089 mg/kg) and 0.023 to 0.529 mg/kg (average of 0.146 mg/kg) in fish and canned tuna fish, respectively (Table 1).

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. of samples</th>
<th>Average</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>35</td>
<td>0.089</td>
<td>0.017 to 0.394</td>
</tr>
<tr>
<td>Canned tuna fish</td>
<td>45</td>
<td>0.146</td>
<td>0.023 to 0.529</td>
</tr>
</tbody>
</table>

and only one tuna samples exceeded the dietary limit of 0.5 mg Hg/kg; the guideline level established by European Communities and Joint FAO/WHO Expert Committee on Food Additives [30, 31]. Mercury concentrations in fish and canned tuna fish found in this study were in good agreement with those reported by other studies.

This study improves the baseline data and information on mercury concentration in fish and canned tuna fish commonly marketed in Iran. Such data provide valuable information on safety of fishes commonly consumed by public. In addition, analytical data obtained from this study shows that there is no health risks from consumption of canned fishes analyzed when data are compared with the US EPA classified health criteria for mercury in fish and canned fishes. Both low-risk groups (adolescents and adults) and high-risk groups (pregnant mothers and children) should consume fish in moderation since large consumption pattern especially for tunas may result in increased health risks. Globally, further reduction in the levels of environmental contaminants emanating from power plants and other industrial emissions and effluent discharges are highly needed to reduce contaminant inputs into the aquatic environment. More research and assessments of seafood quality is needed in many countries to provide more data and help safeguard the health of humans.

REFRENSESS

