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Abstract: Structural dynamics is a rather complex field of research that concerns to a broad range of disciplines,
from structural engineering to graphics animation, robotics or aeronautics. A primary consequence of this is
an overwhelming amount of literature on the topic, apparently disconnected, as each author focuses on his /
her particular field. To complicate things further, the daunting list of numerical methods severely blurs the
scope of the researcher, making it very difficult to understand what their purpose is in each case and even if
these are applicable to the analysis of structural behavior. This paper presents a reference framework where
researchers and developers from diverse disciplines can assess the main methods currently used in structural
dynamics simulation. A direct correlation is made between methods to solve Ordinary, Partial and Algebraic
Differential Equations and their physical counterparts Time, Matter and Constraints. It is also discussed their
application in different industries.
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INTRODUCTION so many multidisciplinary points of view focus on this

Previous surveys exist where a rigorous mathematical complexity of the subject increases somehow chaotically
background is provided. However, they present a certain as each author contributes with his particular approach.
excess of specialization towards their natural disciplines, Furthermore, the already daunting list of numerical
so for example [1, 2] have a marked bias towards Robotics methods for the solution of dynamics problems grows by
while [3, 4] are excellent reviews for the Computer means of mixed concepts making it very difficult to
Graphics community and [4, 5] belong to the structural understand what they really do. It is common to
engineering expertise. The present paper aims to facilitate encounter in the literature how methods for the
a holistic  and  more  unified view on the subject of approximation of standard algebraic problems present
structural dynamics and the numerical methods employed “physical” properties or that some method to solve partial
to simulate them. For the sake of simplicity formulations differential equations is enunciated as “explicit” referring
have been considered unnecessary and only practical to the ordinary differential equations also involved in the
matters are discussed. solution.

The analysis of structural dynamic behavior is a topic The following chapter presents a general reference
of specialized research in many modern disciplines: Civil framework where researchers and developers from diverse
Engineering, Aeronautics, Automotive, Robotics, disciplines can asses, according to its performance, the
Medicine, Biomechanics, Molecular Dynamics and main methods currently used for structural simulation. It
Graphics  Animation  are  some of the industries currently is divided into three concepts: time, matter and
developing applications that allow for the simulation of constraints, as they respectively correspond to very well
the dynamics of structures and related literature about it. defined mathematical areas: Ordinary Differential
From a scientific point of view, it must be regarded as a Equations (ODEs), Partial Differential Equations (PDEs)
great success and should be considered as positive that and Differential-Algebraic Equations (DAEs).

matter. However, it means also that the intrinsic
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The last part discusses these methods as they are Another classification is possible according to the
utilized in the main industrial environments, and provides order of the derivative employed in the equation of
some explanatory approach as to how and why they have motion. By this means a method is characterized as first,
evolved in that particular manner. second, third or higher orders accordingly. The higher the

MATERIAL AND METHODS limits the span of possible time steps due to instabilities.

For the simulation of structural dynamics three Multi-Step. Single-step methods refer to only one
different physical concepts need to be integrated: time, previous calculated value and its derivative to determine
matter and kinematic constrains. Each one of these the current value. Multi-step methods attempt to gain
notions involves the simultaneous solution of Ordinary efficiency by keeping and using the information from
Differential Equations (ODEs), Partial Differential previous steps rather than discarding it. Consequently,
Equations (PDEs) and Differential-Algebraic Equations multi-step methods refer to several previous points and
(DAEs), respectively. derivative values. In the case of linear multi-step methods,

When performing numerical simulations the main a linear combination of the previous points and derivative
concerns are the accuracy of the solution, the stability of values is used.
the simulation and the efficiency of the calculation. The
first subject arises from the fact that computational Explicit Methods: Explicit methods use the differential
precision is finite whereas the physical/mathematical equation at time t to predict a solution at time t+dt. In
models are continuous, hence only approximations to the structural dynamics, where stiff equations often arise, the
behavior can be obtained. By stable is meant that small required time step is very small to avoid instabilities.
errors due to either arithmetic inaccuracies or to the Explicit methods are hence conditionally stable with
approximate nature of the derivative expressions will not respect to the time step size.
accumulate and grow as one proceeds. Efficiency
involves the speed of computation and the occupied  Forward/Explicit  EulerMethod  (EE):  This  method
memory, which are also very sensitive to the design of the works considering that from any point on a curve, it is
algorithms. There is a fourth item to take into possible to find an approximation of a nearby point on the
consideration of almost equivalent importance which is curve by moving a short distance along a line tangent to
the ease of implementation of the algorithms that lead to the curve [7].
the numerical results. High algorithmic complexity leads to
difficulties not only in tracking the possible errors but Explicit Runge-Kutta Methods (ERKn): The original
also in the human comprehension of the simulated formulation is that of a single step solver. In general this
phenomenon. is adequate for non stiff problems and provides an

Numerical Methods for Ordinary Differential Equations provide lower accuracy, being the 4  order the most
(Time Integration): The most comprehensive commonly utilized [8].
classification for ODEs solvers distinguishes between Explicit Euler's method (EE) can be also considered a
explicit, implicit and hybrid methods. This division arises 1  order Runge-Kutta. Dormand-Prince method (RKDP),
as a consequence of the so called numerical stiffness. Fehlberg method (RKF) and Cash-Karp method (RKCK)
This phenomenon forces the size of the adopted time step are variations on this method, implying higher orders and
to be so small that the time to convergence never arrives, also interpolation within the integration to make them
or otherwise adopt time steps so large that the simulation more efficient.
becomes unstable. Stiffness can be produced by the
physical characteristics of the multi-body system Explicit Runge-Kutta Methods (ERKn): ABM
(components with large differences in their masses, methodology employs multiple previously recorded steps
stiffness and/or damping), the discretization process, the to achieve a solution, hence being more efficient. Initial
large number of components and equations of motion, or values need to be provided and are usually obtained from
sudden or accumulated violations in the constraint a Runge-Kutta scheme. It also presents an acceptable
conditions. level of accuracy depending on the chosen step size and

order the more accurate the result would be, though it

The third possibility is that of the method being Single or

acceptable level of accuracy. Lower order formulations
th

st
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is meant to solve non stiff systems. Shampine-Gordon Newmark-Beta Method (NB): The Newmark-Beta method
method (SG) is based on this methodology, using is a particular one of several time-step methods originally
interpolation to resolve efficiency problems [9]. proposed by Newmark in 1959. It is commonly used for

Leapfrog/Velocity Verlet Method (LF): Leapfrog a numerical parameter designated as Beta. It is devised
integration is equivalent to calculating positions and specifically for structural analysis. Newmark's algorithms
velocities at interleaved time points, interleaved in such a are unconditionally stable for linear problems, but only
way that they 'leapfrog' over each other. For example, the conditionally stable for non linear problems [15]. The
position is known at integer time steps and the velocity is Hilbert-Hughes-Taylor method (HHT) is a generalization
known at integer plus half time steps [9]. of the Newmark-Beta method. With the HHT method it is

Implicit Methods: For implicit methods the strategy degrading the order of accuracy.
consists on satisfying the differential equation at time t
once the solution at time t-dt is available. This requires NumericalMethods for Differential-Algebraic Equations
the solution of a set of linear equations at each time step, (Kinematic Constraints integration): When bodies are
but allows for larger time steps and gives further stability subject to kinematic constraints, further equations have
or even unconditionally stable schemes [10]. to be satisfied. These constraints come either in the taste

Backward/Implicit Euler Method (IE): Backward Euler particular chain configurations (planar constraints,
chooses the step, k, so that the derivative at the new time cylindrical, spherical, rectangular, revolute or screw joints,
and position is consistent with k. Doing this requires etc). In order to numerically tackle these conditions the
solving this equation for k, which amounts to a root equations of motion are rearranged in literature to obtain
finding problem if f(x) is nonlinear. The forward Euler step different schema from which construct stable, accurate
is a common place to start the root finding iteration [7]. and faster formulations. The possibilities are to do it either

Implicit  Runge-Kutta   methods   (IRKn):   Implicit position level. Other approaches are currently subject to
Runge-Kutta methods are usually more stable than any study but given their conceptual level of complexity their
explicit method of the same family. The simplest example application is still limited to research areas [17].
of an implicit Runge–Kutta method is the backward Euler
method enumerated above. Acceleration Level Schema: This is the most common,

Crank-Nicholson method (CN), also known as the “classic” approach utilized to solve the constraint
trapezoid method is another example of implicit Runge- equations. The methods using this approach are
Kutta methods [11]. considered Constraint Based. By means of this, at the

Gear's/Backward Differentiation Formula Method viscous or pressure) and the external ones (gravity,
(BDF): BDFs are formulas that give an approximation to collisions, etc) are computed and accumulated. Then, by
a derivative of a variable in terms of its function values means of Newton's second law, they are transformed into
and earlier times (hence the "backward" in the name). accelerations and then velocities and positions are
They are derived by forming the k-th degree interpolating updated for each integration time step. Given the
polynomial approximating the function using the values tendency to numerical drift shown by these approaches,
up to the k-th value, differentiating it, and evaluating it. stabilization techniques are generally accessories to them,
Despite of being multi step, this is a generally less being Baumgarte's the most popular one [16].
efficient method than RK4 of ABM [12].

Chung-Hulbert method (CH): This algorithm is devised multi-body system if a constraint is not satisfied. The
for structural dynamics calculations where high frequency magnitude and direction of this force depends on the
dissipation is needed. It uses a set of parameters to enable constraint violation. Its level of accuracy depends directly
treating physical damping explicitly without reducing the on how close the value of the penalty factor approximates
accuracy [13]. infinite [17].

the solution of linear and non-linear equations and uses

possible to introduce numerical dissipation without

of contacts between different bodies or as joints in

in the acceleration level, the velocity level or in the

beginning of each time step the internal forces (elastic,

Penalty method (PM): This method adds a force to a
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Lagrange Multipliers (LM): The Lagrange multipliers are different approaches are classically taken in order to
numerical artifacts (additional algebraic variables) that control the number of degrees of freedom (i.e. discretize):
enforce constraint conditions between the elements. It by means of rigid body models, by creating a mesh where
allows for the solution of the dynamic problem at the the material displacements are limited (mesh based
expense of solving for an augmented set of (n+m) methods) or establishing the equations in the form of
unknowns [17, 18]. potential functions so that they compose a system of

Generalized Coordinates / ReducedCoordinates Method [21]. Other approaches still under experimental
(GC): A reduced-coordinate formulation provides a more development also serve for the solution of PDE [22-24],
accurate simulation. Holonomic (redundant) constraints but will not be addressed here given their conceptual
reduce the degrees of freedom of a multi-body system complexity.
permanently. This property is used by reduced-coordinate
methods [19]. Rigid Body Models (RBM): This is the simplest approach

Udwadia-Kalaba Formulation (UK): This method integrated. Rigid bodies, in contrast to particles, occupy
represents a more compact and general form of solving space and have geometrical properties (center of mass,
the DAEs by means of the Moore-Penrose generalized moments of inertia, etc.). These properties characterize
inverse matrix. It is based on Gauss' Principle of Minimum motion in six degrees of freedom (translation in three
Constraint, which establishes that the explicit equations directions plus rotation in three directions).
of motion be expressed as the solution of a quadratic
minimization problem subjected to constraints, but at the Mesh based Methods: In this group of methods, the
acceleration level [20]. governing equations of continuum mechanics appear in

Velocity Level Schema: Originated by the necessity of description. In the Lagrangian description, which is made
efficiently handle the collision constraints, these methods in the material domain, the material quantities mass,
utilize the notion of impulse as a fast acting force, hence energy and momentum move along with the mesh cells.
they are more commonly known as Impulse Based When the material deforms, the mesh deforms accordingly
methods. [20]. This description results efficient for computational

Impulse Based Methods (IB): The approach has several occur, but is very difficult to apply when the mesh is
advantages, including simplicity, robustness, heavily distorted. It is typically represented by the Finite
parallelizability, and an ability to efficiently simulate Element Method (FEM). In the Eulerian scheme, the shape
classes of systems that are difficult to simulate using and volume of the mesh cell remain unchanged along the
constraint based methods. The accuracy of impulse based whole simulation. The main exponent of the Eulerian
simulation has been experimentally tested and is sufficient description is the Finite Difference Method (FDM).
for many applications [19, 20]. Currently under very active There is still a third possibility by means of which it
development, results particularly popular among the is intended to combine the advantages of each
Computer Graphics community given their remarkable description above so as to strengthen their advantages
speed and stability. and to avoid their disadvantages. It has given place to

Numerical  Methods for  Partial  Differential Equations Lagrange, but given their complexity will not be covered
(Matter Integration): To describe the dynamics of matter here.
we have an infinite number of degrees of freedom because
the particles that compose it can have arbitrary Finite Element Method (FEM): For FEM analysis the body
displacements with respect to each other. Such systems is divided into elements. Assuming that these elements
are described using partial differential equations where are small enough  one  can  use  low-order  polynomials
time and spatial coordinates are related. These general to describe the set of vectors that  describe  the  change
partial differential equations (PDE), which are applicable of  the  element   from   one   configuration   to  another
to any solid or fluid material, are derived from the (its displacement field). This provides a very rich set of
constitutive laws of the material. For their solution, three powerful  tools  that, however, presents some well known

particles that regulate each other (mesh free methods)

to modeling the continuum and implies that no PDEs are

two main tastes: Lagrangian description and Eulerian

solid mechanics problems, where small deformations

Arbitrary Lagrange Eulerian and Coupled Eulerian
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limitations, such as a dependence on nicely formed Smoothed Particle Hydrodynamics (SPH): In the SPH
meshes that consumes a substantial quantity of method, the state of a system is represented by a set of
manpower, a considerable lost of accuracy when handling particles which possess individual material properties and
large deformations, great difficulties to represent change according to the governing conservation
fragmentation and interfaces between bodies of different equations. SPH was developed for hydrodynamics
material properties [25-28]. problems in the form of PDEs of field variables such as

Finite Differences Methods (FDM): For this method it is
important that a uniform grid is applied over the region to Partition of Unity (PU): Mesh free methods can also be
reduce the errors by the differencing method. Finite based on partitions of unity. A partition of unity is a
Differencing methods are thus less reliable for irregular paradigm in which a domain is covered by overlapping
shaped bodies than finite element methods [3]. patches [30].

Finite Volume Method (FVM): The finite volume method Moving Least Squares (MLS): An alternative but related
is a discretization method well suited for the numerical approach to developing a mesh-less approximation is to
simulation of various types of conservation laws (elliptic, use a moving least square (MLS) technique. Moving
parabolic or hyperbolic, for instance); it has been Least Squares serves for the reconstruction of continuous
extensively used in several engineering fields, such as functions from sets of unorganized point samples. It is
fluid mechanics, heat and mass transfer or petroleum based on the Least Squares regression techniques, which
engineering [3]. are statistical modeling methods [26].

Mass-spring Systems (MSS): In most particle systems, DISCUSSION
the forces derived from tension energy are equivalent to
spring forces. Since particle systems already represent a Numerical Methods Summary: Tables 1 to 3 present in a
discretization in space, only a system of ordinary condensed manner the methods enunciated above
differential equations has to be solved. The trajectory of (abbreviations can be found in bold letters in the previous
each particle with mass m at position x is computed by section). These tables intend to facilitate an approximated
Newton’s equation of motion [29]. evaluation and comparison over the four most relevant

Mesh Free Methods: The key idea of the mesh free efficiency and ease of implementation. Their values range
methods is to provide accurate and stable numerical between one and three for the sake of generality.
solutions for integral equations or PDEs with all kinds of It is important to notice that there is not an easy
possible boundary conditions with a set of arbitrarily manner to objectively compare numerical methods, hence
distributed nodes (or particles) without using any mesh that most authors focus on particular applications for
that provides the connectivity of these nodes or particles particular methods. Conclusions obtained from theses
[25-28]. works  are commonly too specific for our purposes.

velocity, density, energy, etc. [25].

aspects regarding numerical methods: accuracy, stability,

Table 1: ODE methods / Time integration comparison
Scheme Method Accuracy Stability Efficiency Ease of implementation
Explicit EE * * * * * * * * *

ERKn * * * * * * * * *
RKDP * * * * * * * * * *
RKF * * * * * * * * * *
RKCK * * * * * * * * *
ABM * * * * * * * * *
SG * * * * * * * *
LF * * * * * * * * * *

Implicit IE * * * * * * * *
IRKn * * * * * * *
CN * * * * * * * * *
BDF * * * * * * * * *
CH * * * * * * * * * *
NB * * * * * * * *
HHT * * * * * * *
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Table 2: DAE methods / Constraint integration comparison
Scheme Method Accuracy Stability Efficiency Ease of implementation
Acceleration PM * * * * * * * *

LM * * * * * * * *
GC * * * * * * * *
UK * * * * * * * * *

Velocity IB * * * * * * * * * *
Position PBD * * * * * * * * *

Table 3: PDE methods / Matter integration comparison
Scheme Method Accuracy Stability Efficiency Ease of implementation
Rigid Body RB * * * * * * * * * *
Mesh based FEM * * * * * * * * * *

FDM * * * * * * * * *
FBM * * * * * * * * *
MSS * * * * * * * * * *

Mesh free SPH *** *** * **
PU *** *** * *
MLS ** *** * *

Table 4: Relation of different fields, integration concepts and sample specialized implementations
Field of Original Application /
Industrial Background ODE DAE PDE Implementation Name
Mechatronics/Robotics SG / ERK3 / ERK4 / ERK5 GC FEM SPACAR

ERKF2 / ERKF3 / ERKF4 /
ERKF5 / RKDP / ABM / BDF GC / LM RBM Sim Mechanics

Aerospatial CN / IE / BDF LM FVM MBDyn
Automotive ERK2 LM RBM SimCreator

BDF / ABM / ERK4 IB / LM FEM Universal Mechanism
Games / Graphics / Animation EE IB RBM ODE

ERK4 IB / LM RBM IBDS
EE IB RBM / MSS Havok Physics

Multiphysics ERK5 / IRK4 LM FVM / FEM OpenFOAM
BDF / ERK4 / ERK5 / IE LM FEM COMSOL

Medical / Biomechanics EE / ERK2 / ERK4 / IE PM / IB MSS  / FEM / RBM / SPH SOFA (Simulation Open
Framework Architecture)

Structural Engineering NB / HHT / IRK / CH GC FEM SAP2000
NB / IE / HHT / IRK2 PM FEM DIANA
Explicit unspecified LM / PM FEM / FVM / SPH EUROPLEXUS
ERK4 / ERK5 / CN / NB LM / PM FEM / FVM / SPH ANSYS
NB / HHT GC / PM / LM FEM ABAQUS FEA

In terms of accuracy and stability ODE solvers But also the form of the characterizing functions and
depend directly on the time-step parameter and the order polynomials should be finely tuned according to different
of the derivative. Paradoxically however, the more one problems. Adjustment of these parameters depends
increases the accuracy of the simulation the lower highly on the choice of the analyst at the time of
becomes its stability field. For DAE methods, the modeling, not so much in the method itself.
accuracy is directly affected by the previous choice of In  terms  of   efficiency   in   ODE  methodologies
ODE parameters (time-step primarily). Besides, as they there  are  obvious  advantages  for explicit schemes as
operate in the formulation level, for each of them exists a they do not require extra computations. DAE methods
particular set of parameters. For instance the Penalty generally involve extra algebraic sub steps, which are
Method gains accuracy the more its penalty parameter determinant   in   their   computational   cost,   but   they
approaches infinity. This value is obviously limited by the are not  always  applicable  to  every  type  of  problem.
computer capabilities. Impulse Based methods require an PDE  methods  have  their  most  simplistic  approach  in
extra iterative subprocess whose convergence is limited the form of rigid bodies, where no differentiation nor
as to the type of problem to be solved. When it comes to operation is made, being the mesh free methods the least
PDE solvers, the main factor that affects accuracy is the efficient  as  state  computations  have to  be  made  over
density of the mesh in mesh based methods, and the the whole population of approximating points on each
density of interpolation points in the mesh free schema. time step.
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The ease of implementation for each method is not considerably. Given the need for real time interactivity in
only reflected in the number of sub algorithms contained surgical simulations, the span of ODE integrators is fairly
but also in the conceptual background, intuitiveness of broad, along with the faster impulse based constraint
their inherent principles and availability of information on solvers. Human limbs are approximated by means of Rigid
how they work. In general ODE methods are broadly Bodies for the study of the behavior of articulations.
available and extended, but given their generality it can For the Structural Engineering field it is shown the
result difficult to discriminate when to apply them for dominance of FEM and the application of very specialized
particular problems. DAE methods are often entangled time integrators. It is remarkable how computational cost
within the very formulation of ODE methods in some is not regarded so much as accuracy and numerical
applications, and their mathematical approach and stability, as the choice of these integrators along with the
explanation results often awkward and counterintuitive. more canonical constraint enforcing methods can prove.
PDE methods range from the easiest Finite Difference to Also the tendency towards analyzing fluid-structure
the very complex formulations of Finite Elements and interactions appears in the form of FVM and SPH
Smoothed Particle Hydrodynamics. methods.

Industry Tendencies: Table 4 enumerates some different Conclusions and Future Work: A qualitative comparison
scientific and engineering fields. By means of a sample of of numerical methods employed in structural dynamics
random available packages (either commercial or open and simulation has been provided. Also a concise yet
source), and exposing the numerical methods in them illustrative overview was provided. The purpose of this
implemented, it is shown how these industries are related overview is to facilitate the transition for those who
to the integration concepts described in the previous already have an interest in the matter but find it hard to
chapter. tackle it given the scatter in literature currently existing. It

It can be appreciated how mechatronics, robotics and is also aimed to give some scope and to put together
aerospatial oriented packages, where a high level of common subjects which, although available to every
accuracy and stability is compulsory, facilitate analysts a researcher during the formation period, seem too abstract
wide range of time solvers, whether implicit and explicit, and inapplicable. Despite the daunting amount of
and rely on the more “classical” acceleration based literature available, it was not found by the authors any
methods for enforcing the constraints. The integration of organized scheme in terms of tangible concepts such as
continuum mechanics ranges from the simplistic Rigid time, matter and constrains.
Body Models, utilized in robotics, to the Finite Volume Future research should be focused on objective
Method that allows for easier implementation of flow-solid experimental benchmarking. Given the complex
interactions. interactions  that  arise  when  integrating  nonlinearities

Automotive simulators and game engines, where real in the equations of motion the choice of a proper
time experience and computer efficiency are the main comparative framework must be made carefully.
concerns, make a wider use of explicit time integrators
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