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INTRODUCTION

The differential geometry of space curves is a
classical subject which usually relates geometrical
intuition with analysis and topology. For any unit speed
curve ¥, the focal curve C, 1s defined as the centers of the
osculating spheres of y. Since the centerof any sphere
tangent to at a point lies on the normal plane to ¥ at that
point, the focal curve of ¥ may be parameterized using the
Frenet frame (t(s),n,(s).n,(s)) of y as follows:

Cls) = (y + emtem,)(s),

Where the coefficients ¢,, ¢, are smooth functions
that are called focal curvatures of y.

The aim of this paper is to study biharmonic curves
in the special three-dimensional ¢-Ricci symmetric para-
Sasakian manifold P.

A smooth map ¢ N - M is said to be biharmonic if it
15 a critical point of the bienergy functional:

E2(0)= [ SfT@)f av,

Where T(¢)= trV?de is the tension field of ¢
The Euler--Lagrange equation of the bienergy
is given by T,(¢p) = 0. Here the section T,(¢) is
defined by
Ty() = -A,T() + trR(R(¢p).dep)dep, (L.1)
and called the bitension field of ¢ Non-harmonic
biharmonic maps are called proper biharmome maps.

In this paper, we study biharmonic curves m the
special three-dimensional ¢-Ricci symmetric para-
Sasakian manifold P. Finally, we construct parametric
equations of focal curve of biharmome curves mn the
special three-dimensional ¢-Ricci symmetric para-
Sasakian manifold P.

Preliminaries: An n-dimensional differentiable mamfold
M 1s said to admit an almost para-contact Riemanman
structure (¢h,&,1.g), where ¢ is a £ tensor field, £ is a
vector field, 1 1s a 1-form and g 1s a Riemanman metric on
M such that

¢ =0,n(&)=1g(X.5)=n(X), 2.1
¢F(X)=x -n(x)E, 22
g{(¢X.07 )= g(X.7)-n(X m(T), (2.3)
for any vector fields X,¥ on M.

Tn addition, if (¢, 1,g) satisfy the equations

diy =0, V= ¢, (2.4)

(V29)Y =—g(X.F)E-n(F)X + (X (T )EX.T € y(M),
(2.5)

then M is called a para-Sasakian manifold or, briefly a
P—Sasakian mamfold. In particular, a P—Sasakian manifold
M iz called a special para-Sasakian manifold or briefly a
SP—Sasakian manifold if A/ admits a 1-form 7 satisfying
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(Vym)7 =—g(X.¥)+n(X )n(T). (2.6)

Tt is known [16] that in a P—Sasakian manifold the
following relations hold:

S(0.E)=(n- 1 (x),

08 =—(n-1)¢,

R(X.F)E=n(X)¥ -n(r)X,

R(EX)T =1(F)X ~8(X.T )z
R(EX)E=X (X )z
M(ROY.T)Z)=0(F)g(X.2) (X )a(r.2)
S(OX.07) = S(XT )+ (n=1n (X (Y ).

for any vector fields X, ¥, Z on M.
A para-Sasakian mamifold 1s said to be Emnstein if the
Ricci tensor S is of the form

SXY) = AgX.Y)
Where A 1s a constant.

Special Three-Dimensional ¢-Ricci Symmetric Para-
Sasakian Manifold P

Definition 3.1: A para-Sasakian mamfold A 1s said to be
locally ¢-symmetric if

P((VpR)XT)Z) = 0,

for all vector fields X,¥,Z W orthogonal to & This notion
was introduced by Takahashi [16], for a Sasakian
mamfold.

Definition 3.2: A para-Sasakian mamfold A 1s said to be
¢-symmetric if

PV RIX,TZ) = 0,
for all vector fields X, ¥, Z, W on M.

Definition 3.3: A para-Sasakian manifold M 1s said to be
¢-Ricei symmetric if the Ricei operator satisfies

FVLT) =0,

for all vector fields X and ¥ on M and S(X.T) = g(QX.T).
IfX.Y are orthogonal to & then the manifold is said to
be locally ¢-Ricci symmetric.

We consider the three-dimensional manifold

P={(x1,x2,x3) eR?: (xl,xz,xs) # (0,0,0)},

Where (x'.x’.x") are the standard coordinates in R’. We
choose the vector fields

e = exl iz e, = exl {%—%J e; = —il
ox ox” Ox o

are linearly mdependent at each pomnt of P. Let g be the

Riemannian metric defined by

(3.1)

gle.e)=gles.e;)=g(ese3)=1, (3.2)
g(epes) — g(er,e5)— g(ep.e5) 0.
Let 1 be the 1-form defined by

(Z) = g(Z, e )oranyZ € y(P).
Let be the (1,1) tensor field defined by
¢le) = eg,0(e;) = e.f(e3) = 0. (3.3)
Then using the linearity of and g we have
1e;) = 1. 3.4
¢(Z) = Z— 1 Z)e,, (3.5)
YL GW) = g(ZW) — 1 Zn(W) (3.6)

for any ZW € x(P). Thus for e, = £, (¢,£ 1,g) defines an
almost para-contact metric structure on P.

Let V be the Levi-Civita connection with respect to g.
Then, we have

el,ez] = 0, [el,es] = el, [92,93] = ez.
Taking e, = £ and using the Koszul's formula, we obtain

Ve =—e5,Voe, =0, Vi oe;=¢

! !

vez € = —93,V92 €3~ €y (3.7

Veg €y = O, Ve393 =Q.
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Moreover we put
szk =R(e1,e1)ek, Rz;kl =R(e1,e1,ek,el),
Where the indices i,k and [ take the values 1,2 and 3.

Ripp = —e, Ry = €, Ry = €y,
and

Ry =Ry =Ry =1 (3.8)
Biharmonic Curve in the Special Three-Dimensional ¢-
Ricei Symmetric Para-Sasakian Manifold P: Let us
consider biharmonicity of curves in the special three-
dimensional ¢-Ricci symmetric para-Sasakian manifold
P. Let {t.n,n,}, be the Frenet frame field along y. Then, the
Frenet frame satisfies the following Frenet--Serret
equations:

Vi=kn,

Ve, = —Kkt -+ mn, 4.1
Vi, = —m,,

Where kis the curvature of y and 7 its torsion and
g(tt)=1,g(n,n;)=1,g(ny,n,)=1, (4.2)

g(tm)=g(tn,)=g(m,n, =0

With respect to the orthonormal basis {e.e,e;}, we can
write

t= tlel + tz% + [393,

m = n%el + ?‘11292 + n13e3, (43)

n, =txm = n12e1 + n%ez + nge}

Theorem 4.1: (see [12]) 2 T - P is a biharmonic curve if
and only if

k = constant # 0,
E+=1,
=0

(4.4

Proof: Using Frenet formulas (4.1), we have (4.4).

Theorem 4.2: [12] All of biharmonic curves in the special
three-dimensional ¢-Ricci symmetric para-Sasakian
mamifold P are helices.

Theorem 4.3: [12] Let y: I-P be a unit speed non-
geodesic curve with constant curvature. Then, the
parametricurve. Then, the parametric equations of y are

2 (s)= scosg+ ay,

sin3§0 —scosQta

e
2 .4

K™ —gin @

xz(s):az— L([IT+ cosg]cos[ILs + a|

+[-I1 + cos@]sin[IIs+ ay, (4.5)

. 3

< (s)=C3— %eimoswrcl (—coscos|ILs + a]
K™ —sin'@

+[Hs+ C]Sin[Hs+ a]),

Where a, a,, a,, a, are constants of integration and

M= \]K'z —sinzCP.

sin ¢

Focal Curve of Biharmonic Curves in the Special Three-
dimensional ¢Ricci SymmetricPara-sasakian Manifold
P: For a unit speed curve ¥, the curve consisting of the
centers of the osculating spheres of ¥ 1s called the
parametrized focal curve of y. The hyperplanes normal to
¥ at a point consist of the set of centers of all spheres
tangent to ¥ at that point. Hence the center of the
osculating spheres at that pomt lies m such a normal
plane. Therefore, denocting the focal curve by C, we can
write

Cls)=(y + em + e;my)(s) (5.1
Where the coefficients ¢, : ¢, are smooth functions of the
parameter of the curve v, called the first and second focal
curvatures of ¥, respectively. Further, the focal curvatures
¢y, ¢, are defined by

v

1 e
o =—.cy =—1,K';t 0,7#0.
T

- (5.2)

Lemma 5.1: Let v : [ - P be a unit speed biharmonic
curve and C, its focal curve on P. Then,

1
o = ~ constantande, = 0. (5.3)

Proof: Using (3.3) and (5.2), we get (5.3).

Lemma 5.2: Let v : [ - P be a unit speed biharmonic
curve and C, its focal curve on P Then,

C ) = (y T am)(s) (5.4)
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Theorem 5.3: Let y : I - P be a biharmonic curve parametrized by arc length. If C, is a focal curve of v, then the
paramelric equations of C, are

22 _ _
5&1(3) = 7%32 + (al - cosqo)er az+a

. 3 B
)= ay— P P U [T cos L+ a] + [-11+ cos]sin[LLs + al)
K" - sin4§0
. sinzl'P 2o
cl SlIl(P - 3 -3 +a15+a2 H i H H
e (TTsin[TTs + a] + cos @ cos|TTs + a]) (5.5)
. sinzl'P 2o
- s ta1staz
PLLL (~TTcos[IIs + a]+ cos@sin[ITs + a] ),
K
.3 _
Fs)= a3 7231117?2 seosery (7COS§DCOS[HS+ a]+ [Her a]sin[Her a])
x* —sin'e
. sin%p 2 = -
- talstaz
_asing oy f e (~Icos|I1s + a|+ cos@sin|I1s + a| ),
K
Where a, a1, az. @, ag, a3 are constants of integration andnzwsz —sin %
sing
Proof: Let C, 1s a focal curve of ¥ Recalling [12], we have
T =sin @ cos[lls + ale, + sin @ sin[ILs + ale, + cos @e., (5.6)
Where _ J&* —sin% and ais a constant of mtegration.
singe
On the other hand, using first equation of (4.3) we get
_f, g o P
Vit = (zl + 111‘3)e1 + (rz + 1213)e2 + (z3 - (rl —t3 ))e3. 5.7)
From (4.1) and (5.6), we get
Vit = sinqo(—Hsin[Hs +a|+coseos|[ls + a])el +
sin(TTcos[TTs + a] + cos psin[TTs + a| Je; — sinpe;. (5.8)
Where - {Kz —inZ
sing
Taking mto account Frenet formulas (4.1), we derive that
n = tht = l[(l_lsiansin[l_Is+ a|+ cossingcos|[Ls + a])el
K K (5.9)

+(—Hsincpcos[ﬂs+ a]+ cos(psinqosin[ﬂs+ a])e2 — sin%pe;].

Substituting (3.1) in (5.9), we arrive at
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1
n = (- sn;@ 2

57+ a15+az,
K

_sin (psz +a1star

e 2 (IIsing@sin[Ils + a]+ cos@sin@cos|ILs + a]) +

H Vs rarstan

 gin QD 2
e Z (—TTsingcos[Tls + a| + cos gsingsin|[Tls + a| ),

(5.10)

_sin @SZ +als+al

e 2 (—TTsingcos|Tls + a| + cos gsingsin|Tls + a| )),

Where 1,22 are constants of integration.
Next, we substitute (5.10) and (4.5) into (5.4), we get (5.5). The proof is completed.

Theorem 5.3: Let y : I - P be a biharmonic curve parametrized by arc length. If C, is a focal curve of v, then the
parameliric equations of C, in terms of T are

asin’e 2 (-

24177

5&2(3) =y -

As)=-

sin3§0
R
1-7° —sine

sz(p 2

q Sil’lq) - 5 +a15+a2

2

1-7

¢ Sing e*—smfp st rarstay

1-72
sin’p
2.

1-7° —sin*p

z(pz

st +als+an

ch(s) =a;—

_asing

\a'lf"c2

Where a. a1, a2, @, ap, a3 are constants of integration and
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