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Abstract: New approaches to sequencing mixed-model manufacturing systems are present. These approaches
have attracted considerable attention due to its potential in dealing with difficult optimization problems. This
paper presents Mult-Objective Sumulated Amnealing Algorithms (MOSAA) approaches to Just-In-Time (JIT)
sequencing problem where workload-smoothing (WL) and number of set-ups (St) are to be optimized

simultaneously. Mixed-model assembly lines are types of production lines where varieties of product models
similar m product characteristics are assembled. Moreover, this type of problem 1s NP-hard. Two annealing
methods are proposed to solve the multi-objective problem and find an efficient frontier of all design

configurations. The performances of the two methods are tested on several problems from the literature.
Experimentation demonstrates the relative desirable performance of the presented methodology.
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INTRODUCTION

In mixed-model assembly line production systems,
management would like to sequence different products
without having an excessive number of set-ups or
changeovers to reduce costs. A good sequence should
have an acceptable level of intermixing of products and at
the same time an acceptable number of required set-
ups[1].

For JIT systems, Monden [1] define two goals for the
final assembly sequencing problem; Goal [: even
distribution of workload (total assembly time on each
workstation on the line) and Goal 2: keeping a constant
rate of usage for each part used on the final assembly
line. Goal I recognises that models may not have the
same operation time at each one workstation on the line
and seeks to smooth out the workload on the final
assembly line to reduce line inefficiencies such as
idleness, work deficiency, utility work and work
congestion [for more detail 2,3,4]. Goal 2, on the other
hand, requires that the quantity of each part used by the
mixed-model final assembly line per unit time be kept as
constant as possible. Miltenburg [5] has formulated the
problem as a nonlinear integer-programming problem

having the objective of minimizing the total variation of
actual production rates from the desired production rates.
This 1s referred to as “levelling” the schedule. Inman and
Bulfin [6] Give an efficient Earliest Due Date (EDD)
algorithm for an objective fimction that 1s mathematically
different, but intuitively similar to the objective function
of Miltenburg [7]. Kubiak and Setlu [8] developed an
optimization algorithm for the problem and its extension
that runs in polynomial time in the total demand for all
products produced on the line over a given time horizon.
They show that the objective function may actually be
represented by using penalties for deviation from most
even, perhaps unrealizable, distribution of production
during a specified time horizon and if these penalty
functions are non-negative and convex and then the
problem can be reduced to an assignment problem.
Determining an optinal schedule for most of the industrial
applications is a very difficult combinatorial problem [9].
In a JIT production system, the objective for Goal 2
should be to sequence models on the mixed-model final
assembly line in such a way that usage variation and
workload smoothing with required set-up cost of each
model at each level of the manufacturing process is kept
as constant as possible. Finding production sequences
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with desirable levels of both numbers of set-ups and
production rates variation is NP-hard as pointed out by
[10, 11]. In tlus environment, the sequencing problem
becomes a multi-objective problem.

In this paper, two objectives
minimizing the optimization of workload-smoothing (#7.),

are considered:
and mimmization of set-up costs (S7).

A Multiple Objective Sequencing Problem in Jit
Production Lines Workload-smoothing Problem:
Controlling a mixed-model assembly manufacturing
facility, operating under a just in time (JIT) production
control system, is by setting a production schedule for
the last process in the facility, which is usually a mixed-
model final assembly line. The workload-smoothing
problem 1s to smooth the workload on the final assembly
line to reduce the chance of production delays and
stoppages.

M different products with demand d,.d,,...d, are
assembled in the mixed-model final assembly line. The line
consists of (S) number of stations between which
products move until production is completed The
available production time at each station on the assembly
line 15 fixed. Let P, ; be the processing time of model (m)on
workstation s where s = 1,2,...,S stations and (¢,,)be the
total processing time required by all requirements of
model () on workstation s, £, , = .7, The workload-
smoothing problem 1s mimmizing the deviation of actual
worlkload from the ideal workload. The following model is
modified from smooth production loads model presented

by [12].

Dr M S RS
Minimize WL=>" % >| p,, %, — 7k %

F=lm=1s=1 P
Subject to:

me,k :1,k:1,....DT (1)

0=, — Xy, <lform=1,.., M k=1..,Dr (2)
X, 1s a non-negative integer, v, vk 3)
Set-Up Costs: Costs of operations performed on
every product, but in different choices are affected
by sequencing Mixed-Model assembly lines. For these
types of operations, set-up costs may be incurred each
time the operation switches from one choice to another.

Therefore, an mcentive exists to sequentially assemble
products having the same choice of an operation.

The second objective function is to minimize the
mumber of required set-up costs (Sf) in a production
sequence. Many assembly operations often require
sequence-dependent set-ups. For instance, an automotive
body station need set-ups when the door types are
changed. Similarly, an engine mounting station requires a
set-up when the engimne types are changed. Burns and
Daganzo [13] addressed sequence-dependent set-ups
cost and production capacity in determining an assembly
line job sequence. Mathematical formulation is as follows:

M Dy § M

Mln z zzz Xs,m,rcs,m,r

m=11k=1s=1r=1

i (4)
z Z g = 1 Wk

m=1r=1

Dr Af

szm,k,r:dm Vi

F=1r=1 (5)

1 Vi kr

Xy p =0 or

Where C,,,, 1s the set-up costs required when model type
15 changed from m to » and x, ., 1s 1 1f model type £ and »
are assigned, respectively, at the kth and (,+1) st position

in a sequence; otherwise, X,,, is 0. In this work, it is

assumed the set-up time 13 sequence-dependent. Equation
(4) 15 a set of position constraints indicating that every
position in a sequence is occupied by exactly one
product. Equation (5) imposes the restriction that all the

demands should be satisfied.

Efficient Frontier Approach: Multiobjective optimization
problems require separate techniques, which are very
different to the standard optimization techniques for
single objective optimization. It is very clear that if there
are two objectives to be optimized, it might be possible to
find a solution, which is the best with respect to the first
objective and other solution, which is the best with
respect to the second objective.

Tt is convenient to classify all potential solutions to
the multiobjective optimization problem into dominated
solutions and nron-dominated (efficient) solutions. As
solution x 18 dominated if there exits a feasible solution y
not worse than x on all coordinates, i.e. for all objectives

fi=1., k)

Fx) = fy) forall 1 zizk.
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If a solution is not dominated by any other feasible
solution, we call it non-dominated (or efficient) solution.
All efficient solutions might be of some interest; ideally,
the system should report back the set of all efficiency
optimal points. In other disciplines, the term efficient is
also known as Parefo optimality, admissibility, or non-
inferiority. We call the set of all efficient points the
efficient set.

General Simulated Annealing Algorithm: The principal
idea used in simulated annealing was first proposed by
[14]. Kitkpatrick et al. [16,17] applied the concept of
annealing to combinatorial optimization problem. This
concept 18 based on an analogy between the physical
ammealing process of solids and solution process of
combinatorial optimization problems.

The physical ammealing process which obtains low
energy states of a solid mn a heat bath may be modelled as
follows [17]: Inn each step an atom 1s given a small random
displacement and the resulting change in the energy of
the system, AF, is computed. If AE < 0, then the
displacement is accepted and the configuration with the
displaced atom is used as the starting point of the next
step. If AE > 0, the case is treated probabilistically, the
probability that the configuration is accepted is
determined using Equation [18], where T 1s the
temperature and 4,15 Boltzmann’s constant.

AE

P(ABY=¢ BT ©)

A random number uniformly distributed on the
interval [0,1] is selected and compared with P{AFE). If the
random number is less than P(AE), then the new
configuration is accepted and used to start the next step.
Otherwise, the configuration is rejected. The process is
continued until an “egquilibrium” state is achieved, then
the temperature 1s lowered according to the annealing
schedule. This procedure 15 repeated until the system
freezes. At each temperature, the annealing schedule must
allow the simulation to proceed sufficiently long for the
system to reach steady state condition (equilibrium point).
Simulated annealing for the model 1s as follow:

Tnitial Temperature: The number of iterations during the

annealing process partly depends on the initial

temperature. The procedures for setting the initial
temperature may be broadly classified into two types.

Most schemes determined the initial temperature as fixed
numbers prior to execution of the annealing process.
Golden and Skiscim, [19] and Bukard and Rendl, [20] set
high mitial temperatures, while Wilhelm and Ward, (1987)
starts at a low temperature.

method, the

temperatures were determined by information obtammed in

In Connolly’s mutial and final
trials prior to the amnealing process. In these trials, a
certain number of random moves are performed to record
the resulting changes in the objective function. From the
results, the minimum value Af; and the maximum value
Af.. for the changes in the objective function are
calculated for these exchanges. Using these values, the
initial temperature, T and the final temperature, 77, are set
according to equations (7) and (8), respectively:

To = Mia + = (s ~ ) 7

TF - Afrmn (8)

Temperature Tuning (Cooling): One of the major issues
related to the amnealing schedule is how to cool the
temperature during the annealing process. Each annealing
schemehasitsownindividual function. For example, [20,21]
calculate the next temperature, T},, using equation [19],
where the parameter a 1s usually set close to one. Golden
and Skiscim, [19] used Equation [22], which reduces the
temperature by 1/25 of the mutial temperature at each
stage.
Ty =l 9
T =T- 2
25 am
Another method employs information obtained from
trails prior to the execution of annealing process. In
Comnolly, [23] during these trails the initial temperature T,
and final temperature 7, are determined. The next
temperature 1s calculated by Equation (11). In Equation
(15), M 1s calculated on the basis of moves examined by
Equation (12). In this equation parameter 3 usually has a
small value and therefore the temperature reduction
proceeds slowly. N 1s the problem size.

o T, :TD—Tf
T MTT (11)
i V-1
2 (12)
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Tundy and Mees, [24] used equation (13) for cooling
temperature. They used the maximum iteration number N
as a stopping condition

T, -7,

:1+,181;’ :TOTf(Nfl) (13)

i+l

Where B is a constant, this decreasing function is
rewritten as:
__ & L =12, N1

1+ipT; (14

T

Tt is clear when the temperature is too high; a lot of
poor uphill moves are accepted. Conversely, when the
temperature 1s too low the probability of falling into a local
minimum 18 very high Kikpatrick and Wester [17]
mentioned that between these two extremes there is a
critical band of the temperatures n the whole annealing
process where very slow cooling 1s required. Equation
(11) and the procedures for deterring the initial
temperature used in Connolly, [23] were designed based
on this idea.

Equilibrium Test: Each SA scheme has its own means for
testing the Equilibrium State, testing whether the
should preceded to the

temperature. Most existing schemes test the Equilibrium

annealing process next
State according to prescribed criteria independent of the
problem characteristics.

For mstance in Golden and Skiscim, [19] and Wilhelm
and Ward, [21] a test as to whether the Equilibrium State
has been reached is conducted after certain duration at
each temperature. In both studies, this duration called an
“epock”. In Golden and Skiscim, [19], it is represented as
the a priovi specified number of attempted moves
including non-accepted moves, while in [21] it is defined
as a priori specified number of accepted moves only. In
both methods, after the execution of each epoch, the
value of the objective function is calculated and the
equilibrium test 1s conducted based on the current and
previous values of the objective function. If the system
reaches the Equilibrium State, then the temperature 1s
lowered. Otherwise, exchanges are repeated during the
next epoch at the same temperature and at the end of that
epoch the equilibrium test is conducted again. Golden and
Skiscim, [19] as shown in equation (15) find different
procedures for determining the equilibrium state. If the
mean value of the objective function from the most recent

epoch, j, at temperature 7, which is defined as p in this
7

equation, is sufficiently close to any of the mean values
at previous epochs, i.e. ;_ { £ f } , then the systems
(o ]

1s assumed to be at equilibrium.
On the other hand, Wilhelm and Ward [21] uses
Equation (16) as the equilibrium test, where - 1s the

=4

mean value of the objective function during the most

recent epoch at temperature T, and - is the grand mean

e
of the objective function for all preceding epochs at

temperature 7, .
15
[lj, —l} <e (15)

A e (16)

A
Kirkpatrick et al. [16] use the number of accepted and
rejected moves as an equilibrium criterion.

Termination Criterion (Frozen Test): Tn general SA
algorithms, the stopping criterion 1s specified in advance.
This criterion usually depends upon the number of
iterations for which an appropriate number of rejected or
attempted “transitions™ have taken place. It is shown that
the stopping criterion has a great effect on the
performance and CPU time of a SA algorithm [25].

In the proposed algorithm, the frozen state of the
system is reached when either the total number of
pairwise exchanges (1) is greater than maximum number
of pairwise exchanges (M), or the tem perature reaches the
final temperature 7

Simulated Annealing and Neighborhood Search: In this
research we mvestigate a parwise exchange mechanism,
where swapping two members of the sequence searches
the neighbourhood. The following is an example and
algorithm of how a current solution is modified the
simulated annealing search.

Before Modification: ABABABCBABAAB
After Modification: CBABABABABAAR

The objective of this study is to create an annealing
scheme that leads to superior performance with fewer
iterations and therefore less computational time.
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Proposed Algorithms: The complete proposed algorithms
for the annealing process procedures mentioned above
are described here.

Notation

T, = Inital temperature
T.. = Mimmum value

T... = Maximum value

T, = Final temperature

T, = Temperature at i stage
E = Value of the function
Af = Number of exchange
N = Position size

a, = Imtial function
Methods A

Step 0: Determine an mitial solution, which 1s
selected from a population of 200000 randomly
generated solutions 7, and calculateand 7:by equations

1 , respectively.
Ty = oin 16 (W Mo} Ty =M™ 0

The temperature 7 1s initialised to 7, and the iteration
counter m and equilibrium counter (#), are set to 0.

STEP 1: Compute the objective function, select
efficiency frontier and randomly select starting
point, set the temporarysolution a = &' andthe

temporary function E = fla,). In executing SA,
the temperature tuning 3 and Af are calculated by
T Iy-T N(N —1) -Tespectively.

T, = — =
Uy g MITT, 2

STEP 2: Generate a feasible neighborhood search by
“parwise exchange”. For pawwise exchanging, two
unique products are randomly selected and exchanged.
This new sequence, which obtained after exchange is
referred to as the present solution and its objective value,

1s determined (7).

STEP 3: Evaluate the
function after pairwise exchange: Af=f,-7..

value of the objective

If Af

15 less than or equal zero go to step 5; otherwise go to
Step 4.

STEP 4: Exchange acceptance process: (a) If Af < 0, then
go to STEP 4b; otherwise go to STEP 4d. (b) Accept the
pairwise exchange and increment the iteration counter

=m+] and goto step 5. (¢) If Af = 0, then go to STEP 4d,
otherwise go to step 5. (d) Compute (Metropolis)

AF and select a uniform distribution with the
P(af)y=e5"

range [0, 1]. If the random mumber less than P(Af), then go
to STEP 4b; otherwise return to STEP 2.

STEP 5: Equlibrium test process: (a) If the value of
objective function after exchange (E) 1s less than the best
value found so far () go to step 5b; otherwise go to step
5¢. (b) Change the temporary solution and if m < e go to
step Sc; otherwise go to Step 2. (C) If

. goto
e Jg

step 6; otherwise go to step 2.

STEP 6: If m, the number of pairwise exchange examined,
18 greater than or equal M, than Go to step 7; otherwise
change the temperature according to equation (9),
increment the equilibrium counter » =+ + 1 and go to
step 2

STEP 7: Stop.
Methods B: This method is similar to the previous one
except for steps 0, 1 and 2, which become as follows:

STEP 0: Determine an mitial solution, which 1s selected
from a population of 200000 randomly generated solutions
and calculate T, and 7; by equations (7) and (8),
respectively. The temperature T is initialised to T, and the
iteration counter m set to 0.

STEP 1: Compute the objective function, which is the
initial objective function fa"), set the temporary solution
a = a" nd the temporary function £ = fla,). In executing
SA, the cooling parameter on temperature B and M are
calculated by equation (11) and (12), respectively.

STEP 2: If m, equal or less than the number of pairwise
exchange go to step 7; otherwise return to step 2.

STEP 7: STOP.

Numerical Experiments

Test Method: Numerical experiments were conducted to
evaluate the proposed methods. Several test problems
from the literature [26] were used; see appendix A.
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Table 1: Computational Results

Prob. Name  Structure Corr. MethodA CPU (Minute) Method B CPU Min. Set-ups Sequence
Simple Low 74.99 0.4333 75 0.05 9 AAAAADAAAAAACABAAEAA
Simple High 10.54 0.45 10.54 0.05 9 AAABAAADAAACAEAAAAAA
A Moderate Low 49.85 0.4333 49.58 0.05 9 AAABAAADAAACAFAAAAAA
Moderate High 8.7 0.45 87 0.05 9 AAABAAADAAACAEAAAAAA
Complex Low 7.21 0.4661 7.21 0.05 9 AAAAADAAAAAACABAAEAA
Complex High 7.21 0.45 7.21 0.05 9 AAABAAADAAACAAAAAAEA
Simple Low 75.2 0.4333 75.22 0.05 11 AEACAAAAAAABADAABAAA
Simple High 10.54 04 10.22 0.05 11 ABEACADAAAAABAAAABAAA
B Moderate Low 50.06 0.4333 50.06 0.05 11 AACAADAAABAAAABAAEAA
Moderate High 8.7 0.4667 87 0.05 11 AACAADAAABAAAABAAEAA
Complex Low 7.21 0.3333 7.21 0.067 11 ABACAAAAAAABADAABAAA
Complex High 7.21 0.4333 7.21 0.067 11 AACAADAAABAAAABAAEAA
Simple Low 75.58 0.4167 75.6 0.05 14 ABCAAAEABAABAAADABAA
Simple High 10.54 0.4167 10.54 0.05 14 AACABABAABAEADABAAAA
C Moderate Low 50.42 0.45 50.42 0.05 14 AABAADAABACBAABAAFEAA
Moderate High 8.71 0.4667 871 0.05 15 AACABABAABAEAAABADAA
Complex Low 7.21 0.3167 7.21 0.067 15 AABAADAABACABABAAEAA
Complex High 7.21 0.4333 7.21 0.067 15 AACABABAABAEAAABADAA
Simple Low 75.96 0.35 75.99 0.067 8 EAAAAABBBBAAAAADDCBC
Simple High 10.54 0.4167 10.54 0.067 7 EAAAAABBBBAAAAADDBCC
D Moderate Low 50.83 0.45 50.83 0.05 8 EAAAAABBBBAAAAADDCBC
Moderate High 8.73 04 873 0.05 8 EAAAAABBBBAAAAADDCBC
Complex Low 7.21 0.45 7.21 0.05 8 EAAAAABBBBAAAAADDCBC
Complex High 7.21 0.4333 7.21 0.05 8 EAAAAABBBBAAAAADDCBC
Simple Low 76.24 0.4333 72.58 0.067 19 AEADBABADBABCBAACBAB
Simple High 10.54 0.4500 10.05 0.067 19 AEADBABADABBCBAACBAB
E Moderate Low 51.08 0.4333 51.08 0.067 19 AEADBABADBABCBAACBAB
Moderate High 8.73 0.4167 872 0.067 7 AAAAECAADDBBBEBBBCAA
Complex Low 7.21 0.4333 7.21 0.067 19 BADABAEABBACBABDABCA
Complex High 7.21 7.21 0.067 19 AEADBABADBABCBAACBAB
Simple Low 76.35 0.4333 76.38 0.05 9 BBDAAAACCCCBBBBCEDAA
Simple High 10.54 0.4333 10.54 0.05 9 BBDAAAACCCCBBBBCEDAA
F Moderate Low 51.22 0.4 51.22 0.067 9 BBDAAAACCCCBBBBCEDAA
Moderate High 8.75 0.3667 875 0.067 9 BBDAAAACCCCBBBBCEDAA
Complex Low 7.21 04 7.21 0.067 9 BBDAAAACCCCBBBBCEDAA
Complex High 7.21 0.4 7.21 0.067 9 BBDAAAACCCCBBBBCEDAA
Simple Low 305.83 0.45 305.92 0.05 9 AACCCCEEBBBDDDBAAACB
Simple High 42.15 0.45 42.15 0.05 9 AACCCCEEBBRDDDBAAACB
G Moderate Low 205.29 0.4333 205.29 0.067 9 AACCCCEEBBBDDDBAAACB
Moderate High 34.99 0.45 34.99 0.067 9 AACCCCEEBBRDDDBAAACB
Complex Low 28.89 0.4167 28.89 0.05 9 AACCCCEEBBRDDDBAAACB
Complex High 28.89 0.4 28.89 0.05 9 AACCCCEEBBBDDDBAAACB
Simple Low 688.34 0.4 688.5 0.05 11 BACAADCCCDDDEEEBBAAB
Simple High 94.81 0.45 94.81 0.05 11 BACAADCCCDDDEEEBBAAB
H Moderate Low 462.15 0.4 462.15 0.05 11 BACAADCCCDDDEEEBBAAB
Moderate High 78.72 0.4333 78.72 0.05 11 BACAADCCCDDDEEEBBAAB
Complex Low 65.07 0.2 65.07 0.067 11 BACAADCCCDDDEEEBBAAB
Complex High 65.07 0.3167 67.07 0.05 11 BACAADCCCDDDEEEBBAAB
Simple Low 1225.71 0.4333 1225.98 0.05 10 BBBBEDDADEEECAAADCCC
Simple High 168.51 04 168.51 0.05 10 BBBBEDDADEEECAAADCCC
I Moderate Low 823.13 0.4167 462.15 0.067 10 BBBBEDDADEEECAAADCCC
Moderate High 139.95 0.4333 78.72 0.067 10 BBBBEDDADEEECAAADCCC
Complex Low 115.71 0.4167 115.71 0.05 10 BBBBEDDADEEECAAADCCC
Complex High 115.71 0.45 115.71 0.05 10 BBBBEDDADEEECAAADCCC
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Comparisons of the Methods Aand B

1400
12001 |—*— Method B
1000 —=— Method A
3 |
o 800 1
=
go 600 -
400 4
200 |
0

— 0 O M I~

= =

7=

o

[To]
(o]

I~

o M
N D M

Number of the problem in set M1

Fig. 2: Comparisons of Methods A and B

Table 2: Result summary.
Problem Set M1

Problem name Average MSD Average difference
A 0.55 0.0

B 0.59 0.0

C 0.75 0.0

D 0.49 0.10

E 0.53 0.0006
F 0.57 0.0577
G 0.63 0.11

H 0.69 0.02

I 0.80 0.0
Problem Set M2

Problem name Average MSD Average difference
A 1.37 0.0

B 1.52 0.0179
C 1.54 0.02

D 1.58 0.0

E 1.42 0.0

F 1.52 0.0

G 1.61 0.0

H 1.65 0.0

I 1.65 0.0

These problem sets, M1, M2 M3 were solved by
proposed methods to find the best objective function and
the best method is compared with the existing solutions.
The algorithms are coded in Visual C++ and run on a
Pentium 3 compatible PC. During the experimentation,
CPU time was taken in minutes.

indicated that such factors as
setting the parameters and computational time have a

Previous studies

great impact on the performance of a search algorithm
[27,28].

Concerning parameter settings, Connolly’s scheme
was emploved in our method B. Method A, the tuning
parameter for temperature a was set at 0.97 from the
results of preliminary experiments.

Computational Results: To evaluate the problem
of mimimizing deviatons of actual workload from
the ideal workload, a problem set M1 from appendix A
and the assembly times required at each station for each
of the three model structures are used to test each
method.

The results of these tests are broken by the methods
in Table 1. The results of our
computational testing in Table 1 and Figure 2 have shown
the Method B finds the better results i terms of CPU
times for this problem set.

The following average
problems set are calculated for each solution approach
(see Table 1):

and are shown

measures Over INne

1922



World Appl. Sci. J., 13 (8): 1916-1926, 2011

Mean Squared Deviation (MSD)
Dr M 8 . 2 % difference in the
- Z Z Z P, s%m b — 'J’k T—,
F=lm=1s=1 gl

objective function, CPU time,
CONCLUSIONS

In this research, a new simulated annealing
algorithm is developed to obtain optimal solutions to
multiple objective sequencing problems n mixed-
model assembly lines. We have considered two
objectives: workload smoothing and mimimizing total
set-up costs. These are important for an efficient
operation of mixed-model assembly lines. Methods are
work efficiently and find good solutions in a very short
time, even when the size of the problem is too large.
Mathematical formulations for the two objectives are
provided.

Based on the above concepts, we proposed
two methods, which differed
schedule and hence affected in computational time.
In the first method, method B, mformation obtained

during trial prior to the annealing process is utilized

only i cooling

and the system appropriate for relatively small size
problem.

On the other hand, the second method, method A
uses a smmpler procedure for temperature tumng, i.e. it
determines the next temperature according to a prescribed

cooling function. This function used in the present study
and thereby

computational time.

cools faster contributes to saving

In order to evaluate the proposed methods, we
conducted a number of numerical examples using the
standard problems of Sumichrast, ef al. [28]. Based on the
results, method B was shown to be obtaming higher
quality solution than method A and in most cases similar
to optimal solutions for all productions size. This method
works well for lager problems.

Finally, although the simulated annealing algorithms
proposed here is for the mixed-model assembly
production line in a JIT system, it is possible to apply
these methods to other combinatorial optimization
problems by finding rules or structure based on the
characteristics of the problem. The algorithm developed
provides higher quality solutions with increasing
efficiency in comparisons with other heuristics methods
available m the literature. We can concluded from the
results of this study that it is worthwhile to take the
workload-smoothing goal mto account especially in cases
where the assembly line is not long and/or variability in
the processing times of the models is high.
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Appendix

Problem Set M1, Total production D= 20, n=5

Problem name da; a; a; s ds
A 16 1 1 1 1
B 15 2 1 1 1
C 13 4 1 1 1
D 10 5 2 2 1
E 8 7 2 2 1
F & 6 5 2 1
G 5 5 5 3 2
H 5 4 4 4 3
I 4 4 4 4 4
Problem Set M2, Total production Dy = 20, n=10

Problem name d; d; d; d; ds ds d; s dy d
A 11 1 1 1 1 1 1 1 1 1
B 10 2 1 1 1 1 1 1 1 1
C 9 3 1 1 1 1 1 1 1 1
D 8 4 1 1 1 1 1 1 1 1
E 7 5 1 1 1 1 1 1 1 1
F & 5 2 1 1 1 1 1 1 1
G 5 5 3 1 1 1 1 1 1 1
H 4 4 4 2 1 1 1 1 1 1
I 2 2 2 2 2 2 2 2 2 2
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Problem name d; d; d; dy ds ds d; d; dy dy dy; dy; dp di dis
A 40 40 8 1 1 1 1 1 1 1 1 1 1 1 1
B 35 35 10 5 5 1 1 1 1 1 1 1 1 1 1
c 30 30 15 10 5 1 1 1 1 1 1 1 1 1 1
D 25 25 20 15 5 1 1 1 1 1 1 1 1 1 1
E 20 20 20 10 10 1 1 1 1 1 1 1 1 1 1
F 20 20 15 15 10 6 6 1 1 1 1 1 1 1 1
G 15 15 15 10 10 10 10 5 4 1 1 1 1 1 1
H 15 15 10 10 10 10 10 10 4 1 1 1 1 1 1
I 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6
Assembly time required by station and model: S8imple structure. Low Comrelation

Station
Model 1 2 3 4 5 6 7 8 9 10
1 6.41 0 0 0 1.28 3.85 7.69 1.28 3.85 0
2 5.13 6.41 2.56 2.56 1.28 7.69 8.97 2.56 3.85 6.41
3 2.56 1.28 6.41 2.56 1.28 0 7.69 6.41 2.56 7.69
4 1.28 2.56 1.28 4.91 1.28 0 5.13 7.69 7.69 7.69
5 7.69 1.28 7.69 0 3.85 1.28 7.69 6.14 3.85 8.97
Assembly time required by station and model: S8imple structure. High Correlation

Station
Model 1 2 3 4 5 6 7 8 9 10
1 6.67 3.33 3.33 3.33 3.33 6.67 3.33 3.33 3.33 3.33
2 3.33 6.67 3.33 3.33 3.33 3.33 6.67 3.33 3.33 3.33
3 3.33 3.33 6.67 3.33 3.33 3.33 3.33 6.67 3.33 3.33
4 3.33 3.33 3.33 6.67 3.33 3.33 3.33 3.33 6.67 3.33
5 3.33 3.33 3.33 3.33 6.67 3.33 3.33 3.33 3.33 6.67
Assembly time required by station and model: Moderate structure. Low Correlation

Station
Model 1 2 3 4 5 6 7 8 9 10
1 247 5.56 1.23 0.62 2.47 4.78 0.93 2.78 6.17 2.78
2 1.39 2.78 3.55 4.46 4.63 2.16 5.25 2.16 0.77 1.23
3 6.95 2.16 3.40 2.78 5.56 3.86 4.48 324 1.54 2.93
4 4.9 2.47 2.16 2.93 3.24 4.63 2.31 3.86 4.9 6.95
5 3.24 3.40 6.77 3.09 1.85 6.48 4.17 3.86 5.09 3.86
Asgsembly time required by station and model: Moderate structure. High Correlation

Station
Model 1 2 3 4 5 6 7 8 9 10
1 2.35 4.06 2.35 1.50 1.50 4.49 2.35 4.06 4.92 1.50
2 1.93 2.35 2.78 4.06 3.21 3.21 4.06 1.50 1.93 1.50
3 534 2.35 2.35 1.50 4.92 3.37 534 1.93 1.50 2.78
4 4.06 1.50 321 1.93 4.49 321 3.37 2.78 4.92 534
5 3.37 4.06 1.93 2.35 2.35 4.92 337 2.78 3.37 2.78

1924



World Appl. Sci. J., 13 (8): 1916-1926, 2011

Asgsembly time required by station and model: Complex structure. Low Correlation

Station
Maodel 1 2 3 4 5 6 7 8 9 10
1 4.49 0 1.23 1.23 1.23 245 7.36 1.23 3.68 0
2 4.49 26.14 2.45 2.45 1.23 8.59 7.36 2.45 3.68 6.14
3 245 2.45 4.91 245 2.45 1.23 8.59 4.91 2.45 7.36
4 3.68 2.45 2.45 4.91 2.45 1.23 6.14 7.36 7.36 7.36
5 7.36 1.23 7.36 1.23 245 245 7.36 6.14 3.68 736
Assembly time required by station and model: Complex structure. High Correlation
Station
Model 1 2 3 4 5 6 7 8 9 10
1 2.35 4.06 2.35 1.50 1.50 4.49 2.35 4.06 4.92 1.50
2 1.93 235 278 4.06 3.21 3.21 4,06 1.50 1.93 1.50
3 5.34 2.35 2.35 1.50 4.92 3.37 5.34 1.93 1.50 2.78
4 4.06 1.50 3.21 1.93 4.49 321 3.37 2.78 492 5.34
5 3.37 4.06 1.93 2.35 2.35 4.92 3.37 2.78 3.37 2.78
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