World Applied Sciences Journal 13 (8): 1781-1786, 2011
ISSN 1818-4952
© IDOSI Publications, 2011

Performance Analysis of Competing Tasks and Processors in
Heterogeneous Earliest Finish Time Algorithm

Altaf Hussain, Ehsan Ullah Munir,
Muhammad Wasif Nisar and Muhammad Wagas Anwar

Department of Computer Science,
COMBATS Institute of Information Technology, Wah Cantt. 47040, Pakistan

Abstract: Heterogeneous Earliest Finish Time (IIEFT) algorithm outperforms many existing list scheduling
algorithms for precedence constraint tasks allocation onto computationally diverse set of machines. However,
if two or more tasks with the same rank or processors with the same minimum earliest finish time compete,

known a tie-break, then various random and deterministic selection policies can bring a sigmficant difference
mn the final schedule length (makespan). This paper considers a number of tie-breaking schemes for task and
processor selection. The performance of the proposed schemes has been extensively studied with various
simulation parameters on randomly generated as well as some real world application directed acyclic graphs
(DAGs). Our experimental investigation shows that random selection based policy 1s not always an efficient
choice. Furthermore, the implementation of some determimistic approaches can increase the overall cost or
complexity of the algorithm but it may be a trade-off worth making.

Key words: Heterogeneous computing - DAG scheduling - Task priority - Schedule length

INTRODUCTION.

Heterogeneous computing system (HCS) 15 a
computing p latform which consists of different kinds of
resources 1intercommected with a high speed network.
Due to diverse and sufficient computational resources,
task scheduling mechanism in HCS becomes one of the
key factors for achieving high performance. The common
objective of scheduling is to map tasks onto available set
of machines and order their execution so that task
precedence requirements are satisfied and there is a
minimum schedule length (makespan). The problem of
finding the optimal schedule 1s shown to be NP-complete
[1, 2]

An application with computationally intensive tasks
can be parallel executed in the HCS. Directed acyclic
graph (DAG) 1s a well accepted representation of a parallel
application in which the nodes represent application tasks
and the directed edges represent inter-task dependencies,
such as task’s precedence [3]. List scheduling algorithms
[4-11] have shown to be the most promising heuristics for
DAG scheduling. The basic idea of list scheduling is to
prioritize the tasks of the given application DAG in a non
increasing order arranged list. A task with a higher priority

15 scheduled before a task with a lower priority and ties
are broken using some agreed method. Among the list
scheduling algorithims Heterogeneous Earliest Finish
Time (HEFT) algorithun [4] has shown best results both in
terms of cost and quality of schedule. In HEFT, priorities
are given to a set of tasks on the basis of task average
communication and computation costs. The algorithm
uses a recursive procedure to compute the rank of a task
by traversing the graph upwards from the exit task.
However if two or more tasks having same rank compete
for the best available processor, known as tie break, then
the algorithm uses random policy for task or processor
selection.

In ths
determimistic tie breaking mechamsms for competing
tasks
implemented separately m task prioritizing
as processor
results show that the random tie breaking policy for
competing tasks and processors, as adopted by HEFT,
does not always give an optimal solution. The rest of the
paper is organized as follows: In section 2, HEFT
scheduling attributes have been discussed. In section 3,

paper we have considered various
and processors. These strategies have been
as well

selection phases. Our simulation

we give the background and motivation of our work.

Corresponding Author: Altaf Hussain, Department of Computer Science, COMSATS Institute of Information Technology,
Wah Cantt. 47040, Pakistan. E-mail: altathussain@@comsats.edu.pk.
1781

World Appl. Sci. J., 13 (8): 1781-1786, 2011

In section 4 we discuss the methodology, section 3
provides results and discussion. Fmally, section 6
concludes the paper.

HEFT Scheduling Attributes: Before proceeding to the
next section, it 18 necessary to discuss some basic
scheduling attributes rank
downward, earliest startup time and earliest finish time,
which were used in the HEFT scheduling algorithm.

The upward rank, rank,, of the task v, is calculated
using the following equation

such as rank upward,

raﬂku(vn)l/?n'*‘\f‘ 1 Imax {E"""ankn("‘?n)} M

suece (\/‘n)

where - 15 the average computation cost of the task v,,
H

d__ 1is the average communication cost of the edge from
nm

task v, to task v, suce(v,) is the set of all
Immediate successors of task v, For the entry task,
the upward rank is

rank, (vn) = We;my 2

Similarly, the downward rank of task v, is defined by the
following equation

ranky(v,)=v , max {£+a+rankd(vm)] (3)
" pred(vn) }

where pred(v,) is the set of all immediate predecessors of
the task v, EST(v,p) and EFT(v,p) are the earliest
startup time and earliest finish time of the task v, on the
processor p,, respectively. For the entry task v,

EST (¥, 1) =0, (4)

For the other tasks in the task graph, the EST and
EFT wvalues are computed recursively, starting from the
entry task. EST and EFT are defined by

EST (v, p:) = max{avail[k],v L (AFT(v,,)+d,,)}

n prea‘(w!)

(3)

EST (v, pir) = Wy + EST (v, pi) (6)

where avail{k] is the earliest time at which processor p,
is ready to execute the next task. In order to compute the
EFT of a task v_ all the immediate predecessor tasks of v,
must have been scheduled.

Background and Motivation: Selection of an appropriate
tie break mechanism in case of competing tasks or
processors has been an important consideration in well
known heuristics for tasks scheduling in heterogeneous
computing systems. Modified critical path (MCP) [5]
algorithm resolves a tie by looking at the latest starting
time of the descendants. The Earliest time ?rst (ETF) [6]
algorithm selects the task with higher static level and
Dynamic level schedule (DLS) [7] algorithm takes into
account the descendants dynamic level to break the ties.
HEFT algonthm adopts the random tie breaking policy for
competing tasks as alternative policies increase the
complexity of the algorithm [12]. However, the processing
of the
considerably over the last decade. In this scenario, a

power existing machines has increased
minute increase mn algorithmic lines of code can lead to
only fractional increase in its complexity but can
contribute an enormous decrease in the final schedule of
the given task graph.

The schedule of the DAG shown in Fig. 1 explains
the benefits of alternate tie breaking mechanisms in detail.
The given DAG is scheduled among three processors
with different
commurication costs among the nodes are represented as
weighted directed edges while the computation costs are

computational capabilities. The

given in the provided table. Tn the task prioritizing phase,
the non mcreasing order of upward rank of the tasks 1s {1,
5.6,2,4,3,9,8, 7, 10}. Two alternate policies have been
implemented in the processor selection phase i.e. random
selection policy as adopted by the original HEFT
algorithm and predecessor task processor policy for
suitable processor selection (that will be elaborated in the
next section). The processor with the minimum earliest
finish time (EFT) is selected among the three competing
processors. While scheduling the tasks for the best
available processors, the task 6 has the EFT values for the
three processors as {78, 78, 81} respectively. The
processor 1 and 2 are the competing processors for the
task 6. The previous task 5 has been scheduled on
processor 2. The random selection policy specifies that
processor 1 or 2 can be selected arbitrarily with equal
probability. Now if the processor 1 is selected (random
selection policy) for scheduling task 6 then the final
schedule length so obtained 1s 231. However predecessor
task processor policy identifies processor 2 as the best
available processor with the schedule length 178. This
significant improvement in the result 15 only a small
evidence for the overall benefit of selecting appropniate tie
breaking policy. The motivation of the present work is to

1782

World Appl. Sci. J., 13 (8): 1781-1786, 2011

s a8 1 34 F33
. . . . -
> 3 4 5 B
a2 14 =5 T s R =%
- &5

- —. aa s

- 2
£ 8
-
13

(=)

Tash | PI P Pt Taskh Pl ™ P
1 LR s & i =1 1
Py 4 dz. SN - e I
3 5 — T M 1
4 L - B K -1
x dr M B 10 -1

®)

Fig. 1: (a) A sample DAG with ten tasks (b) table showing computation costs of each task (c) Predecessor task selection

11 -+
0 -
0 -
0
0
[
o
LT
Y
14+
110
120-
130
140
156+
164 -
170+
150 «
190 «
200
NIE
20
2348+
240

policy schedule (d) rendom selection policy schedule

investigate different tie breaking mechanisms and
compare the effect of these approaches on the
performance of the HEFT.

Methodology: HEFT consists of two major phases, task
prioritization and processor selection. In task prioritization
phase, the algorithm computes the rank of all the given
tasks in non increasing order based on some criterion. In
the processor selection phase the tasks in the sorted
order are scheduled on the best available processor,
which minimizes the finish time of the ranked task. We
have partitioned the problem into two sections and
considered different options for competing tasks and
processor selection. In task prioritizing phase, we have
implemented three policies i.e. random selection (RS)
policy, maximum immediate successor/predecessor
(MISP) policy and first in order (FIO) policy. In RS, if a
tie happens among competing tasks then any of the tasks
will be selected for scheduling on adhoc or arbitrary
fashion. In MISP, a task with the higher immediate
successor or predecessor rank will be selected if the tasks
are listed according to upward rank or downward rank
respectively. In F/O, the task which is coming first in the
original DAG order will be selected for scheduling.

1. Set the computation and communication costs of the tasks and edges,
respectively, with the mean value

2. Compute the upward or downward rank of tasks by using equations
(&2

3. Sort the tasks in a priority queue by non-increasing order of rank
values.

4. While ?k is not the exit task do

8.
9

10.

Predecessor
Task Processor

®TP)
(el

~
s
iy

ST
Random [
Polbcy

(d)

E 1)
-
- 3o
40
B
- 6u
R
Ll
]
— 1
t1tG
T1
130
140
s 184
S 160
“17u
‘I%0
1%
+ 200
<2
<2
<230
- 240

If two or more tasks have the same rank value then
mark the tasks as competing tasks.
resolve the tie among the competing tasks by

scheme.

re-arrange the priority queue.

end if
end while

some appropriate

11. Initialize the priority queue with the entry task.

12. While there are unscheduled tasks in the priority queue do

13. Select the highest priority task ?i from the queue

14. for each processor pk in the processor set (pk e Q) do

15. compute the EFT by equation (6)

16. find the minimum EFT processor pk.

17. if two or more processors have the same minimum EFT value then
18. mark the processors as competing processors.

19. resolve the tie among the competing processors by some appropriate

policy.
20. endif
21. end for
22. assign the task vi to the selected processor pk.
23. end while

Algorithm 1: Tie breaking pseudo code for HEFT algorithm

Similarly, in the processor selection phase, if a task
has the same minimum earliest finish time for two or more
processors then three policies will be considered i.e.
random selection (RS) policy, predecessor task
processor (PTP) policy and first in set (FIS) policy. RS is
the same as in the task prioritizing phase. In PTP, the
processor on which the previous task is scheduled (if it
happens) is selected for the current task scheduling. In
FIS, the processor which is coming first in the processor
set is selected for scheduling.

In order to investigate the performance of the above
mentioned schemes, following comparison metrics were
used:

1783

World Appl. Sci. J., 13 (8): 1781-1786, 2011

Average Percentage Degradation (APD): [12, 13] this
metric indicates the average degradation in the schedule
of a particular scheme as compared to the best schedule
30 obtained by any of the other schemes.

Number of Best Solutions (NB): The number of times a
particular scheme gives the mimmum schedule length
compared to other schemes.

Number of Best Solutions Equal with Another Scheme
(NEB): The number of times a particular scheme produces
the minimum schedule length but another scheme also
exhibits the same performance.

Worst Percentage Degradation (WPD): The maximum
degradation in the schedule length of a particular scheme
from the schedule length of the best one.

RESULTS AND DISCUSSION

In order to illustrate the impact of different tie
breaking chemes mentioned in section 3, we implemented
a simulation of HEFT on randomly generated
Directed Acyclic Graphs (DAGs) with parameters
described by [4]. In addition to randomly generated task
graphs, we also considered task graphs of real world
application problem, Gaussian elimination algorithm. The
experimental results are organized mto two major test
suits.

Test Suit 1: In tlus test suit, m order to analyze the
performance of six schemes we generated random task
graphs with two main characteristics; the number of tasks
in the graph and number of available processors to
schedule these tasks. These two parameters are so
chosen because increase in the number of tasks or
number of processors can increase the probability of the
competing tasks and processors. The communication to
computation ratio (CCR) was set to 1.0 and the shape

Table 1: NB, NEB & WPD for Random DAGs

parameter of the graphs (o) was also taken as 1.0 to
generate standard task graphs with equal degree of
parallelism [4]. A total of six different sets of experiments
were performed (three schemes in task prioritizing phase
+ three schemes in processor selection phase). Granularity
of the tasks was varied form 20 to 100 with a step of 20 to
generate diverse set of DAGs. Furthermore, mumber of
processors was varied from 4 to 32 {4, 8, 16, 32}. All these
schemes were implemented separately for upward as well
as downward ranks.

The average percentage degradation for each of the
above mentioned schemes with randomly generated
DAGs 1s shown in Figure 2 (a, b & ¢). The suffix *&U’ or
&’ the shorthand

representation if the ranking 1s performed upward or

with the given schemes 1is
downward, respectively. From the figure, random
selection policy outperformed all other policies. In (a),
RS&U 18 better than FIS&U by 4.4 %; 1 (b) by 11.9 % and
i (c) by 12%. For downward ranking in task prioritization
phase, random selection policy is not always the best
one. In (b) & (c) RS&D is worse than FIS&D by 5.9 % and
1.3 % respectively.

Table 1 shows the results of three other metrics, NB,
NEB and WPD. NB and NEB metrics show that the best
single scheme is RS&U but on the other hand it also
extubit its worst percentage degradation of 68.4 %
against the best scheme in the set.

Test Suit 2: The tie breaking schemes were implemented
for the Gaussian elimination task graph with matrix size
varied from 6 to 14 with a step of 2. The numbers of
processors were varied from 4 to 32 {4, 8, 16, 32}. All
these schemes were implemented separately for upward as
well as downward ranks.

The results for APD are given in the Figure 3 (a, b &
¢) and for three other metrics i.e NB, NEB and WPD are
presented in Table 2. As in the case of random DAGs,
predecessor task processor and first in set schemes does
not exhibit large variations from the best scheme.

RS task priority MISP task priority FIO task priority

Scheme NB NEB WPD NB NEB WPD NB NEB WFPD
RS&U 951 3] 22.6 976 13 19.7 1003 5 30.4
PTP&U 103 799 22.5 99 802 257 108 775 25.1
FIS&U 143 801 27.0 111 813 257 118 762 23.4
RS&D 990 11 68.4 993 8 24.5 938 7 54.6
PTP&D 15 981 46.7 102 769 28.9 16 1021 40

FIS&D 9 980 46.6 128 777 272 14 1036 425

1784

World Appl. Sci. ., 13 (8): 1781-1786, 2011

Tahle 2. NE, NEB & WFD for Gausstan DAGs

RS task prionty WMISF task poority FIO task priority
Scheme NB NEB WFD NB NEB WFPD NB NEB WPD
RS&U 993 3 19.5 937 9 7.0 959 5 133
PTR&U 99 212 1.3 107 819 25.3 122 512 26.9
FIS&U 96 799 1.8 128 528 2.8 99 823 26.9
RE&D 979 1 56.5 979 4 21.5 995 11 66.8
PTP&D 9 999 7.9 115 745 7.3 13 973 69.7
FIS&D 12 1000 63.7 148 767 7.3 10 30 68.2
40 40 - — 40
a RS s Task Priaridea thon Phase 5 MISP i Tash PrisriisafonFhus FI0 in Task Prisritisa tonPhase
235 £ 35 B35
L] —
=30 E 30 = g
o | g =
=, 25 | ';n 25 &5 |
a0 = | L =20 20 : |
Fz | E E {
815 | LB LS %15 ! |
& i = 8 i
10 . o5 L0 - o1 ! -
g | g g |
205 ks 205 - 505 | i
& | = Z
00 el 1 0o 00
ES&U PTREU FIS&U RS&D PTPED FIS&D Ei&U PIPEU FI3&U Ri&D PTRED FLI&D E3&U PIP&U FIS&U RS&D PIPED FI3&D
(a) (b) (©
Fig. 2: Random DAGs: 20-100 Tasks, 4-32 Machines, with policies in tagk prioritization phase as (a) RS (b) MISP (c)
FIO
40 40 40
a 25in Task Priorithation Plass A MISP s Task Prieridugen Miase FI0 b Tash Prisrtis ten Flae
235 g 35 2 3s
5 = =
F 30 B 30 3 30
oo L 8
<25 ! = 25 =28 i
g % | P '
oo =]
220 — . g2 . | 220 : t a
& = | = ' '
;1.5 ¥ , g | E 15 ! | g 15 i ! i
210 | o 10 i St . - i
= il =) {
=05 ! | £ 05 { g0s | ; |
=T - -
00 . 00 ' Lo :
RS&U PTPEU FIS&U RS&D PIPED FIS&D R3¢0 PTPEU FE&U RS&D PTPED FISED RS&U PTP&U FIS&U RS&D PIPED FIS&D
(a) (b) ()

Fig. 3: Gaussian DAGs: 6-14 Malrix, 4-32 Machines, with policies in task prioritization phase as (a) RS (b) MISP (c)

FIO
CONCLUSIONS

From the results presented above, it is clear that the
performance of HEFT algorithm significantly depends
upon various fie breaking schemes implemented in task
prioritizing as well as processor selection phases. It is also
evident from the experimental investigation that the adhoc
or random schemes are always not a best choice. The
performance of the HEFT algorithm can further be
improved using suitable deterministic approaches for tie
breaking if zo happens. This would increase the cost or
complexity ofthe algorithm, but can profoundly minimize
the schedule length of given DAG.

1785

REFERENCES

Gary, M.R. and D.S. Johnson, 1979. “Computers
and Intractability: A Guide to the Theory of
NP-Completeness”, W.H. Freeman and Company,
Ibarra, ©.H. and C.E. Kim, 1977. “Heuristic
algorithms for scheduling independent tasks
on non-idenfical processors”, J. ACM,
pp: 280-289.

Kwok, Y.K. and I. Ahmad, 1999. “Static scheduling
algorithms for allocating directed task graphs to
multiprocessors”, ACM Computing Surveys,
pp: 406-471.

World Appl. Sci. J., 13 (8): 1781-1786, 2011

Topcuoglu, H, S. Hariri and M.Y. Wu, 2002.
“Performance Effective and Low Complexity Task
Scheduling Algorithm scheduling for heterogeneous
computing”, IEEE Transaction on Parallel and
Distributed System, 13: 3.

Wu, M.Y. and D.D. Gajski, 1990. “Hypertool: A
Programming Aid for Message-Passing Systems,”
TEEE Trans. Parallel and Distributed Systems,
1(3): 330-343.

Hwang, 1.J., Y.C. Chow, F.D. Anger and CY. Lee,
1989. “Scheduling Precedence Graphs in Systems
with Inter processor Communication Times”, SIAM T.
Computing, 18(2): 244-257.

Sih, G.C. and E.A. Lee, 1993. “A Compile-Time
Scheduling Heuristic for Interconnection-Constrained
Heterogeneous Processor Architectures,” IEEE
Trans. Parallel and Distributed Systems, 4(2): 75-87.
Daoud, . and N. Kharma, 2008. “A high performance
algorithm for static task scheduling in heterogeneous
distributed computing systems”, J. Parallel Distrib.
Comput., pp: 399-409.

9.

11.

12.

1786

. Tang,

Liu, G.Q., K.I.. Poh and M. Xie, 2005. “Tterative list
scheduling for heterogeneous computing”, I. Parallel
Distrib. Comput. pp: 654-665.

X, L. Kenli and D. Padua, 2009.
“Communication contention in APN list scheduling

2

algorithm™, Science m China Series F: Information
Sci., pp: 59-69.

Tang, X., L. Kenli, L.. Guiping and T.. Renfa, 2010. *“Tist
scheduling with duplication for heterogeneous
computing systems”, J. Parallel Distrib. Comp.,
pp: 323-329.

Kwole, YK and I. Ahmad, 1999. “Benchmarking and
comparison of the task graph scheduling algorithms”,
I. Parallel Distrib. Comput., pp: 381-422.

. Zhao, H. and R. Sakellariou, 2004. “A Hybnd

Heurstic for DAG Scheduling on Heterogeneous
18th Parallel and Distributed
Processing Symposium, pp: 26-30.

Systems”, Proc.

