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Abstract: The performance of a decision making unit(DMU) can be evaluated in either across-sectional or a

time-series manner and data envelopment analysis (DEA) 13 a useful method for both types of evaluation.

Productivity growth is decomposed using a generalized Malmquist productivity index. Tn response to the

criticism that in most applications there is error and random noise in the data, a number of mathematically

elegant solutions to incorporating stochastic variations i data have been proposed. In this paper, we study

the Malmquist productivity index, that are the result of a stochastic process.
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INTRODUCTION

Data envelopment analysis (DEA) is a mathematical
programming technique, which 1s used to evaluate the
relative efficiency of decision making units (DMU5s) and
has been proposed by Charnes et al. [1] as the CCR
model, (the model by Banker ez al. [2] is usually referred
to as the BCC model). The original idea belund DEA was
to provide a methodology whereby, within a set of
comparable decision making units (DMUs), those
exhibiting best practice could be identified and would
form an efficient frontier. Furthermore, the methodology
enables one to measure the level of efficiency of non-
frontier units and to identify benchmarks against which
such inefficient units can be compared. The purpose of
the current paper 1s to using of the DEA for evaluating the
performance of multiple comparable Queueing. The
performance is inclusive identify efficiency, benchmarks,
returns to scale, ranking, sensitivity analysis.

Performance measurement 1s an inportant 1ssue for at
least two reasons. One 1s that in a group of units where
only limited number of candidates can be selected, the
performance of each must be evaluated in a fair and
consistent mamer. The other 1s that as time progresses,
better performance is expected. Hence, the umits with
declining performance must be identified in order to
make the necessary improvements. Hereafter, a unit to
be evaluated 13 referred to as a decision making umit

(DMU).

In addition to comparing the relative performance of
a set of DMUs at a specific period, the conventional DEA
can also be used to calculate the productivity change of
a DMU over time. Caves ef al. [3,4] proposed a Malmquist
productivity index (MPI) which calculates the relative
performance of a DMU at different periods of time using
the technology of a base period.Since the base period
used to defme the production technology affects the
results, several modifications for calculating MPI have
been proposed. The most popular method is the one
proposed by Fare et al. [5] which takes the geometric
mean of the MPIs calculated from two base periods. Later,
Pastor and Lovell [6] proposed a global MPI, based on a
technology defined by DMUs of all periods, to calculate
productivity changes.

An early criticism of DEA has been that it assumes
data to be determimstic. A distinction has been made in
the literature in that DEA-type approaches yield efficiency
measures, while statistical approaches (stochastic frontier
models) produce efficiency estimates (Horace and
Schmidt [7]). In other words, the DEA approach has been
deemed non-statistical [8, 9]. The many and varied
responses to this criticism have followed Timmer [10] in
introducing noise m the mput and output constraints.
One of the earliest of these responses mvolved the
development of chance constrained formulations of the
mathematical programs underlying the DEA problem in
order to accommodate stochastic varations m data, e.g.,
[11-19].
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In this paper, we offer using Data Envelopment
Analysis for evaluating the performance of Malmquist
productivity mdex for DMUSs, that are the result of a
stochastic process.

The remamnder of this paper has the following
structure: 1 section 2, we present the required
background. Section 3 introduces our method as a usage
of Malmquist productivity index, that are the result of a
stochastic process. Section 4 illustrates the proposed
method using an example. Finally, conclusions are given

i1 section 3.

Background

DEA Models: Data envelopment analysis (DEA) 1s a
method for evaluating efficiency of decision making
units (DMUs). Consider # decision making umts
DMU (G =12,..n), each DMU
levels x, (i=12..n) to produce output levels y,
(r=1,2,..5). The relative efficiency score of DMU,
under the CCR model is given by the following

corsuming 1nput

optimization problem:
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Where u and v represent vectors for the output and input
weights, respectively.

We point out that the DEA model (1) is equivalent to
the following linear program which is called the output-
oriented formulation for the CCR model:

Min v x,

stouy,=1

—vVX+4Y <0 (2)
wyz 0

Also, problem (1) can be converted to the following
linear program (LP), which 15 essentially the CCR model in
mput-oriented and envelopment form:

Min 8

F
<
5.t ;{,jxj < Ox,
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le,yj =y, (3)
J=1

Malmquist Productivity Index: We assume that for
each time period t=1...7, the production technology
S models the transformation of inputs, %, into
outputs, ¥, 8 = {(x'3"): Yeanproducey’t. Now, we the
DEA score @ of the period » DMU, measured by means
of the period k frontier, we denote it as D,%(x’,3). Then,
we have:

DYy = Min 0
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that, k] € {141}

Malmquist productivity index was illustrated by
Caves et al. [3, 4] and listed as follows:

B Dé(xf+1’)/[+l)
M )

In this formulation, technology in period ¢ 1s the
reference technology. The follow equation represents the
productivity of the production point (x'*',)/"") relative to
the production point (x,3). A value >1 will indicate
positive TFP growth from period ¢ to period £+ 1 and vice
versa.

Dé(xt+1,yf+1) y Dé“(x”l,y”l)
Dl D)
(6)

T‘E‘—-}jg (xf+1’yf+1’ xf’yf ) _ J

In the assumption of CRS, the above mndex can be
broken down imn to technological change (TECH) and
techmcal efficiency change (EFFCH) mdexes The
equation can be written as.

Dé(leJHl)x I Dé(leJHl) ] oty
2t ) vDéJrl(xtJrlJtJrl) Dé“(ﬁ,yf)

9

TFE, (forl,ytJrl,xt,yf):
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TFP, measures the productivity change between periods
t and t + 1. Productivity declines if 7FF < 1, remaimns
unchanged if 7FFP = 1 and improves if 7FFP > 1.

Stochastic DEA: We follow the notation in Cooper et al.

[12] and let and =i );j)T represent

= (T ey
(m »1) and (s * 1) random input and cutput vectors and x;
(Xt and y = (¥.,..py ) stand for the
corresponding vectors of expected values of mput and
output for each DMUj = 1,..n. That is, we utilize these
expected values mn place of the observed values 1n (3). See
Olesen and Petersen [17] for an alternate approach which
uses the means of a series of observations to obtain
confidence interval estimates.
Let us consider all input and output components to
be jointly normally distributed in the following chance
constrained version of a stochastic DEA model:

Min 0

s Pr{Zﬂ. S0%zl-0, i=1m,

I3

Pr{Ziij;U- P tzl-o, r=1,...,8, (8)
J=1

Az05=1..n

Here, Pr means Probability and « is a predetermined
number between 0 and 1. We now use this model to define
stochastic efficiency as follows.

Definition. (Stochastic Efficiency) DM, is stochastic
efficient if and only if for the optimal solutions & = 1.

Now, we show how to obtain the &, from
determimistic equivalents of the stochastic models
represented 1n (8). With normal distributions and zero
order decision rules we can obtain a deterministic
equivalent for (8) which can be represented by.

Min 8
52 Az, @ O Yao] (0,4 <0x,, i =1,....m,
=1
1((1)0?(1)2 Yios ¥ =15, &)

I3
leyrj,f(b
=1
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Where the x;, and y,, (including x ,and y ) are the means
of these variables. (these means are assumed to be
known). Here @ is the standard normal distribution

function and @7, its inverse, Finally,

(0] (0.40% = D7D A, M Covl(x,. %)+ 2(A, - 0)

Jrok#o
> A Covli,. &)+ (A, - 0) Var(x,)).
JEo
and
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Where we have separated out the terms for DMU.,. Thus,
#" can be determined from (9) where the data (means and
variances) are all assumed to be known.

Because of the functional forms of Gi[ @4 and g0z,

it 1s obvious that models (9) 18 non-linear programming
problem. Tet “’il and % be non-negative variables.
Replace of(ﬂ,l) by “’zl and 22y by ¢ m (9) and add
two quadratic equality constraints, (“’i] y2 =(Ui1 (6,42 and
(" = (@@ (ap? . to (9), then (9) is transformed to easily

solvable quadratic programming problems.

To sunplify matters in a different mamer let us
assume that only DMU, has random variations in its
inputs and outputs, i.e., 61_1; 20> 62 20, gi —p and g?_g

{7 # 0) for all  and ». In this case, model (9) can be written.
Min 0
st Zﬂ. xy <@, i=1....m,

ley;jzy}o, r=1,...,5, (10)
J=1

2, = x5, 7(13_1(05)6{:,, i=1...,m

P . .
Xy T X, f# 0, =1.....m,

P -1 2} _
Yio = Vro— @ ()0, r=1,....8
y',J,- =ypjEor=1..s,

With these assumptions model (10) is the deterministic
equivalent of stochastic model (8).
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Malmquist Productivity Index with Stochastic Data:
We assume that for each time periods=1,..,7 and let

o gt # T and gt =t T represent random
xj, (xlj,...,xmj) yj ylj J/‘j) P

input and output vectors and :(xi‘ < 37 and

s )
3’]_(3’1 . J’g;)T stand for the corresponding vectors of
i

expected values of input and cutput for each DAL j =
1,....,n of the period t. Now, we the DEA score 8 of the
period [ DMU, measured by means of the period &
frontier, we denote itas pf ;%) . Then, we have:

DEE Y =Min 6
Sii o oA <0, i m
gz XU I Lias ,..., -

I3
leyig,fq)?(a’)G?’k(l)zyio, r=1,...,5 (13)
=1

Az0, j=1..n

that, k, I € {tt + 1}. Here, @, is the standard normal
distribution functien of the period  and @, ', its inverse,
Finally,

(@ (080" = 3 D A, Con. ) + 2R - 0)

J;top;to

S, Cov(&E, &)+ (A, — 0 Var(Z),

JEo

and

(07 (AP = DS A, Covl§, )+ 20k, — 1)

izo j2o
> A Covi i, 51+ (A~ 1 Var(Fh, ),
I#o

Which, in section (2.3) have described the computational
scheme.
Then, Malmquist productivity index listed as follows:

Dé (5:”1, }-}Hl)

t_ a4
DL
and
rem L ’Dr(~t+1 ~x+1)X e a _
ohist o 5
Dr(~r+1 ~t+1 IDé(frH,jHl) ] Df?(f,jf)
05 NEELF 5 15)

TFP measures the productivity change between periods
t and ¢t + 1. Productivity declines if 7EFP < 1, remains
unchanged if 7FP =1 and improves 1f 7FP > 1.

Numerical Example: Here, we present one example.
Suppose we have two tune periods ¢ = 1,2 and Consider
six decision making units DA, (f = 1,2,..,6), each DMT],
consuming two random input vectors fff ¢ =1,2) to produce

two random output vectors i r=1,2)-
7 ’

Table 1 presents means, variances for the input and
output vectors of DMUs in two time periods = 1,2.

Based on (9-10) and (13-14), the adjusted mput and
output for DMUs is presented and the results of
Malmquist productivity index with stochastic data are
shown in Table 2, which are the adjusted score explained
in Section 3 for & = 0.05 and & = 0.01.

Regarding the performance improvement, the values
in the last columns of Table 2 present that for ¢ = 0.05 two
DMUs, A and C, have TFF > | that means they declines.
DMU D, has 7FP = 1 that means it remains unchanged.
The average TFP of the six DMUs 1s 0.958. Hence, in
general, the performances of the six DMUs have declined
after the reorganization.

Table 1: The means, variances for the random input and output vectors of DMUs in two time periods = 1,2.

DMU input 1 input 2 output 1 output 2
A 4.5 (L.2) 3.2 (1.2) 3.5 (1.6) 4.5 (1.2)
3.4 (2.5) 2.3 (0.5) 2.4 (L5) 3.3 (1.5)
B 3.5 (1.2) 3.8 (1.3) 3.7 (L.2) 2.5 (0.4)
4.4 (2.5) 34 (1.5) 3.4 (1.5) 3.6 (1.7)
c 14 (0.4) 55 (2.4) 4.5 (1.6) 34 (L6)
53 (1.3) 64 (2.3) 52 (2.5) 3.6 (1.5)
D 3.3 (1.5) 4.5 (1.5) 43 (1.4) 3.5 (1.2)
3.5 (2.6) 4.5 (2.3) 5.2 (1.6) 54 (2.3)
E 4.3 (L.2) 6.5 (1.8) 3.3 (1.4) 4.7 (1.3)
53 (1.2) 4.7 (1.9) 53 (2.1) 6.4 (2.3)
F 53 (L.6) 3.6 (1.8) 4.5 (1.6) 5.4 (1.8)
5.3 (L.6) 6.4 (2.5) 54 (1.5) 5.4 (2.3)
1

.o means, (.): variances, - =

(%

[
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Table 2: The results of Malmquist productivity index with stochastic data for = 0.05 and ¥ = 0.1

DMU o =0.05 x=0.1 Result for o 0.05 Result for o 0.1

A 1.20 1.10 Improves Improves

B 0.90 0.85 Declines Declines

C 1.10 1.10 Improves Improves

D 1.00 0.95 Unchanged Declines

E 0.80 1.00 Declines Unchanged

F 0.75 0.70 Declines Declines

CONCLUSIONS 5. Fare, R., G. rosskopf, M. Norris and Z. Zhang, 1994.
Productivity growth, technical progress and

Malmquist Productivity Index (MPI), based on DEA, efficiency change in industrialized countries.
15 used to measure the performance changes over time. American Economic Review, 84: 66-83.

The Malmqust Productivity Index allows us te 6. Pastor, I.T. and C.AK. Lovell, 2005, A global

distinguish between shifts in the production frontier Malmquist productivity index. Economics Letters,

(technological change) and movement of departments 88 2606-271.

nearer the frontier (efficiency change). 7. Horace, W.C. and P. Schmudt, 1996. Confidence
However, since DEA does not account for statistical statements for  efficiency  estimates from

noise, estimates of efficiency will be biased when stochastic frontier models. J. Productivity Analysis,

stochastic elements are a prominent feature of the true 7 257-282.

production process or the variables used mn the analysis 8. Banker, RD., 1996. Hypothesis test using data

are measured with error. So, m this paper, we study the envelopment analysis. J. Productivity Amalysis,

Malmquist productivity index, that are the result of a 7(1): 39-59.

stochastic process. 9. Gong, B.H. and R.C. Sickles, 1992. Finite sample

evidence on the performance of stochastic frontiers
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