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Abstract: Locating the critical slip surface with the minimum factor of safety of a slope 1s a difficult NP type

optimization problem. In recent years, some modern global optimization methods have been developed with

success in treating various types of problems, but very few of these methods have been applied the

geotechnical problems. In this paper an ant colony optinization algorithm has been used to solve this

complicated problem which is known as one the most important problems in geotechnical engineering. The
proposed algorithm is demonstrated to be efficient in solving complicated problems with a high level of

confidence.
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INTRODUCTION

An essential step m the design of earth dams and
road embankments 15 the design of stable slopes for such
structures. In practice, an experienced engineer selects an
mitial geometry for a proposed embankment dam or road
embankment according to site conditions, material
properties and external load conditions. A stability
analysis is then performed to evaluate the safety of the
slopes under various loading conditions. The safety of a
slope is expressed in terms of the factor of safety and the
limit equilibrium approach has been the most popular
method for computing this factor. It makes use of the
plastic limit theorem of solid mechanics to analyze the
stability of a given mass of soil under the assumption that
the mass will fail along a potential slip surface. The safety
factor is expressed as a ratio of restoring forces to
disturbing forces. In analyzing a problem as part of a
design process, a number is usually determined as an
acceptable mimimum value for the factor of safety, usually
ranging between 1.0 and 1.5 depending on loading
conditions and reliability of the soil parameters used in
the calculations. The use of the limit equilibrium method
for earth dams and road embankments requires the
selection of trial failure surfaces in order to locate the
minimum factor of safety. The process of identifying the
failure surface with the lowest factor of safety 1s

traditionally performed by manual control of analysis
programs, or by a brute force approach in which very
many surfaces are defined and analyzed automatically [1].
Altematively, various classic optimization methods have
been considered in the literature for locating the critical
slip surface in slope stability analysis by limit equilibrium
methods. Baker and Garber [2] used the variation method,
which was later questioned by Luceno and Castillo [3]
who concluded that their variation relation was incorrectly
formulated. Celestino and Duncan [4] and Li and White [5]
used the alternating variable method for locating the
critical noncircular failure surface in slope stability. This
method was also disapproved as it became complicated
even for simple slope stability problems. Baker [6] used
dynamic programming to locae the critical ship surface
using Spencer’s [7] method of slope stability analysis.
Other methods such as the simplex method, steepest
descent and Davidson-Fletcher-Powell (DFP) method
have also been considered in the literature [8-10]. Cheng
et al. [11] pointed out at least two broad demerits for the
above mentioned classical methods of optimization for
slope stability analysis: (1) Classical methods are
applicable mainly to continuous functions and are limited
by the presence of the local minimum; (2) The global
minimum  within the solution domain may not be given
by the condition the gradient of the objective function
Vf = 0. To the above two mentioned drawbacks, one may
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also add that many classical optimization methods usually
rely on a good mmutial estimate of the failure surface in
order to find the global minimum, which is often difficult
to estimate for the general case. With the advent of fast
computers, modern heuristic optimization based
techniques have been developed to effectively overcome
the drawbacks and limitations of the classical optimization
methods in searching for the critical slip surface in slope
stability analysis. In heuristic optimization, the solution is
found among all the possible ones and while there is no
guarantee that the best solution 1s found, solutions close
to the best is often obtained quite effectively. Monte -
Carlo based techniques have been successfully adopted
for slope stability analysis through limit equilibrium
methods. This method is essentially a randomized hunt
within the search space and finding the lowest factor of
safety becomes a matter of pure chance. Greco [12] and
Malkawi et al. [13, 14] used random walk type Monte-
Carlo techmque for locating the critical factor of safety in
a slope. Monte Carlo based methods are simply structured
optimization techmques, m which large numbers of
random trial surfaces are generated to ensure that the
mimmum factor of safety 1s found. This 1s advantageous
in that the possibility of finding a failure surface which is
different from what the designer originally expected will be
greater if the search space 13 not too tightly defined.
However, the process involves the analysis of a large
number of solutions, whereas the method does not
guarantee the location of the minimum factor of safety.
Fuzzy logic has also been used for locating the critical
failure surface several simple slope stability problems
[15-17]. Metaheuristic optimization algorithms have
evolved rapidly in the past years. These algorithms drive
some basic heuristic in order to escape from local optima.
Metaheuristic implies that low-level heuristics m the
global optimization algorithm are allowed to obtain
solutions better than those they could have achieved
alone, even if iterated. The heuristic approach 1s usually
controlled by one of two general mechanisms: (1)
Constraining or randomizing the set of local neighbor
solutions to consider in the local search; (2) combining
elements taken by different solutions. Many metaheuristic
algorithms have been developed m recent years which
loosely imitate natural phenomena. The simulated
amnealing method [18] which is based on the simulation of
very slow cooling process of heated metals is perhaps
one of the first methods used for the location of the
critical failure surface in slope stability analysis. Cheng
[19] applied the mentioned algorithm to slope stability
analysis. The Genetic Algorithm (GA) developed by

Holland [20] is one of the most popular metaheuristic
methods used m slope stability analysis and 1s based on
the concepts of genetics and evolution of living creatures.
The optimum solution in GA evolves through a series of
generations. Genetic algorithm-based solutions have been
reported in the literature by Zolfaghan et af. [21],
MacCombie and Wilkinson [1] and Sengupta and
Upadhyay [22], among others. Particle swarm optimization
(PSO), first developed by Kennedy and Eberhart [23], 1s
another method which has attracted attention in slope
stability analysis in recent years. As described by
Cheng et al. [24] who successfully applied the method
and a medified form of the algorithm, modified particle
swarm optimization (MP3SO), to locating the critical non-
circular failure surface in slope stability analysis, PSO is
based on the simulation of simplified social models, such
as bird flocking, fish schooling and the swarming theory.
Cheng et al. [25] also used the fish swarm algorithm for
determimng the critical shp surface m slope stability
analysis. Other methods include the harmony search
algonthm (Geem et al. [26], Lee and Geem, [27]) which 15
based on the musical process of finding the state of
perfect harmony, Tabu search (Glover [28]) and the leap-
frog algorithm by Bolton ef al. [29].

This paper describes the application of ant colony
optimization (ACQ) for locating the critical failure surface
in slope stability analysis. The ant colony algorithm
(ACA) was originally mspired by the behavior of real
Dorige [30] first developed ant ACO and
successfully applied it to the travelling salesman problem
(TSP). Several variations of the ornginal ACA including
ant system (AS) [30], elitist ant system (ASelite) [30], max-
min ant system (MMAS) [31-33] and ranked ant system
(ASrank) [34, 35] have been introduced recently. ACO has
enjoyed important

ants.

success 1 various flelds of
engineering. Despite its success, however, the method
has found little success in geotechnical engineering
applications. As a frontier in application of modem
metaheuristic optimization algorithms to slope stability
analysis, Cheng etal [11] have evaluated the performance
of six heuristic global optimization methods in the location
of critical slip surface m slope stability analysis, including
ACA. As mwestigated by Cheng et al [11], ACO
performed efficiently for simple problems, while relatively
poor performance was observed in cases where soft
bands existed in the problem. Tt was also mentioned that
all six methods studied, 1.e. simulated annealing, genetic
algorithm, particle swarm optimization, simple harmony
search, modified harmony search, tabu search and ant
colony algorithm could work efficiently and effectively
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provided that the domain transformation technique as
suggested by Cheng [19] is adopted in the optimization
algorithms.

Despite the wvaluable information provided by
Cheng et al. [11] regarding the performance of ACO in
locating the critical failure surface, a further assessment of
the various ACAs seems necessary before a general
conclusion can be derived on the performance of ACO in
slope stability analysis. In this paper, the authors have
investigated the application of ant colony algorithms, for
locating the critical non-circular failure surface in limit
equilibrium slope stability analysis. Janbu's simplified
method is used for calculating the factor of safety of the
non-circular failure surface, while Bishop's simplified
method was adopted for the simple circular failure surface.
The performance of this algorithm mentioned above is
evaluated through several illustrative examples.

Generation of Trial Slip Surfaces: Several methods exist
for the generation of trial slip surface in slope stability
analysis. The slip surface generation method developed
by Zolfaghari et al. [21] was used in this study, since it
contains simple control variables which can easily be
introduced into to the ACA. Consider the non-circular
failure surface for the slope shown in Fig. 1. The non-
circular failure surface is formed by a series of lines, each
having a slope related to the slope of the previous line,
connected to form a failure surface beginning from point
A and ending at point B. Point A is first chosen randomly
and is specified by coordinates X1 and Y1. The slope of
the first line at point A, af,, is determined randomly in the
vicinity of the Rankine failure angle range. Since the
Rankine failure angle is 45 + ¢/2 to the horizontal plane,
af, will be 45-¢/2. Therefore a soil having ¢ ranging
between 0-30° would have of] in the range of 30-45°. The
slope of the rest of the line components comprising the
failure surface, Aaf), is then calculated randomly in a
reasonable range of 0-15°, as suggested by Zolfaghari
et al. [21]. In order to effectively form the failure surface
by these lines of varying «f, Zolfaghari et al. [21]
suggested that Aaf, be grouped into different categories
of different slopes, including rapid slopes lines (of]
between 5° and 15°), gentle lines (a.f; between 0° and 5°)
and lines with very gentle slopes (af, between 0° and 3°).
Since the ACA used in this study for locating the critical
non-circular failure surface is a meta heuristic optimization
method which will explore the search space in a random
nature, additional constraints need to be introduced
to the method described above in order to prevent the
ACA from tending towards unrealistic failure surfaces.

/M afi=of1
of2=0f wACE2
of =of 2-Acfs

ohi=270+af1
Che=270+0f2
ah=2704afs

0u=360-ah)
0u=360-0
0=360-0ths

G«

X
Fig. 1: Generation of admissible nonlinear failure surface

Four conditional constraints were introduced in the
present study:

e Ax > a, where a is the horizontal distance between the
crest and the toe of the slope. This constraint
ensures that only general slip surfaces are
considered and that very shallow slip surfaces are
omitted.

¢ Y, > 0, Where Yi is the y-coordinate of the endpoint
of the i-th line comprising the failure surface. By
specifying this constraint, failure surfaces which tend
to intersect the base of model are banned.

¢ X, < b, In which b is the x-coordinate of the far most
right-hand line of the problem. This constraint
ensures that the failure surfaces terminate in the
downstream of the slope considered in the analysis.

¢ FS < 10, Which allows the algorithm to discard failure
surfaces with very high safety factors, speeding the
process of searching for the critical failure surface.
Any failure surface which violates the above stated
constraints is heavily penalized by giving it a very
high safety factor of 1000, reducing its chances of
being considered in the consequent search pattern of
the ACA.

Once an admissible failure surface is formed, the
safety factor of the slope can be calculated using the
following equation representing Janbu's simplified method
[36]:

1
tang'sina
ES

FS tang'+ ¢'.b |cosa (])

fo =| (7 — ub)

Zw tan o oS0+

Review of Ant Colony Optimization Algorithms: The
basic idea of ACO, inspired by the behavior of real ants,

is to use artificial ants to search for good solutions of a
combinatorial optimization problem. ACO is therefore a
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Fig. 2: Graph representation of the search space in ACA

metaheuristic in the sense that the absolute optimum
solution is not found, but good solutions practically close
enough to the optimum are found. Real ants coordinate
their activities through stigmergy, which is a form of
indirect communication [37]. Specifically, in the search for
food, ants deposit chemicals along the path they travel
which is recognized by other ants and will increase the
probability of the path being followed by other ants of the
colony. The chemical is called Pheromone [37] and it
plays an important role, both, in the life of real ants and in
the ACAs which are inspired by the behavior of real ants.
The basic steps in ACO can be briefly stated as follows.

¢ Construct a graph of the problem. Any optimization
problem to be solved by ACO is first discretized into
a graph, the components of which include the
variables in the search space. In the case of locating
the critical failure surface, as shown in Fig. 2, this
step involves dividing the two dimensions in the x
and y direction into m and n discrete subdivisions,
respectively. The resulting graph will have m
columns, each column consisting of » nodes.

¢ Define the objective function and the restraints:
When locating the critical slip surface, the objective
function is the factor of safety, i.e. the function to be
optimized. Also, some restraints are placed on the
variables in this stage in order to ensure that
admissible failure surfaces are found. The number of
ants to participate in searching for the optimum, as
well as the number of iterations for solving the
problem are also specified in this step (Every time all
the ants have finished moving on the graph, an
iteration is said to have been completed).

¢ Move artificial ants on the graph in order to
construct admissible solutions to the problem: In this

Slope suface

Graph components

NS
m subdivisions

step, artificial ants placed on the initial point start
moving on the grid from left to right, randomly
selecting a node on each consecutive column in
order to build incremental solutions to the problem
under consideration. In locating the critical failure
surface, ants move from the crest of the slope
towards the toe, following the rules described in
section two above. Each time an ant reaches the
downstream of the slope, a failure surface is formed.
The more ants placed on the grid, the more failure
surfaces are produced and the higher the chances are
that the best solution is approached. Fig. 2 shows the
paths that two ants have taken on the graph, i.e., two
admissible failure surfaces that have been formed.

In selecting the nodes of a column to move to, the
probability of an ant selecting the j-th node of the i-th
column is described by the following relation:

T -
=t 2)
LN Z,z-l’/

In Eq. 2, 7, is the sum of the pheromone placed on
node (i, j) from previous iterations. In the first iteration, all
nodes have an equal pheromone of 7o’ and therefore in
the first iteration, all nodes have an equal chance of being
selected by the ants. This simple equation indicates that
the probability rule is related directly to the amount of
pheromone deposited on a path.

e Evaluate the solutions obtained by each ant in the
first iteration: Once all the ants complete the first
iteration, the objective function f is calculated for
each path (slip surface). The objective function here,
as mentioned previously, is the factor of safety.
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Next, pheromone is deposited along the trail which
each ant has chosen in forming an incremental
solution. The amount of pheromone deposited on
each node 1s reversely related to the objective

function of the path being considered, 1.e. T:% As

the rule states, the lower the objective function
(factor of safety) of a path (slip surface). The more
pheromone will be deposited on the components of
the path.

* Update the pheromone value of each node in the
graph: After calculating the pheromone value of
every node for the present iteration, the updated
pheromone value of each node is obtained through
the following relation:

LD =0 -pn () +Ar)0 3

In which At is the difference between the deposited
pheromone m the present iteration and the previous
iteration, T,(¢+ 1) is the updated pheromone value and
(1 — p) is the evaporation index which is between zero and
one. Pheromone evaporation is a useful form of forgetting,
preventing the algorithm from rapidly converging towards
local optima. The term (1— p) thus determines how much
of the pheromone accumulated from previous iterations is
evaporated.

¢ Repeat steps 111 through TV in the next iterations in
order to reach the optimum solutiorr in the next
iterations, the decision making process of the
artificial ants is no longer completely by chance; as
stated by Eq. 2, nodes with more pheromone have a
higher chance of being selected by the ants. After
each iteration, pheromone values are updated and
some pheromone is evaporated. The combined action
of pheromone deposition and evaporation enables a
constant exploration of the search space towards a
global optimum m ACO.

The above discussed four algorithms were employed
m the present study in searching for the critical failure
surface in slope stability analysis. The implementation
procedure s described mn the next section, followed by

some illustrative examples to evaluate the performance of
the algorithms.

Implementation of ACO in Slope Stability Analysis and
Numerical Examples: The basic components of ACA
applied to the problem of locating the critical failure

Imtialize the input parameters: slope
geometry, soil parameters, water table,
afy Aef, . number of ants and iterations

v

Represent the problem in graph form, deposit initial
pheromone on each component of the graph

v

Place ants on the start point and allow each ant to move on
the graph to produce admissible solution; ants move back
to the begin point once a solution has been produced

v

Update the pheromone value deposited on each
component of the graph based on evaluation of the

v

One iteration has been completed; proceed to the next
iteration until the total prescribed numbers of iterations
have been achieved

v

The graph is evaluated and the nodes with the highest
pheromone deposited are determined; the failure surface
with the lowest factar of safety is thus found

Fig. 3: Basic components of the ACA flowchart

surface 1s shown as a flowchart m Fig. 3. The algorithm
initiates with reading the set of variables [X,,af|Acf] and
[X..af Aaf] for circular and non-circular failure surface,
respectively and terminates when all the ants have
participated in searching the solution space in the mumber
of iterations specified. The aim of the present study was
to assess the ability of the four aforementioned ACAs in
locating the critical failure surface in slope stability
analysis. Several previously published examples were
chosen in order to compare the results of ACAs with
other  methods  reported in the literature. The
effectiveness of a global optimization method in locating
the critical surface relies on its ability to escape local
minima [24]. In choosing the examples discussed herein,
attention was given to cases where layers of soft soil exist
within the stratification, which makes it more challenging
for the optimization algorithm to identify the precise
location of the critical failure surface. Comparison has
been made between the four ACO algorithms in terms
of both, accuracy as well as efficiency of the results.
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Fig. 4: General layout and specifications of example 1
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Fig. 5: Failure surfaces from AS, ASelite, ASrank and MMAS for example 1

The efficiency of an ACO algorithm was evaluated by
means of the number of cycles, defined as the product of
three terms: the number of ants, the number of iterations
and the number of runs. For example, if 10 ants were used
to produce solutions in 5 iterations and the problem was
solved 3 times, a total of 150 cycles are generated. This is
loosely comparable with the number of objective function
evaluations, denoted as NOF by Cheng et al. [24].

The first example considered is taken from
Zolfaghari et al. [21] and represents a simple case of a
homogeneous soil slope with physical and mechanical
parameters defined in Fig. 4. This example was chosen in
order to evaluate the efficiency and accuracy of different
ACA's algorithms in locating the critical failure surface in
simple problems where strong local minima do not exist.
As depicted in Fig. 4 Zolfaghari et al. [21] calculated the
circular factor of safety of the slope by means of Bishop's
simplified method and by employing Simple Genetic
Algorithm (SGA), as 1.74. The Problem was solved using
the four previously discussed ACA's and the resulting
critical failure surface obtained by each algorithm is drawn
in Fig. 5. The factor of safety obtained by each algorithm
is also tabulated in Table 1. This very simple example was
chosen to illustrate that even with the simplest problems,

Table 1: Results for example 1 (Bishop's simplified method)

Optimization Algorithm Minimum factor of safety NOFs (total)

AS 1.754 400
ASeie 1.745 400
AS, ik 1.740 100
MMAS 1.740 200
SGA by Zolfaghari et al. [21] 1.740 N/A

the AS is weak at finding the critical factor of safety,
compared to the other algorithms. Moreover, a graph of
the number of cycles against the factor of safety for this
problem is drawn in Fig. 6, suggesting that AS is not
efficient in searching for the optimum solution, compared
to the other ACO algorithms. The authors attribute this
behavior to the fact that in the pheromone depositing
process, AS does not support the optimum solutions.
Therefore, it seems critical to point out that in order to
properly assess ACO in solving geotechnical optimization
problems such as locating the critical failure surface in
slope stability, it is necessary to evaluate at least several
of the available ACAs before deducing a general
judgment. In the consequent examples, more complicated
problems are considered to further evaluate the
performance of the ACAs.
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Fig. 6: Comparison of the efficiency of the ACAs
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Fig. 8: Critical failure surface predicted by different ACAs
for example 2

Example 2 is also taken from Zolfaghari et al. [21] and
presents a case of relatively complex soil layering with a
weak soil layer within the stratification. The problem
geometry and soil conditions are presented in Fig. 7.
Layer 3 in this example is a weak layer and it is expected
that the critical failure surface moves within this layer. For
this example Zolfaghari et al. [21] calculated the critical
factor of safety for a circular failure surface using Bishop's
simplified method as 1.475. The problem was solved using
the four ACAs discussed in this paper and the critical
failure surface of each algorithm is depicted in Fig. 8.
Table 2 lists the minimum factor of safety obtained by
each algorithm. As evident from Fig. 8, the critical failure

Table 2: Results for example 1 (Bishop's simplified method)

Optimization Algorithm Minimum factor of safety NOFs (total)

AS 1.615 400
ASgie 1.491 400
ASun 1.425 100
MMAS 1.425 200
SGA by Zolfaghari et al. [21] 1.475 N/A
40
Y(m) - =
" Istlayer . ~
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" . 3rd layer 7 12 3 )
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) .
0 20 40 60 X (m) 80 100

Fig. 9: Geomertical layout and material properties for
example 3

surface of MMAS, ASrank and ASelite are similar while
AS predicts a critical failure surface that deviates from the
other algorithms. Comparison of the minimum factor of
safety obtained by the four algorithms also reveals that
MMAS is most effective while AS once again shows a
poor performance. Moreover, the results suggest that
MMAS and ASrank algorithms are even more effective
than the SGA.

The first two examples considered involved circular
failure surfaces using Bishop's simplified method. In the
next two illustrative examples, a noncircular failure surface
is considered using Janbu's Simplified method of analysis
for locating the critical failure surface. Both examples will
involve zones of weakness which presents difficult
optimization situations in slope stability analysis. The
problem geometry, soil properties and the results obtained
by different optimization methods for the two mentioned
problems are presented in this section.

The third example considers a slope including layered
soil with geometrical configuration and properties shown
in Fig. 9. The second layer is a soft layer overlying a hard
layer as shown in the figure. The problem was analyzed
by Arai and Tagyo [38] using conjugate gradient method
and several researchers have used this example in
evaluating the efficiency of their proposed method in
locating the non-circular critical failure surface, some of
which include Sridevi and Deep [39] who used RST-2
method, Greco [12] and Malkawi et al. [13] who used
Monte Carlo methods and Cheng et al. [24] who
employed particle swarm optimization (PSO) and
modified particle swarm optimization (MPSO) methods.
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Table 3: Results for example 1 (Bishop's simplified method)

Optimization Algorithm Minimum factor of safety NOFs (total)
AS 0.4130 15000
ASaie 0.4110 7600
AS 0.4000 38000
MMAS 0.3970 38000
Conjugate gradient 0.4050 N/A
RST-2 0.4010 N/A
Monte Carlo 0.3880 N/A
Monte Carlo 0.4010 N/A
PSO 0.3944 29877
MPSO 0.3963 14832

0, AS
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—a— MMAS -

20

10 T
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0 20 40 0 X(m) 80

Fig. 10: Critical failure surface predicted by different
ACAs for example 3
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Fig. 11: Critical failure surface predicted by different
ACAs for example 3

In the present study, the problem was solved by means of
the four ACAs under consideration, i.e. AS, ASelite,
ASrank and MMAS and the results are compared with
those available from the literature. Fig. 10 shows the
critical failure surface obtained by each of the algorithms
and Table 3 lists the minimum factor of safety of the
ACAs as well as those from previous studies. Careful
evaluation of the failure surface developed indicates that

a greater portion of the failure surface developed by AS
and AS,;. pass into the first, stronger layer while the
failure surface of AS,, and MMAS cut less into this
layer. It is expected that a lower factor of safety would
result if the failure surface was to move completely into
the second layer. Cheng et al. [24] mentioned that the
failure surface developed by PSO and MPSO were
able to move fully into the weak layer at the right
end. Table 3 shows the NOFs required by different
methods in order to reach the optimum solution.
Comparison of PSO, MPSO and the ACAs indicates
that among the ACAs, AS,,, and MMAS are particularly
efficient and are generally comparable with PSO,
but are relatively less efficient compared to MPSO.
Fig. 11 shows the convergence rate of the four ACAs
employed. The graph shows that the four algorithms
are very similar in efficiency for this example, all
converging at a rapid rate to their optimum solution. The
results presented for this example were achieved after
many initial runs, in which the number of ants, iterations
and iterations were varied in each run and the most
efficient combination was selected for each algorithm. The
sensitivity of the results to the mentioned parameters was
found to be very high. The improved convergence rate
observed in Fig. 11, compared to Fig. 6, is perhaps due to
the mentioned sensitivity analysis performed, suggesting
that the success rate of ACAs is dependent partially on
selecting appropriate of the
aforementioned parameters involved in the number of
cycles. Once again, the success of AS,,; and particularly
MMAS is attributed to the fact that these algorithms
effectively support the best solution in their pheromone
deposition process. In general, the solutions of MMAS
and AS,,, are believed to be satisfactory in the examples
considered.

combinations three

CONCLUSIONS

This paper dealt with the evaluation of the
effectiveness and accuracy of ant colony optimization
(ACO) algorithms in locating the critical failure surface
and the corresponding minimum factor of safety. Four ant
colony algorithms were studied, including ants system
(AS), elite ants system (ASelite), ranked ants system
(AS,,,) and maximum-minimum ants system (MMAS).
Several illustrative examples were considered in order to
evaluate the performance of the four mentioned
algorithms. The following conclusions were drawn from
the results of this study:
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The failure surface generation algorithm affects the
results obtained by the metaheuristic optimization
methods. The Failure surface generation algorithm
suggested by Zolfaghari et al. [21] was found to be
effective for simple circular failure surfaces. However,
m the case of noncircular failure surfaces, particularly
m problems where weak soil layers exist, the
mentioned algorithm shows poor performance. For
such problems, the method proposed by Cheng et al.
[11] is suggested.

The illustrative examples showed that all ant colony
algorithms acceptable
performance  for invoelving

showed an
problems

discussed
simple
homogeneous soil slopes. The MMAS algorithm and
the AS_, performed better than the two other
algorithms, with the AS showimg the poorest
performance.

For complex problems involving layers of weak soil,
AS performed poorly, while MMAS was able to
generate relatively acceptable results. The success of
the ACAs, however, was generally limited to the
effectiveness of the failure surface generation
method used, ie, the method proposed by
Zolfaghari et al. [21]. Tt is believed that MMAS
would be able to perform much better if it was used in
conjunction with the failure surface generation
algorithm suggested by Cheng et al. [11].

The performance of the ACAs was found to be
affected by the number of ants, iterations and runs
used to produce the results. It 15 suggested that
ACAs be employed only after careful sensitivity
analysis, taking into account the effect of the three
mentioned parameters on the results.
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