Identification and Characterization of Two Novel Antimicrobial Compounds from *Jasminum grandiflorum* L.

J.D. Bhosale, Mangesh Khond, T.K. Mandal, R.S. Bendre, and Rajesh Dabur

1National Research Institute of Basic Ayurvedic Sciences, Central Council for Research in Ayurveda and Siddha, Nehru Garden, Kothrud, Pune-411038, India
2School of Chemical Sciences, North Maharashtra University, Jalgaon, India

Abstract: *Jasminum grandiflorum* L. is described in Ayurveda to treat several diseases such as ulcer, stomatitis, gingivitis and skin disease. Leaves are used to apply locally as in single or compound formulation in Leprosy (Kushta roga- Skin disease). In the present study, extracts of *Jasminum grandiflorum* L. leaves in various solvents were screened for antimicrobial activity using micro broth dilution assay against microbial strains. Chloroform extract was found to display activity in the range of 1.56 to 25.0 mg/ml. In bio-assay four compounds of different Rf values exhibited specific antimicrobial activities. Compound having Rf value 0.21 exhibited activity against *Klebsiella pneumoniae* and *Staphylococcus aureus*. Compounds at Rf value 0.50, 0.63, 0.79 and 0.87 exhibited specific activities against *Escherichia coli* and *Salmonella typhi* respectively. Bioassay-guided fractionation of chloroform extract leads to identification of two new antimicrobial compounds namely 3,5-Dihydroxy-2,4-dimethyl-hexanoic acid 4-hydroxy-phenyl ester (JHF-1) and 2-Hydroxymethyl-3-methyl-butyric acid phenyl ester (JHF-2) at Rf values 0.214 and 0.50, respectively. Study revealed the importance of use of plants extract over individual isolated compounds. Furthermore, the study of mechanism of action of these compounds may lead toward the identification of specific bacterial targets.

Key words: *Jasminum grandiflorum* L. · Antimicrobial · 3,5-Dihydroxy-2,4-dimethyl-hexanoic acid 4-hydroxy-phenyl ester · 2-Hydroxymethyl-3-methyl-butyric acid phenyl ester

INTRODUCTION

Medicinal plants play a vital role in alleviating human sufferings. About 80% of individuals from developed countries use traditional medicines, which are derived from medicinal plants. A wide variety of medicinal plants has been described an ancient science of India, in Ayurveda and a large number is still unexplained. Therefore, such plants should be investigated for better understanding of their properties, safety and efficacy and for a search of new potent antimicrobial compounds [1]. *Jasminum* is a genus having about 200 species and some of these species are known for medicinal values in Indian system of medicine. *Jasminum grandiflorum* L. from Oleaceae commonly known as Spanish jasmine, Royal jasmine, Catalan jasmine, among others (chameli in Hindi) is a species of jasmine native of South Asia. The plant is mentioned as the name of Jati and some places as Swarmjati. In classical texts of Ayurveda leaf of Jati is described in many places in different disease such as ulcer healing and in stomatitis, gingivitis. Leaves are applied locally as in single or compound formulation in Leprosy (kushhta roga- Skin disease) including dermatitis, leucoderma (kila), ring worm (dadru), scabies (pama) [2-4]. *Jasminum grandiflorum* L. is a least explored shrub described in literature of Ayurveda for its healing properties. The Ethanolic leaf extract of *Jasminum grandiflorum* L. has been reported to have antulcer and antioxidant activities. The antiulcer activity, may be attributed through its antioxidant mechanism of action [5]. Literature suggests the use of this plant as a diuretic and spasmylytic agent, which is given during childbirth [6, 7]. However, detailed information on chemical constitution of such an important plant is not available. The leaves are reported to possess ascorbic acid, anthranilic acid and its glucosides, indole oxygenase, alkaloid jasmine and salicylic acid [8]. The main odorous components present in Indian oil samples have been reported to be; benzyl acetate, benzyl benzoate, phytol, jasmine and methyl jasmonate. Whereas, other species of the genus are reported to have flavanone glucosides, secoiridoid glucosides and alkaloids [9].

Corresponding Author: Rajesh Dabur, National Research Institute of Basic Ayurvedic Sciences, Central Council for Research in Ayurveda and Siddha, Nehru Garden, Kothrud, Pune- 411038, India, Tel: +91-20-25383128.
In the present study, various extracts of *Jasminum grandiflorum* L. were screened for their antimicrobial activity against twelve microbial strains viz. *Enterobacter aerogenes*, *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, *Salmonella typhi*, *Staphylococcus aureus*, *Aspergillus flaveus*, *Aspergillus fumigatus*, *Aspergillus niger*, *Candida albicans* and *Saccharomyces cerevisiae*. Bioassay resulted in the identification of two novel antimicrobial compounds, 3,5-Dihydroxy-2,4-dimethyl-hexanoic acid 4-hydroxy-phenyl ester (JHF-1) and 2-Hydroxymethyl-3-methyl-butric acid phenyl ester (JHF-2) at R_v values 0.214 and 0.50 respectively.

MATERIALS AND METHODS

Plant Collection: Leaves of *Jasminum grandiflorum* L. were collected from NRIAS, Nehru Garden, Kothrud, Pune. Plants were identified by Dr. T. K. Mandal at National Research Institute of Basic Ayurvedic Sciences, Nehru Garden, Kothrud, Pune, where voucher sample (Voucher No. 666) was deposited.

Plant Extract: The powdered material of plant leaves was subjected to successive soxhlet extraction with n-hexane, chloroform, acetone, ethanol and water to obtain respective extracts [10]. Solvents were evaporated in incubator at 37 °C and dry fractions were stored at 4 °C in air-tight bottles.

Bacterial Cultures: Nine quality control strains of *Enterobacter aerogenes* ATCC13048, *Escherichia coli* MTCCB 1662, *Klebsiella pneumoniae* MTCCB 109, *Pseudomonas aeruginosa* ATCC 33420, *Salmonella typhi* MTCCB 741, *Staphylococcus aureus* MTCCB 737, were purchased from Institute of Microbial Technology, Chandigarh, India and used in each test as recommended by the National Committee for Clinical Laboratories Standards (NCCLS). Five fungal strains, *Aspergillus flaveus* NCIM 549, *Aspergillus fumigatus* NCIM 902, *Aspergillus niger* NCIM 620, *Candida albicans* NCIM 3471 and *Saccharomyces cerevisiae* NCIM 3284 were used to screen extracts. The bacteria were maintained on nutrient broth (NB) at 37°C and fungus was maintained on Potato dextrose agar at 28°C.

Preparation of Inoculum: The gram positive and gram negative bacteria were pre-cultured in nutrient broth overnight in a rotary shaker at 37°C, centrifuged at 10,000 rpm for 5 min, pellet was suspended in double distilled water and the cell density was standardized spectrophotometrically (A₆₀₀ nm) to a concentration of 10⁶ cell/ml. The fungal inoculum was prepared from 10 days old culture grown on potato dextrose agar medium. The Petri dishes were flooded with 8 to 10 ml of distilled water and the conidia were scraped using sterile spatula. The spore density of each fungus was adjusted with spectrophotometer (A₃₂₈ nm) to obtain a final concentration of approximately 10⁵ spores/ml.

Anti-bacterial Activity: The *in vitro* antibacterial activity of plant extract was determined by broth macro dilution method [11]. Stock solutions of plant extracts were prepared in suitable solvents i.e. DMSO, Acetone and Water. Nutrient broth media was used for serial dilutions. Nine serial dilutions were prepared, ranging from concentration of 25 mg/ml to 0.10 mg/ml of plant extract. The tubes were inoculated with 100 μl of bacterial strain inoculums with a concentration of 10⁶ cell/ml. Ampicillin was used as a standard drug for comparison as a positive control. Nutrient broth was used as negative control. The tubes were incubated aerobically at 37°C for 18-24 h; the MIC of each sample was determined by using tetrazolium salts to indicate bacterial growth [12].

Antifungal Activity: Microbroth dilution assays [13] were performed to investigate the activity of various extracts against pathogenic strains of fungi. Stock solutions of plant extracts were prepared in suitable solvents i.e. DMSO, Acetone and Water. Seven serial dilutions in Sabouraut Dextrose broth were prepared, ranging from concentration 25 mg/ml to 0.39 mg/ml. The tubes were inoculated with 100 μl inoculum with a concentration of approximately 10⁵ spores/ml. Tubes were incubated at 35°C. MICs were determined for each extract against the fungal isolates at 48 and 72 h.

Qualitative Antibacterial Activity Assay by Bioautography: Bio-autography was done with agar overlay method. TLC plates were prepared and developed in different solvent systems, dried for overnight under a stream of air to remove residual solvents. Inoculum was prepared by suspending the microorganism in nutrient broth media with an approximate concentration of 10⁶ cell/ml just before applying the overlay. The TLC plates were placed in a sterile Petri dish and covered with 4.5 ml of inoculum. It was kept at low temperature for some time, once the media has solidified, the plates incubated for 15 h at 36 °C. Plates were sprayed with 2.0 mg/ml an aqueous solution of phenyl tetrazolium
chloride. After incubating for about 1 h at 36°C, clear zones on chromatograms indicating inhibition of growth were noted [14].

Liquid-Liquid Fractionation: This was carried out to simplify chloroform extract of *Jasminium grandiflorum* L. with promising activity by fractionating chemical compounds into broad groups based on their solubility. The residue was dissolved in 1:1 mixture of chloroform and water and two phases were separated by separatory funnel. Water fraction was mixed with equal volume of n-butanol in a separatory funnel to yield water (W) and butanol (BT) fraction. The chloroform fraction was taken to dryness and after complete drying was extracted with equal volume of hexane and 10% water in methanol. This yielded Hexane (H) fraction and the 10% water/methanol fraction was further diluted to 20% water/methanol by addition of water. This was mixed with equal volume of carbon tetrachloride in a separatory funnel, yielded carbon tetrachloride fraction (CT) and the 20% water/methanol fraction was further diluted to 35% water/methanol with water by addition of water and was mixed with equal volume of chloroform in separatory funnel and yielded chloroform (CH) and 35% water/methanol fraction (MW) [15]. TLC and bioautography assay was carried out for the entire six fractions obtained and Rf values were also determined from chromatogram. Zone of inhibition and were compared with that of standard antibiotic Kanamycin.

Identification of the Bioactive Compounds: Analytical and preparative TLC were carried out on Merck precoated silica gel plates (F254 thickness:0.25 mm and 2.0 mm, respectively) using the Chloroform : Ethyl Acetate (7:3) solvent system.

RESULTS

Percent yield of petroleum ether, chloroform, acetone, methanol and water extracts was found to be 1.50, 10.59, 7.71, 9.50, 19.0 percent, respectively. All the extracts displayed antibacterial activity in a range of 1.6 to 12.5 mg/ml. Whereas, chloroform extract exhibited broad range activity in a range of 1.6 to 6.3 mg/ml. Antifungal activity in water extract was observed at higher range 25 mg/ml (Table 1). TLC profile of chloroform extract developed in chloroform: ethyl acetate (7:3) revealed the presence of several compounds. When chloroform extract was subjected to bio-assay it exhibited five zones of inhibition at different Rf values, indicating the presence of five active components in the fraction. Compound at Rf value 0.21 exhibited activity against *Klebsiella pneumoniae* and *Staphylococcus aureus*. Compounds at Rf value 0.50, 0.63, 0.79 and 0.87 exhibited specific activities against *Escherichia coli* and *Salmonella typhi* respectively.

Direct bio-autography helps to localize antibacterial activity on chromatogram [16]. The agar overlay technique is a hybrid of the two other methods and works successfully with a range of microorganisms; including *P. aeruginosa*, *S. aureus* and *S. typhi* [17]. The CH and W/M fractions were tested for antimicrobial activity using bioassay for *S. aureus* and *K. pneumoniae*. CH fraction showed presence of five active compounds JHF1, JHF2, JHF3, JHF4 and JHF5 at Rf values 0.21, 0.50, 0.63, 0.79 and 0.87 respectively. Compounds JHF1, JHF2 and JHF5 were active against *S. aureus* and JHF2, JHF3, JHF4 and JHF5 for *K. pneumoniae*. In W/M fraction zone of inhibition was at spot of application for *S. aureus*. Diameter of zone of inhibition for CH fraction were compared with that of Kanamycin. Diameter of zone of inhibition (±4.5 mm at a concentration of 300 μg of CH fraction) at Rf 0.50 and 0.21 was almost equivalent to diameter of zone of inhibition developed by kanamycin (± 16.5 mm at a concentration of 300 μg). Therefore, compound of Rf value 0.21 (JHF-1) and 0.50 (JHF-2) were subjected to purified by preparative TLC and characterized by UV, IR, NMR and Mass Spectroscopy.

Compound JHF-1: UV (MeOH) \(\lambda_{\text{max}}\) (log): 225 (14.14), 278 (3.61) nm, IR (Nujol) \(\nu_{\text{max}}\): 3306 (broad OH str.), 1719 (CO str.), 1624, 1426 (Ar CH str.) and 1082 cm\(^{-1}\) (C-O-C str.). \(^1\)H-NMR (CDCl\(_3\), 300 MHz): 0.85-1.28 (m, 10 H, all methyl carbon bearing protons), 1.28 (m, J = 11.1 Hz, 8.1 Hz, 1 H, Hδ), 2.3 (m, J = 16 Hz, 1 H, Hδ), 3.5 (m, J = 11.1 Hz, 16 Hz, 1 H, Ha), 3.6 (m, J = 8.1 Hz, 1 H, Hδ), 7.21 (d, J = 8 Hz, 2 H, aromatic protons, both ortho to the -OH group), 7.26 (d, J = 8 Hz, 2 H, aromatic protons, both meta to the -OH group).

Mass Spectrum: FABMS m/z 268: (C\(_{14}\)H\(_{20}\)O\(_3\)) : Observed m/z 267 [M-1].
Table 1: \(^1\)H-NMR spectra of 3,5-Dihydroxy-2,4-dimethyl-benzoic acid 4-hydroxy-phenyl ester (Compound JHF-1) in CDCl₃.

<table>
<thead>
<tr>
<th>Atom Number</th>
<th>(^1)H-NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>3.5</td>
</tr>
<tr>
<td>Hb</td>
<td>3.6</td>
</tr>
<tr>
<td>Hc</td>
<td>2.3</td>
</tr>
<tr>
<td>Hd</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Table 2: \(^1\)H-NMR spectra of 2-Hydroxymethyl-4-methyl-butric acid phenyl ester (Compound JHF-1) in CDCl₃.

<table>
<thead>
<tr>
<th>Atom Number</th>
<th>(^1)H-NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ha</td>
<td>3.4</td>
</tr>
<tr>
<td>Hb</td>
<td>3.3</td>
</tr>
<tr>
<td>Hc</td>
<td>2.3</td>
</tr>
<tr>
<td>Hd</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Table 3: Minimum Inhibitory concentration of *Jasminum grandiflorum* L. Extracts.

<table>
<thead>
<tr>
<th>Extrac</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexane</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloroform</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>3.0</td>
<td>-</td>
<td>-</td>
<td>6.3</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetone</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6.3</td>
<td>6.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethanol</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>25.0</td>
<td>-</td>
<td>-</td>
<td>25.0</td>
<td>-</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0.2</td>
<td>0.2</td>
<td>0.05</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Kanamyacin</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Note: A= *E. coli*; B= *E. aerogenes*; C= *K. pneumoniae*; D= *P. aeruginosa*; E= *P. vulgaris*; F= *S. aureus*; G= *S. typhi*; H= *A. flavus*; I= *A. fumigatus*; J= *A. niger*; K= *C. albicans* and L= *S. cerevisae*.

Compound JHF-2: UV (MeOH) \(\lambda_{max} \) (log\(_e\)): 225 (14.14), 278 (3.61) nm, IR (Nujol) \(\nu_{max} \): 3264 (broad OH str.), 1718 (C=O str.), 1626, 1459 (Ar CH str.) and 1083 cm\(^{-1}\) (C-O-C str.), \(^1\)H-NMR (CDCl₃, 300 MHz): 0.85-1.25 (m, 6H, all methyl carbons bearing protons), 2.3 (m, J=16Hz, all aromatic protons), 2.5 (m, J=11Hz, 1H, Hc), 3.3 (d, J=11Hz, 1H, Hb), 3.4-d (d, J=16Hz, 1H, Ha), 7.2-7.24 (m, 5H, all aromatic protons).

Mass Spectrum: FABMS m/z 208: (C₁₁H₁₄O₂): Observed m/z 207 [M⁺-1].

Interpretation and correlation of spectral data showed presence of two new compounds, JHF-1 and JHF-2 in the chloroform extract of the plant.

DISCUSSION

A number of medicinal plants described in Ayurveda still need to testify according to the modern parameters to ensure their activity and efficacy. Drugs used in Ayurveda are mostly prepared by extraction with water; as in ancient time people do not usually have the access to more lipophilic solvents. This is of concern, as mostly healers do not extract all the active compound(s) that are present in the plant and consequently the prepared drug might not contain all the pharmacologically active compounds. In the present investigation, comparative study of MIC of extracts in different solvents indicated,
broad spectrum activity for aqueous extracts, however the required concentration is comparatively higher than other solvents (12.5-25mg/ml).

Chloroform exhibited lowest MIC indicating better activity against bacterial species however found to be inactive against fungal species at the concentration under consideration and ethanol extract were found to be active against bacterial species with average MIC 6.3 and 12.5 mg/ml respectively.

Interpretation and correlation of spectral data of two out of five antimicrobial compounds showed presence of two new compounds, 3,5-Dihydroxy-2,4-dimethyl-hexanoic acid 4-hydroxy-phenyl ester (JHF-1) and 2-Hydroxymethyl-3-methyl-butyric acid phenyl ester (JHF-2) in chloroform extract of the plant.

Study indicates that chloroform extract have broad range activity due to presence of several compounds of specific antimicrobial activities. Further studies of these compound may explore specific antibacterial markers.

ACKNOWLEDGEMENTS

The authors are thankful to Central Council for Research in Ayurveda and Siddha (CCRAS) for providing facilities for the completion of this work

REFERENCES