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Abstract: This article deals with cost optimization of one-way concrete slabs according to the most recent 
American Concrete Institute code of practice (ACI 318-M08). The objective is to minimize the total cost of 
the slab including costs of concrete and reinforcement bars while satisfying all the design requirements. 
Particle Swarm Optimization (PSO) is used for solving the constrained optimization problem. As PSO is 
designed for unconstrained optimization problems, a multi-stage dynamic penalty was also implemented to 
solve the constrained optimization problem. Cost optimization of four different slabs with different support 
conditions are illustrated and the results of the optimum design results are compared with exis ting methods 
in the literature. A sensitivity analysis of optimal designs was also performed by optimizing the four 
examples for different span lengths between 2 to 5 meters to investigate the effect of span length on 
optimal costs and optimal reinforcement ratios. The results demonstrate that PSO is a promising method in 
design optimization of structural elements. 
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INTRODUCTION

Design is an iterative process. The designer’s 
experience, intuition and ingenuity are required in the 
design of systems in most fields of engineering
(aerospace, automotive, civil, chemical, industrial,
electrical, mechanical, hydraulic and transportation).
Iterative implies that several trial designs are analyzed 
one after another until an acceptable design is obtained. 
In the design process, the designer estimates a trial 
design of the system based on experience, intuition, or 
some mathematical analysis. The trial design is
analyzed to determine if it is satisfies all the
requirements. If it is, the design process is terminated 
and the design is accepted as final design [1]. 

In conventional design of structural systems and 
elements, most procedures first the adopt the cross-
section dimensions and material grades based on
common practice. Once the structure is defined, the 
structure is analyzed to determine the stress resultants. 
For   concrete   structure,  the  procedure  is  followed
by   the   computation  of  reinforcement  that  satisfy
the  limit  states  prescribed  by  concrete  codes.
Should the dimensions or material grades be
insufficient,   the   structure   is   redefined  on  a  trial
and error basis [2]. 

Engineers are faced with challenge of designing
efficient and cost-effective systems without
compromising the integrity of the system. The
conventional design process depends on the designer’s 
intuition, experience and skill. This presence of a
human  element  can  sometimes  lead  to  erroneous 
results in the synthesis of complex systems.
Furthermore, the conventional design process can lead 
to uneconomical designs and can involve a lot of
calendar time. The conventional design leads to safe 
designs, but the economy of the design is very much 
linked to experience of the structural designer. Scarcity 
and the need for efficiency in today’s competitive world 
have forced engineers to evince greater interest in 
economical and optimized designs. 

Another design method, which is more systematic, 
is the optimization design process, in which the trial 
design is analyzed to determine if it is the best.
Depending on the specifications, “best” can have
different connotations for different systems. In general, 
it implies cost-effective, efficient, reliable and durable
systems. The optimum design process forces the
designer to use rigorous formulation of the design 
problem by defining explicitly a set of design variables, 
an objective function to be optimized and the imposed 
constraint functions [1].
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A large number of articles have been published on 
optimization of structures. In the great majority, the 
objective  is  to  minimize  the  weight  of  the  structure 
[3, 4]. While weight of a structure constitutes a
significant part of the cost, a minimum weight design is 
not necessarily the minimum cost design. 

Especially, in optimal design reinforce concrete
elements and structures, the minimum weight design is 
not always the cheapest design. Minimizing the cost is 
more realistic and a more useful goal for saving natural
resources.

For a more widespread use of structural
optimization algorithms in design office practice, they 
must be formulated as cost optimization and applied to 
realistic structures subjected to the actual constraints of 
commonly used design codes such as the American 
Concrete Institute Code (ACI 318-M08) [5]. 

State-of-the-art reviews of articles on cost
optimization of concrete structures are presented in [6]. 
Recent examples of cost optimization of real life
structures subjected to design code constraints can be 
found in [7-13].

The early work on optimization of Reinforced
Concrete (RC) slabs was based on many simplifying 
assumptions. Brown (1975) formulates the optimum
cost design of one-way concrete slabs as a single-
variable optimization problem to find the optimum
thickness of one-way slabs for uniformly loaded simply 
supported slabs considering flexural deformations only 
and making other simplifying assumptions [14].

Brondum-Nielsen (1985) presents a method for
minimizing the cost of reinforcement in reinforced
concrete shells, folded plates, walls and slabs by
minimizing the summation of the forces in the steel 
reinforcement in two perpendicular directions. An
academic example is presented without considering any 
code of practice in defining the constraints [15]. 

Hanna and Senouci (1995) present an iterative
procedure for minimum cost design of all-wood
concrete slab forms. Four design variables: type and 
thickness of sheathing, size and spacing of joists, type 
and size of stringers and the type of the wood shore 
were considered in the formulation. No formal
mathematical optimization is used. They report cost 
savings as high as about 10% compared with traditional 
methods based on the use of charts and tables [16].

Tabatabai and Mosalam (2001) integrated three
computer programs: a commercial program for
nonlinear analysis of structures, a program for finite 
element discretization of reinforced concrete structures 
and minimization of its reinforcement content and a
program  for  data  commu nication  between  the  first 
two programs for determination of the optimum
reinforcement  in  beams and one-way slabs. The results 

for steel dimensioning of a one-way slab, simply
supported on one side and fixed on the other side are 
reported [17].

Recently, few articles based on concrete codes of 
practice (i.e ACI) have been published. Sahab et al.
(2005a, 2005b) presented a hybrid method based on 
genetic algorithm for cost optimization of reinforced 
concrete flat slab buildings according to the Britis h
Code of Practice (BS8110) [11, 12]. Ahmadkhanlou
and Adeli (2005) used a neural dynamics model for 
optimal cost design of reinforced concrete slabs
according to ACI, 1999 code privisions. They
formulated the optimization problem as a mixed
integer-discrete variable optimization problem with
three design variables: thickness of slab, steel bar
diameter and bar spacing [10].

In this article, optimal cost design of one way slabs 
based on the most recent ACI code (ACI 318-M08) in 
investigated. Particle swarm optimization, one of the 
most recent evolutionary algorithms is used for this 
purpose. The constrained optimization problem is
tackled through the minimization of a non-stationary
multi-stage assignment penalty function. Cost
optimization of four different slabs with different
support conditions are illustrated and the results of the 
optimum design results are compared with existing
methods in the literature. A sensitivity analysis of
optimized designs was also performed by optimizing 
the four examples for different span lengths. 

The reminder of the article is organized as follows: 
The problem formulation is given in Section 2. Section 
3 describes the PSO algorithm and its discrete version. 
Section 4 contains four illustrative examples of one-
way slabs with different support conditions and in 
Section 5 the summary and conclusions are presented.

FORMULATION OF THE 
MINIMUM COST DESIGN

Cost function: In concrete structures, at least three 
different cost items should be considered in
optimization: costs of concrete, steel and the formwork. 
The total cost function can be defined as

(1)

where CC, Cf and Cf are the costs of concrete,
reinforcement bars and formwork and finishing
materials, respectively. The formwork cost does not 
vary significantly for any given locality and
consequently can be dropped from the formulation [10].
The concrete cost is defined by:

(2)
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Fig. 1: Typical cross-section of RC slab

where L, b, h and 1
CC  are the span length, span width, 

thickness of slab (Fig. 1) and cost of concrete per unit 
volume, respectively. The reinforcement cost is
computed as:

(3)

where ws, As and 1
rC  are the unit weight of steel, cross 

sectional area of reinforcement bars and cost of
reinforcement bars per unit weight. A s is calculated by:

(4)

where db and s are diameter of reinforcement bars and 
their spacing, respectively.

Constraints: All the design constraints imposed by the 
most recent ACI code (ACI 318-M08) are considered. 
The constraints include flexural constraints, shear
constraints, serviceability constraints and deflection
constraints.

Flexural constraint: Flexural resistance of the slab 
must be greater the implied moments by the loads. This 
constraint is presented in the following form:

(5)

where Mu and Mn are ultimate design moment and 
nominal bending moment, respectively. The strength 
reduction factor f is calculated based on net tensile 
strain in in the extreme tension steel at nominal strength 
and is varied in the range of 0.65 to 0.9 for compression 
controlled or tension controlled state
The ultimate design moment is calculated as follows:

(6)

where ln is the clear span length and k is a moment 
coefficient that depends on the type of slab supports for 
continuous  slabs as presented in Table 1. In Eq. (6), the 

Table 1: Moment coefficient of continuous slabs

Exterior span Interior span
-------------------------------------- ----------------------------------------
Support Middle Support Support Middle Support

-1/24 +1/14 -1/10 -1/11 +1/16 -1/11

Table 2: Maximum moment coefficient, k, used for design of RC 
slabs

Simply One end Both ends
supported continuous continuous Cantilever

1/8 1/10 1/11 1/2

maximum value of the moment coefficient for any
given span is used, for four different support
conditions: simply-supported, continuous in one end 
and simply-supported at the other end, continuous at 
both ends and cantilever (Table 2). In Eq. (6), w the 
factored uniformly distributed load including the dead 
load and the self-weight of slab is calculated as:

(7)

where DL and LL are dead load of floor excluding the 
self-weight of slab and the live load, respectively. DLs
represents the self-weight of slab and is equal to:

(8)

where wc is the weight of concrete per unit volume.
For design, the ACI code allows the use of an 

equivalent rectangular compressive stress distribution 
(stress block) to replace the more exact concrete stress 
distribution. In the equivalent rectangular stress block, 
an average stress of 0.85f′c is used with a rectangle of 
depth a = β1c where β1 is defined as follows:

(9)

The nominal bending moment, Mn, is then
calculated as follows:

(10)

where fy is the specified yield strength of reinforcement 
bars and a is the equivalent depth of the concrete 
compression stress block calculated from (Fig. 1)

(11)
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Table 3: Minimum thickness of solid one-way slabs according to ACI

Minimum thickness, h
------------------------------------------------------------------------------------------------------------------------------------------
Simply supported One end continuous Both end continuous Cantilever

Member Members not supporting or attached to partitions or other construction likely to be damaged by large deflections
Solid one way slabs L/20 L/24 L/28 L/10

Notes: Values given shall be used directly for members with normal weight concrete and grade 420 reinforcement. for other conditions, the 
values shall be modified as follows: 
For lightweight Concrete having equilibrium density, wc, In the range of 1440 to 1840 kg/m 3, the values shall be modified by Eq. (20) but not less 
than 1.09
For fy other than 420 MPa, the values shall be multiplied by Eq. (21)

where f′c is the specified compressive strength of
concrete.

Shear constraint: The shear constraint is represnted in 
the following form:

(12)

where Vu and Vc are the ultimate factored shear force 
and the nominal shear strength of concrete. The shear is 
carried entirely by concrete since no stirrup is used. The 
ultimate factored shear force and the nominal shear
strength of concrete are given by:

(13)

(14)

kv is a number specified by ACI with values of 0.5, 
0.575, 0.575 and 1.0 for examples 1 to 4 respectively.

Serviceability  constraints:  The  serviceability
constraints are presented in terms of limits on the steel 
reinforcement ratio and the bar spacing. 

ACI  318-M08  requires that  the  net  tensile  strain
et at nominal strength of non-prestressed flexural
members and non-prestressed members with factored 
axial compressive load less than 0.10fcAg, shall not be 
less than 0.004.

(15)

ACI also specifies a minimum amount of
reinforcement and requires that for structural slabs,
minimum As in the direction of the span shall provide 
at least the following ratios of reinforcement area to 
gross concrete area, but not less than 0.0014:

(a) Slabs where Grade 280 or 350 deformed bars are 
used 0.0020

(b) Slabs where Grade 420 deformed bars or welded 
wire reinforcement are used..0.0018

(c) Slabs where reinforcement with yield stress
exceeding 420 MPa measured at a yield strain of 
0.35 percent is used 0.0018 × 420/ fy

In  slabs,  primary  flexural  reinforcement  shall
not be spaced farther apart than three times the slab 
thickness, nor farther apart than 450 mm.

(16)

ACI 318-M08 also specifies that the minimum
clear spacing between parallel bars in a layer shall be 
db, but not less than 25 mm.

(17)

Deflection constraints: The ACI 318-M08 specifies a 
minimum slab thickness (hmin) of L/20, L/24, L/28, or 
L/10 for different support conditions (Table 3), with an 
absolute minimum thickness of 1.5 inch (38.1 mm). In 
order to take into account the effect of the weight of 
concrete and the reinforcement yield strength, the
numbers in Table 3 must be multiplied by the following 
modification factors:

(18)

(19)

Constraint normalization: In numerical calculations,
it is desirable to normalize all the constraint functions 
[1]. This normalization speeds up the convergence and 
prevents undue dominance of any particular constraint 
since different constraints involve different orders of 
magnitude. The normalized constraints are introduced 
by the following equations:
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(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

OPTIMIZATION PROBLEM FORMULATION 
AND SOLUTION APPROACH

Discrete optimization formulation: First, a continuous 
variable optimization problem is defined as:

minimize  f(x) = Ct

subjected to the following inequality constraints:

(28)

where x is the vector of continuous design variables, 
f(x) is the cost function defined by Eq. (1) and m is the 
number of inequality constraints (equal to 8 in this 
problem, as defined by Eqs. 20-27). Three design
variable are considered in the problem definition: the 
thickness of slab (h), the diameter of reinforcement bars 
(db) and the spacing of reinforcement bars (s). The 
thickness of the concrete slab and spacing of the
reinforcement bars can be considered as discrete
variables, considering the common practice of using 
multiple integers of centimeters in the SI system, or a 
multiple of 1/8 in or 1/4 in inch the US customary 
system. The bar diameters are treated as discrete
variables as their values must be assigned from a
limited  number  of  commercially  available  bar  sizes.

ACI provides eleven different bar sizes starting from
bar size #3 with diameter of 0.375 inch (0.953 cm) to 
bar size #18 with diameter of 2.257 inch (5.733 cm). 

Therefore, the problem is formulated as a discrete 
nonlinear programming problem expressed as:

minimize f(x)

subjected to the following constraints:

(29)

where nd is the total number of discrete design variables 
(equal to three in this article) and Di is the set of 
discrete values for the ith variable.

Particle swarm optimization: The PSO algorithm was 
first proposed in 1995 by Kennedy and Eberhart. It is 
based on the premise that social sharing of information 
among members of a species offers an evolutionary 
advantage   [18].  Recently,  the  PSO  has  been
applied and proven useful on a few structural
engineering  applications  such  as  optimal  truss 
design  [19, 20], structural damage detection [21]
among others. A number of advantages with respect to 
other Evolutionary algorithms make PSO an ideal
candidate  for  engineering  optimization  problems. 
The  algorithm  is  robust  and  well  suited  to  handle 
non-linear, non-convex design spaces with
discontinuities. Furthermore, its easiness of
implementation  makes  it  more  attractive  as  it  does 
not require specific domain knowledge information,
internal transformation of variables or other
manipulations to handle constraints [22].

In PSO, a number of simple entities (the particles) 
are placed in the search space of some problem or 
function and each particle evaluates the objective
function at its current location. Each particle then
determines its movement through the search space by 
combining some aspect of the history of its own current 
and best (best-fitness) locations with those of one or 
more members of the swarm, with some random
perturbations. The next iteration takes place after all 
particles have been re-located. Eventually the swarm as 
a whole, like a flock of birds collectively foraging for 
food, is likely to move close to an optimum of the 
fitness function.

Each individual in the particle swarm is composed 
of three D-dimensional vectors: the current position ,
the previous best position  and the velocity  where D 
is the dimensionality of the search space (i.e. number of 
design variables).
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The  current  position   can  be  considered  as a 
set of coordinates describing a point in space. On each 
iteration of the algorithm, the current position is
evaluated as a problem solution. If that position is better 
than any that has been found so far, then the
coordinates are stored in the second vector, . The 
value of the best function result so far is stored in a 
variable often called pbesti (for “previous best”), for 
comparison on later iterations. The objective is to keep 
finding better positions and updating  and pbesti. New 
points are chosen by adding  coordinates to  and the 
algorithm operates by adjusting , which can
effectively be seen as a step size [23]. The velocity of 
each particle is iteratively adjusted so that the particle 
performs a stochastically oscillation around  and 
locations. The new velocity of each particle is
calculated as follows:

(32)

where  represents the current velocity of a design 
variable. The superscript d stands for the dth particle, 
the subscript i indicates the ith design variable and t is 
the iteration number. c1 and c2 are two positive
constants called acceleration coefficients, ω is the
inertia factor and r1 and r2 are two independent random 
numbers uniformly distributed in the range of [0, 1]. 
After the velocity is updated, the new position of each 
particle for the next generation is calculated according 
to the following equation:

(33)

The particle is then evaluated according to its new 
position and  and  are updated at each generation. 
This process is repeated until a user-defined stopping 
criterion is reached.

The original PSO algorithm is designed for
optimization problems with continuous variables. As 
design variables of slab optimization problems are
discrete, we used An approach for tackling discrete 
optimization  problems  by  PSO  which  is  based  on 
the  truncation  of  the  real  values  to  their  nearest 
integer [24, 25].

The original PSO algorithm lacks exploitation and 
is generally slow at late stages of optimization. An
improved version of PSO algorithms is adapted in this 
article. The objective of this modification is to try to 
avoid   premature   convergence   in   the  early  stages
of  the  search  and  to  facilitate  convergence to the 
global  optima  in  the  the final stages of the search. An

annealing scheme was used for the setting of the
parameter ω, where ω decreases linearly from ωi  to ωf
over the whole run

(34)

where ωi and ωf are the values of parameter ω at the 
start and end of the search., iter is the current iteration 
number and MAXITER is the number of maximum
allowable iterations. 

The constraint handling approach: Different
constraint-handling techniques have been used over the 
years to handle linear and nonlinear inequality
constraints in evolutionary algorithms. An excellent 
survey on constraint handling techniques is written by 
Coello [26].

The search space in constrained optimization
problems consists of feasible and infeasible points. In 
feasible points all the constraints are met. In contrast, in 
infeasible points at least one of constraints is violated. 
The most common constraint-handling approach is the
use of a penalty function for penalizing infeasible
points. In this approach, the constrained problem is 
transformed to an unconstrained one, by penalizing the 
infeasible points and building a single objective
function, which in turn is minimized using an
unconstrained optimization algorithm

Penalty functions can be categorized into two main 
divisions: stationary and non-stationary. Stationary or 
static penalty functions use fixed penalty values
throughout the minimization, where in contrast, in non-
stationary penalty functions, the penalty values are
dynamically modified. In the literature, results obtained 
using non-stationary penalty functions are almost
always superior to those obtained through stationary 
functions [27, 28].

A penalty function can be defined as: 

(35)

where f(x) is the original objective function; h(k) is a 
dynamically modified penalty value, k is the algorithm 
current iteration number; and H(k) is a penalty factor, 
defined as:

(36)
where

The function qi(x) is a relative violated function of 
the  constraints; θ(qi(x)) is a multi-segment assignment 
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function; γ(qi(x)) is a power of the penalty function; and 
gi(x) are the constraint functions.

RESULTS

Illustrative design examples: Four examples of one-
way reinforced concrete slabs with different support 
conditions are optimized in this section. Example 1 is a 
simply supported slab at both ends. Example 2 has a 
simple support at one end and a continuous support at 
the other end. Exa mple 3 it is part of a multi-space
reinforced concrete slabs and therefore can be
considered continuous at both ends (). Example 4 is a 
one-way cantilever reinforced concrete slab. 

The common data for the examples are presented 
in Table 4. These examples were previously optimized 
with neural dynamic model using an earlier version of 
ACI code (1999) edition as the design code [10]. The 
cost of reinforcement steel, 1

rC  is set to $1.43/Kg. The 
cost of concrete is a function of concrete strength as 
noted in Table 5, per Means [29]. For variables h and s, 
practical values are assumed to be a multiple of 1/4 and 
1/2 inch respectively. 

Penalty parameters of equation 34 are the same 
values  reported  in  [27].  Specifically,  if  qi(x)<1,
then γ((qi(x))  = 1,  otherwise γ(qi(x))  =  2. Moreover, 
if qi(x))<0.001 then θ(qi(x)) = 10, else, if
0.001<qi(x)<0.1  then θ(qi(x)) = 20, else, if qi(x)<1
then θ(qi(x)) = 100, otherwise θ(qi(x)) = 300. h(k), the 
dynamically  modified  penalty  value  in  equation 36, 
was set to 

Following parameters were used in the PSO: c1 = 
c2 = 2. An annealing scheme was used for the ω-setting
of the PSO, where ω decreases linearly from ωi = 0.9 to 
ωf = 0.4 over the whole run. The size of the swarm was
set equal to 30 The PSO algorithm ran for 1000
iterations for each example and 30 runs were performed 
for each example problem.

The optimum values for these examples and
associated costs are shown in Table 6. Results of neural 
dynamic model on the same examples using an earlier 
version of ACI code are also presented. The direct 
comparison of results is difficult as the optimal designs 
are based of different ACI code versions; however, it 
can be noted that the values obtained by PSO algorithm 
are generally very similar to neural dynamics for all 
examples

It can be seen that example 4 (cantilever slab) has 
the maximum cost (59.31$) among all examples. This is 
expected as the required minimum thickness for
deflection control of cantilever slab is 1/10 of the span 
length which is much higher than minimum thickness 
requirements of other examples: 1/20, 1/24 and 1.28 of 
span  lengths for examples 1 to 3 respectively (Table 3). 

Table 4: Common data used in design examples

fy 40 ksi (275.8 Mpa) b 1 ft (0.3048 m)
ws 490 Ib/ft 3 (77 KN/m3) L 13 ft (3.96 m)
f′c 3 ksi (20.68 Mpa) DL 10 Ib/ft 2 (0.48 KN/m 2)
wc 150 Ib/ft 3 (23.6 KN/m3)LL 40 Ib/ft 2 (2.39 KN/m 2)

Cover 3/4 in (19.05 mm) 1
rC $1300/Ton (short)($1.43/kg)

Table 5: Concrete cost, 1
cC , according to its specified compressive 

strength

f′c (psi) 1
cC  ($/cyb)

2000 (14 Mpa) 71.5
2500 (17 Mpa) 64.0
3000 (21 Mpa) 76.0
3500 (24 Mpa) 78.0
4000 (28 Mpa) 81.5
4500 (31 Mpa) 83.0
5000 (34 Mpa) 84.5
6000 (41 Mpa) 96.5
8000 (55 Mpa) 158.0
10000 (17 Mpa) 224.0

1.0 $/cyb = 0.122 $/m 3

It should be noted that ultimate bending moments is 
also much higher in example 4 (Table 2).

The values of normalized constraint functions for 
four examples are presented in Table 7. It can be noted 
that all constraint function values are negative and 
therefore all constraints are met at optimal points. In all 
examples, the constraints representing moment capacity 
(g1) and minimum slab thickness (g7) are active. For 
examples, 2 and 3, (g8) is also active as a minimum bar 
size reinforcement is used in the optimal designs. It 
should be noted that small deviations of active
constraints from zero are due to existence of discrete 
variables.

Parametric study: This section describes the
parametric study of one-way slabs with different
support conditions for various practical span lengths. 
The goal of the parametric study was to investigate the 
effect of slab span length on optimal design variables, 
the cost components and optimal reinforcement ratio ρ,
ratio of As to bd. Four previously described examples 
are optimized with different span lengths, ranging from 
7 to 16 ft (2 to 5 meters), using the same procedure 
previously mentioned.

Results of corresponding optimal values of design 
variables, concrete and reinforcement costs and total 
slab cost are presented at Table 8. Total cost obtained 
for four examples for different span lengths are
presented  in Fig. 2. Cantilever slab (example 4) has the
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Table 6: Cost optimization results for examples 1-4 (length = 13 ft)
Ahmadkhanlou & Adeli [10] This paper
---------------------------------------------------------------------------------------------------------------------------------------------
h (in) db (in) s (in) Total cost ($) h (in) db (in) s (in) Total cost ($)

Example 1 6.75 3/8 6.5 26.45 6.25 1/2 9.00 26.57
Example 2 5.75 3/8 7.0 22.98 5.25 3/8 5.50 22.76
Example 3 4.75 3/8 7.0 19.93 4.50 3/8 5.50 20.64
Example 4 13.50 3/8 2.0 60.22 12.50 5/8 12.50 59.31
1 in = 25.4 mm

Table 7: Normalized constraints for four examples (length = 13 ft)
Normalized constraints
-----------------------------------------------------------------------------------------------------------------------------------------------
g1 (Eq. 22) g2 (Eq. 23) g3 (Eq. 24) g4 (Eq. 25) g5 (Eq. 26) g6 (Eq. 27)6 g7 (Eq. 28) g8 (Eq. 29)

Example 1 -0.012 -0.771 -0.889 -0.745 -0.492 -5.064 -0.009 -0.333
Example 2 -0.035 -0.706 -0.875 -0.913 -0.651 -3.046 -0.017 0.000
Example 3 0.000 -0.667 -0.845 -1.231 -0.593 -3.046 -0.017 0.000
Example 4 -0.019 -0.683 -0.853 -1.462 -0.718 -2.105 -0.009 -0.669

Fig. 2: Optimal total cost of four examples for different 
span lengths

maximum total cost among all examples. Among the 
remaining examples which are also more common and 
practical slab configurations (examples 1-3), the simply 
supported slab has the maximum cost. It can be seen 
that as expected in all examples the cost increases at 
higher span lengths.

For different span lengths, optimum reinforcement 
ratios  corresponding  to  minimum  cost  designs  of 
four examples are shown in Table 8 and Fig. 3.
Optimum ratios for example 1 are very close to 0.4%. 
verying  between  0.38%  and 0.44%. For example 2, 
the  optimum  ratios  vary  between  0.44% and 0.63%. 
It  can  be  observed  that  for  most  span  lengths  (9 ft 
to 16 ft), the ratios are in the tight range of 0.44% to 
0.48%.  The  optimum  reinforcement  ratios  of
example 3 vary between 0.55% and 0.94%. For most 
span  lengths (9-16 ft), the  ratios  are  in  the  very
tight  range  of  0.55%  to  0.60%. For the cantilever 
slab  (example  4),  the  optimum   reinforcement  ratios 
vary   between  0.44%   and   0.63%.  It should be noted

Fig. 3: Optimal reinforcement ratios of four examples 
for different span lengths

that  cantilever  slabs  are  rarely  used  in  high span 
lengths  and  for  most  practical  span lengths (7-10 ft), 
the  optimum  ratios  are  in  the  very  tight  range  of 
0.43% to 0.47%.

Adeli (2001) used a neural dynamics model for
presented examples. In their work, they obtained the 
solution in two stages. In the first stage, the neural 
dynamics model was used to obtain an optimum
solution assuming continuous variables. In order to find 
practical discrete values for the design variables, the 
second stage of optimization was performed by
formulating the problem as a mixed integer-discrete
optimization problem.

The main goal of this article has been to present a 
simple algorithm that can be efficiently used in optimal 
design of engineering problems. In the approach
presented in this article, the optimal values of design 
variables are obtained directly and in a single step, 
which in turn simplify the design for practicing
engineers.
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Table 8: Cost optimization results for examples 1-4 for different lengths (Span width = 1 ft)

Span Cost of Cost of Total Reinforcement
length (ft) h (in) s (in) db (in) concrete (CC) reinforcement (Cr) cost ($) Ratio (%)

Ex.1 7 3.50 10.5 3/8 5.75 1.95 7.70 0.41%
8 4.00 9.5 3/8 7.51 2.46 9.97 0.38%
9 4.50 8.0 3/8 9.50 3.29 12.79 0.39%

10 5.00 13.0 1/2 11.73 4.00 15.73 0.38%
11 5.25 11.0 1/2 13.55 5.20 18.75 0.42%
12 5.75 10.0 1/2 16.19 6.24 22.43 0.41%
13 6.25 9.0 1/2 19.06 7.51 26.57 0.42%
14 6.75 8.0 1/2 22.17 9.10 31.27 0.43%
15 7.25 7.5 1/2 25.51 10.40 35.91 0.42%
16 7.75 10.5 5/8 29.09 12.42 41.51 0.44%

Ex 2 7 3.00 8.5 3/8 4.93 2.41 7.34 0.63%
8 3.25 9.5 3/8 6.10 2.46 8.56 0.50%
9 3.75 8.5 3/8 7.92 3.10 11.01 0.46%

10 4.00 7.5 3/8 9.38 3.90 13.28 0.48%
11 4.50 7.0 3/8 11.61 4.60 16.21 0.44%
12 5.00 11.0 1/2 14.07 5.67 19.75 0.45%
13 5.25 5.5 3/8 16.01 6.91 22.92 0.47%
14 5.75 9.0 1/2 18.88 8.09 26.97 0.46%
15 6.00 4.5 3/8 21.11 9.75 30.86 0.48%
16 6.50 7.5 1/2 24.40 11.09 35.49 0.48%

Ex 3 7 2.50 7.5 3/8 4.10 2.73 6.84 0.94%
8 2.75 8.0 3/8 5.16 2.93 8.09 0.76%
9 3.25 8.0 3/8 6.86 3.29 10.15 0.60%

10 3.50 7.0 3/8 8.21 4.18 12.39 0.62%
11 3.75 6.5 3/8 9.68 4.95 14.63 0.60%
12 4.25 6.0 3/8 11.96 5.85 17.81 0.56%
13 4.50 5.5 3/8 13.72 6.91 20.64 0.56%
14 5.00 9.0 1/2 16.42 8.09 24.51 0.55%
15 5.25 4.5 3/8 18.47 9.75 28.22 0.57%
16 5.50 4.0 3/8 20.64 11.70 32.34 0.61%

Ex 4 7 6.75 8.0 1/2 11.08 4.55 15.63 0.43%
8 7.75 10.5 5/8 14.54 6.21 20.75 0.44%
9 8.75 9.0 5/8 18.47 8.15 26.62 0.44%

10 9.75 11.0 3/4 22.87 10.69 33.56 0.47%
11 10.50 6.5 5/8 27.09 13.79 40.89 0.50%
12 11.50 11.0 7/8 32.37 17.34 49.71 0.53%
13 12.50 5.0 5/8 38.12 21.19 59.31 0.54%
14 13.50 6.5 3/4 44.33 25.34 69.67 0.55%
15 14.50 4.0 5/8 51.02 30.57 81.59 0.57%
16 15.25 11.5 9/8 57.23 36.95 94.19 0.63%

SUMMARY AND CONCLUSIONS

This  article  presents  the  cost  optimization of 
one-way  slabs  with  different  support  conditions 
using the PSO algorithm, one of the most recent
evolutionary algorithms. The total cost of the slab was 
used as the objective function and the ACI-M08 design 

requirements are used to consider all imposed design 
constraints including criteria for strength, ductility and 
serviceability among others. a multi-stage dynamic
penalty was also implemented to solve the constrained 
optimization problem

The optimization results of four different slab
configurations   demonstrate  that  PSO  is  a  promising 
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method in design optimization of one-way reinforce 
concrete slabs. It should be noted that the presented 
results are obtained based on prices in U.S. Obviously
the results depends of on the relative cost of concrete 
and reinforcement and therefore are location dependant. 
However, the presented algorithm can be applied in 
design offices in any location by using the relevant unit 
costs of concrete and reinforcement. This, in turn,
generally reduces the cost of the construction and saves 
the natural resources.
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