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The Nodal Points for Uniqueness of Inverse Problem in
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Abstract: In this paper, the inverse nodal 18 studied for the second order differential operators on a finite
mterval. The oscillation of the eigenfunctions corresponding to the large modulus eigenvalues 1s established

and an asymptotic of the nodal pomts 15 obtamed. However, the uniqueness theorem 1s proved.
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INTRODUCTION

Inverse nodal problems consist in constructing
operators from given (zeros) of ther
eigenfunctions. Mclaughlin seems to be the first to

nodes

consider this sort of mverse problem (see [1]). Later omn,
some remarkable results were obtained. For example, X.F.
Yang got the uniqueness for general boundary conditions
using the same method as McLaughlin (see [2]; CK. Law
and Ching-Fu vang (see [3]) have reconstructed the
potential function and its derivatives from nodal data.
Besides, the readers can refer to [4, 5] We consider
boundary value problem with "aftereffect” L=L(g,M) of
the form

Iy(x): = -y"(x)+q(x)y(x)+fox M(x-Oy()dt = Ay(x) = p2y, (1
y(0)=y(m) = 0. (2)

Here A is the spectral parameter and q(x) € L, (0,7) 1s
a rteal function. TLet {A,},, be the eigenvalues of a
boundary value problem L. The presence of an aftereffect
in a mathematical model produces qualitative changes in
the study of the inverse problem. The umqueness
theorem for boundary value problem with aftereffect by
the transformation operator method was studied in [6].
It says that the function M(x) 1s uniquely determined
from the given g{x) and the spectrum {4,},.,. We describe
this method, Because some techniques will be used.
In this paper, using of the nodal points we show

nxl-

uniqueness of M(x). In orther word, the function M(x)
1s uniquely determined from a dense set of nodal pomts
and given g(x). The paper is organized as follows.

Section 2 deals with uniqueness theorem by the
transformation operator method. In section 3, we obtain
the eigenfunctions corresponding to the large modulus
eigenvalues and an asymptotic of the nodal points.
Furthermore, we will give a uniqueness theorem.

Uniqueness Theorem by the Transformation Operator
Method: Tn this section, we study the uniqueness theorem
by the transformation operator method. Put

M) = (pa0MG0. My ) = MIDILQ) = Mo (-My x).

We shall
k=01

Let S(x,A) be the solution of (1) under the initial
conditions 3(0,A)=0, 3'(0,A)=1. Denote A(A) = S(m,A). The
eigenvalues {A,},., of the boundary value problem are real
and coincide with the zeros of the function A(L) and like
in the proof of Theorem 1.1.3 in [1], we get forn - <

assume that Q(x) € L, (0.1), My(x) € L(0,1),

e AL K 1 3
Pu=y = L g el Ay 2(ﬁ)jo andt.  3)

The function S$(x,A) is the solution of the integral equation

St~ 2% [IPED 5t ] M) 2
P 0 P 0

)
For |p|- <= on can estab%ish the asymptotic
S(xA)=TPE 4 oo™ PR, (5)
Pl

uniformly with respect to x € [0, =]
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Lemma 1: The representation

sin pt

1 X
St A)= S0P J' K(x.1) dr, (6)
P 0 P
holds, where K(x,t) it is a continuous function and
K(x,0)=0.

Proof. See [1].

Lemma 2: The function A{4) is uniquely determined by its
zeros. Moreover,

NOE nﬁ% (7
n=1

Proof. See [1].

We are now 1n a position to state and prove the
uniqueness theorem for the solution of inverse
problem (1). Let {i;},=1 be the eigenvalues of the
boundary value problem L=L(qM) .

Theorem 1 If A=Ay n=1, then M) =M(x),x(0.p).

Proof. Let the function S'(x.A) be the solution of the
equation

* ) =— z"(x)+q(x)z(x)+j: Mt=)z()dt = A7) (8)

under the conditions 8'(r,A) =0, 8"(m,A) = 1. Put A'(A) =
S'(0,4) and denote M(x)=Mx)-M(x) . Then

j” g (X,l)jx Nicx — 08(t A)dtdx
0 0
_ J’: 8 e NS AN fj: §* o TS A

_ jﬂ”r“s*(x,;o”sw)dx —j:s*(x,ftﬂﬁ(u)dx

For 1=1 we have A'(1) =A(A) and consequently

J’; g (x,&)_[: Wiex — ) St At = A(L). (9)
Transform (9) into
J’: M(x)(_[p §*(£.0) §(t — x,A)dtdx = A(A). (10)
Denote gyx 1) = 8" (p — x.A) N(x) = M(p— x),

(11)

o) =_|'0 ot L8 — x At

933

Then (10) takes the form

_"p Rt A)dx = ACL). (12)
0
The representation
1 X
QA= —2(—xcospx+j V(x.t) cosptdt) (13)
2p 0
holds, where V(x,t) is a continuous function.
(See [1, Lemma 4.6.3])
Since Ay = ih,n =1, we have by Lemma 1
AR = AA).
Then, substituting (13) into (12), we obtain
T ~ T ~
_" cospx(—xN(x)+ j VitN(Edtdx = 0
0 X
And consequently,
7X1<I(x)+jﬂ VLNt = 0. (14)
X

For each fixed € > 0, (14) 1s a homogeneous
Volterra integral equation of the second kind in the
interval (£,7). Consequently, N0 ae. in (£,7) and,
since € 18 arbitrary, this holds in the whole interval (0,1).
Thus, M) =M(x) a.e. in(0,7T).

Asymptotic of the Nodal Points. Uniqueness Theorem:
The eigenfunctions of the boundary value problem I.
have the form v, (x) = S(x,A,). For the boundary value
problem an analog of Sturm's oscillation theorem 1s true.
More precisely, the eigenfunction y,(x) has exactly n zeros
inside the interval (0,7). Namely:

0<X}] <X121 <...<in1

<p,j=12,.,n-1. The set {Xill}nzl,jzﬁ

called the set of nodal pomts of the boundary value
problem. It is shown that the set of all nodal points i,

is dense in [0,t].

Theorem 2 The nodal points of the problem (1)-(2) are

. VI 1 15
Xf]:aﬂ——%afﬁ-O(fs), (13)
n n
Where a%:=£.
n
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Proof: Substituting (3) into (5) give the following
asymptotic formula for n - < uniformly in x:

sjn(ﬁﬁ)x + O(iz)=o, (16)
n 1

Sinnx+cosnx(ﬁ)x+0(%): 0. (17
n 1

We obtain the following asymptotic formulae for the
nodal pomnts as n ~ e uniformly m j:

4

5 = o - Lol + O(5). (18)
i n

Where
Now, we will give a uniqueness theorem. It says
that the function M(x) 1s umquely determined by a dense

subset of the nodes and the function g(x).

Theorem 3: The function M is uniquely determined by
any dense set of nodal points and given the function q.

Proof: Assume that we have two problems of the
(1)-(2) with M, 51 . Let the nodal points . =i satisfying

xi =) form a dense set in [0,n] We tke solutions of (1)-

(2) as @, and @, . It follow from (1) that

(=T =10 52— PN [ M= (04,
~9u |, Vilx— 0y (= &, ). (19)

We integrate both sides of (19) from 0 to x, and using
the boundary conditions (2) we obtain

0= [ "I+ 2 - Pk Gl Ay e
[ uton A M et 2.,

[ ) ] B Ui

934

From the asymptotic forms of J and A,
Xj“ . lpp 1ep. )
0= .[0 l[a-q- EJ‘U q(t)dt+5,“g qodtkp, @, dx
leq X . .
) M= O G o (g ke

—jo jo M — g (A M, (0 et

We take )
accumulating at an arbitrary a € [0, T} as n ~ e umformly

). Hence,

Suppose that A;=A;. a sequence

a S a X L.
_[ @n(x,zﬂ)j' M(x—t)wn(t,ﬂn)dtcbi:j' jn(x,zn)J' s - €y (87 M.
0 0 0 0

Similar to the proof of Theorem 1, we can conclude
that M=M almost every where on [0,1t].
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