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Numerical Solution of Mew Equation by Using Finite Difference Method
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Abstract: We present a numerical study of the modified equal width (MEW) equation by using the finite

difference method. The method is exammed for the motion of single solitary wave and interaction of two solitary
waves. The obtained numerical results show that the present method is a remarkably successful numerical

technique for solving the MEW equation.
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INTRODUCTION

The modified equal width wave (MEW) equation
based on the equal width wave (EW) equation, which was
introduced by Morrison et al. [1] as a model for non-linear
dispersive waves, has the form with the boundary
conditicns -0 as x-4o0,

i, + suzux—#um - 0:~ (1)

Where #, ¢ and x denote the amplitude, time and spatial
coordinate, respectively, £ and g are positive constants.
Boundary conditions on the region a< x < b are chosen
from

u(la, H=ulb, H=0,
MX(CI, t) = ux(b! t) = 0:
ula, 1) =ux(b, =0,

1e(0.7] 2

and the initial condition #(x, 0) = fix) will be defined in the
numerical experiments section.

The MEW equation has an analytical solution
with a limited set of boundary and imtial conditions.
Therefore, many authors have used various kinds of
numerical methods to solve Eq. (1). Zaki [2] solved the
MEW equation numerically by a Petrov-Galerkin method
using quintic B-spline finite elements to investigate
migration of a single solitary wave, interaction of two
solitary waves and birth of solitons. The numerical
solution of the MEW equation was obtamned by using a
lumped Galerkin method based on quadratic B-spline finite
elements in the paper [3]. Quintic B-spline collocation

algorithms for numerical solution of the MEW equation
have been proposed by Saka [4]. Evans and
Raslan presented a collocation method for the MEW
equation using quadratic B-splines at midpoints as
element shape functions [5]. Esen and Kutluay used a
linearized numerical scheme based on fimte difference
method to obtamn solitary wave solutions of MEW
equation [6].

Solitary waves are stable and can travel over very
large distances without change their shapes and when a
taller solitary wave overtakes a shorter solitary wave, they
don't combine and add together. In this study, MEW
equation is solved numerically using the finite difference
method. After the new time discretization of the Eq. (1) 1s
performed, five-point stencils approximating first and
second derivatives for the space discretization are used to
obtain a system of algebraic equation. The nonlinear part
of the resulting system of the method 1s handled by using
an inner iteration. In the mumerical experiments section,
the propagation of a solitary wave and interaction of two
solitary waves test problems are investigated and it 1s
found that obtained numerical results are in good
agreement with the analytical solutions.

Time Discretization and Finite Difference Method:
For computational work, the space-time plane 1s
discretized by grid with space step length % and the time
step Af. The exact solution of unknown function at the
grid point is denoted by

Y=up, m=0,1..,N; n=0,12,..

u(x,.1,
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and the notation ,» is used to represent the numerical

m

value of » .
Hm

To solve Eq. (1), mumerically, we replace the setting
v(x, ) = 11— uu,, Then Hq. (1) can be written as

2

At AP
il 7(%)31 + ?(fof)ﬁ’i + O(AF4 ).

Vi, = v,’; + /_\.r(vt)ﬁ1 +

Using the following fimte difference approximation
for the second and third time derivatives of v:

Vv, =— suzux 3) (Vtt )nm a4 T, (4
Consider. applying a Tayl.or series expansion to find . (w )fz+1 “2(, )ﬂ (v );—1
v(x,,t,tAf) 1nstead, assummg that all necessary (Vfﬁ)m A 3 , (5)
derivatives exist: A7
We have
At O,At At BA1Y B AL -
Vi =yt {—912 + _26 ] = v+ (vl (Ar - —912 - —23 ]+ —26 Ch )

Where @, and 8, are the real constants determined in later to have higher accuracy of the proposed method with respect
to time discretization. Using the (3) and then after some mathematical manipulations, Eq. (6) can be rewritten as.

At G,M n+1
U+ S[QIT+ —26 J(U2 )m (U, )::1 - (U ):jl - (7)

At O,Az 7t 2,At -1 -1
U —S[Az—%—z—](Uz)m(U;)n —#(Uxx);—sz(Uz)m (U, -

Tt can be easily seen that the local truncation errors are (X A#) with @, = 1,8, = O and O(AF) with 8, =1,8,=-1/2.
For the space discretization, we take five-point stencils approximating first and second derivatives

(Ux )m _ Umfz - SUmfllerhSUerl - Um+2 + O(h4), (8)
(U ) _ _Um—2 + 1&]m—l - 30Um +16Um-*—l — Um+2 4 O(h4)
o 12/ ' (9

Then, substituting (8-9) into Eq. (7), the resulting algebraic system of equations takes the form

2 4 5
Uﬁfz[%Jr a J+Uﬁfl[— aml——#]+Uﬁfl[l+—”J+

120 12° 3 3p? 2h°
20 40 1 @ Jii
Uﬂ+1 ml TR Uf’i+ _Pml —
m+l( 3% 3h2 + m+2 124 + 12h2
H amz JLL 7 2am2 4:“ H 5:“
e e S UL 1 | (10)
” 2( 12k 12h2J ” 1[ 3 3th m[ 242

2 4 o, Jii
U;iﬁ—l(_ 3;:2 _%_2}+U:1+2( 1;1; + 12]12}"'

- o f 2e = 2o afo
U”_l _Zm3 +U”_1 m3 LR 1] _ “Ym3 LUt 1 w3
o 2( 12 m=1 3k m+1 3% m+2 124
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Where
_ [ BA BAL
ocml—s[ 2 + p ](Um )
2
amz—g[AzelAtezr;m‘](U;) ,
QZAI n-1\2
=e—=——|U .
O3 =€ 6 ( il )

Whereas the finite difference scheme (10) with 0, = 1
and 8, = 1/2 has a truncation error of O(A#' + Ath"), the
scheme with 8, = 1 and @, = 0 has a truncation error of

O(AF + Athh.
This set of  equations 18 Tecurrence
relationship for  unknown  parameters vector
H _[rm4l et +1 + i i i
2t (Ufz TR ap el +2) . This pentadiagonal matrix

system 1s made up N + 1 equations including ¥ + 5
unknown for m = 0,1,..N — 1.N. Application of the
boundary conditions

n-+l -+l
(Ux )0 = (UX)N =0,
4+l n+l
(U )y =(Us)y =0
enables the elimimation of the variables
USrl,U:zrl’Ujfﬁll and Ujfﬁlz from the system (10). Ther, the

system 18 reduced to (V + 1)x(V + 1) matrix system, wlich
can be solved by using the Thomas algorithm. After

oA

0
el Wiz

=0 0 unknown vector 1s found from
2 Y

the initial condition, taking &, = 1, 8, = 0 m the system
(10), we can easily find the unknown vector
1 (Ulz’ 1 1 ) . Once the initial vectors d° and

4 T2
d' are computed, &, n=1,2,3,... unknown vectors can be

.....

found repeatedly by solving the recurrence relation (10)
using two previous &°,d "' unknown vectors. Note that

stroethe systemn (10)sanrmphctsystem, wehavetalen (Uffﬁl)z as (U;zq )2

in the coefficient «,, and done an inner iteration for 5
times to increase the accuracy of the system.

Numerical Experiments: In this section, to illustrate
the effectiveness of the presented numerical scheme, two
test problems are studied for the MEW equation.
Accuracy of the method 1s assessed by computing the
difference between the analytical and numerical results at
the node points by way of calculation of the Lee error
norm defined by

L= max|um - m|
m
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Since an accurate numerical scheme must keep
the conservation properties of evolution equations, we
will momitor the three invariants of numerical solution for
the MEW equation corresponding to conservation of
mass, momentum and energy given by the following
integrals [2]:

o

I = judx, Iy = I (u2 +,LL(ux)2)dx, I;= j u4dx.(]])

—o0

o0 o

Integrals are approximated by employing the
trapezium rule and the first derivative of # can be
computed from (8).

Motion of Single Solitary Wave for MEW Equation: The
Eq. (1) has a solitary wave solution of the form.

u(x, 1) = Asech(k[x — x, — vi]) (12)

Where ,—¢ £= k= 1 This solution corresponds to a
T
solitary wave of magnitude 4, mitially centered on the
position x, propagating towards the right without change
of shape at a steady velocity v.

In this test problem, single solitary wave simulation
is carried out over the solution domain 0 <x<80 in the time
period 0<#<20 with the parameters £ =3, = 1, x, = 30 and
the amplitudes 4 = 0.25,1. Tnitial condition (12) with =0
enables the mvariants (11) for the MEW equation to be
determined analytically as.

4 24 2uk4a? 44*
_[1:771-312:74» Ju‘ ,13:7.
i i 3 3%

Firstly, the program is run up to time ¢ = 20 with space
step B = 0.1 and time step At = 0.05. Lee error norm,
conversation invariants for the proposed method and
equivalent results for the previous methods are presented
in Table 1. Tt is clearly seen that the result obtained by the
proposed finite difference method is more accurate than
the result obtained by some earlier papers. We have also
observed that the quantities I, I, and I, remain almost
constant at the end of the running time for the algorithm,
so propagation of the single solitary wave 1s represented
faithfully.

We have also studied the same problem with 4 = 1
and 2 = At =0.01 and recorded the invariants and error
norm in Table 2. Tt can be seen that the maximum error
measured by the Lee error norm remain satisfactorily small
and numerical values of invariants are very close to
analytical values.
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Table 1: Invariants and error norms for a single solitary wave at time ¢ = 20

£=30,u=1,4=025,x=30,h=0.1, Ar=0.05, [a, b] = [0, 80].

Leox10? I L I
present 0.00240 0.7853982 0.1666654 0.0052083
[3] 0.04655 0.7853893 0.1667614 0.0052082
[5] 0.24989 0.7849545 0.1664765 0.0051995
[6] 0.25700 0.7853997 0.1664735 0.0052083
exact 0.7853982 0.1666667 0.0052083

Table 2: Invariants and error norms for a single solitary wave at time ¢ = 20

e=3,u=1,4=1,x=30, h=At=0.01, [a, b] =0, 80]

Leox10° I I I
present  0.09047  3.1415927 2.6666671 1.3333338
[6] 0.09871 3.1415790 2.6666350 1.3333310
exact 3.1415927 2.6666667 1.3333333
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Fig. 1: Single solitary wave at = 0 and # = 20.
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Fig. 2: Absolute error distribution at # = 20.
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Fig. 3: Interaction of two solitary waves
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Fig. 4: Error for the invariants

Initial solution and solitary wave profile at time ¢ = 20
are depicted in Fig. 1 with 4 =0.25,x,=30, 2= 0.1, Az 0.05
and space interval [a, b] = [0,80]. Amplitude of the solitary
waves at ¢ = 20 is measured as 0.2499222. When the
amplitudes of initial and solitary wave profiles are
compared, the difference is 0.0000778 so that there is no
degradation between amplitudes. The error distribution of
the numerical and analytical solution at time ¢ = 20 is also
shown in Fig. 2. As seen from the figure, absolute value
of the maximum error occurred at about peak of solitary
wave.

Interaction of Two Solitary Waves for MEW Equation:
We consider the interaction of two solitary waves using
the following initial condition



World Appl. Sci. J, 12 (2): 197-201, 2011

u(x, 0) = A;sech(k[x —x,]) + A,sech(k[x —x,]) (13)
Tn this test problem, all computations are done for the

parameter s—3 y-16-—- 4,=1,4,=0.5x, =15andx, =
Ju

30 over the region O<x<80. These parameters provide
two solitary waves of magnitudes 1 and 0.5 and peak
positions of them are located at x 15 and 30,
respectively. The analytical values of the invariants can
be found as

I = %(Al T 4y )% 47123889,

2 2
n-2(a +A22)+£(A12 + 4} )~ 33333333,
k

4
Iy =—

(4 + 4%)~1.4166667
3k

The program 1s run up to time ¢ = 80 with 2 = 0.1 and
At = 0.025. The interaction process can be observed
clearly from the graph of the time-space-amplitude in
Figure 3. After the nonlinear interaction takes place
between about time 30 and 50, two solitary waves regain
the original shape. The amplitude of the larger wave is
1.000014 at the pointx = 56.9 at the time ¢ = 80, whereas
the amplitude of the smaller wave 15 0.498759 at the pomt
x = 37.7. The absolute difference in amplitude is only
0.001241 for the smaller wave and 0.000014 for the larger
wave. Figure 4 shows that the absolute value of the
differences between the exact and numerical values of
nvariants.

CONCLUSION

The MEW equation 1s solved numerically using finite
difference method by using new time discretization. The
efficiency of the method is tested on the problems of
propagation of single solitary wave and interaction of two
solitary waves. Propagation of the single solitary wave
and interaction of two solitary waves are simulated well
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with  the
invariants do not change much during the computer run.
Since the proposed method is an accurate and efficient

proposed  algorithms and conservation

numerical techmique and also application of the method 1s
easier than many other numerical techniques, this
technique can be considered reliably in obtaming the
numerical solution of the similar type of nonlinear
equations.
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