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Abstract: Regression Analysis 13 a widely used technique in methodcomparison studies. There are several
studies about estimating and testing interactions in a linear regression model but It’s very important to use
correct regression technique n comparison study to obtain correct results. In method comparison studies,
whenboth ofthe dependent and the independent variables mclude some measurements errors, Type 1I
Regression techniques must be used to calculate the correct parameters. The aim of this study is to discuss
eight different regression techniques (OLS, OLS-Bisector, Major Axis (MA), Reduced Major Axis (RMA),
Deming, Passing-Bablok, York and Theil) that may be used in method comparison studies and which are the
alternatives of Ordinary Least Squares (OLS) regression analysis when the assumptions of OLS are not met and
to suggest alternative techniques for calculating the correct linear relationship between the two methods.
In simulation part of this study there has been generated different types of data and in all conditions,
OLS-Bisector method, which bisects the OLS (Y|X) and OLS (X|Y), estimated the parameters near to real values
and, show the best performance then all other technicues.
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INTRODUCTION

The comparison of analytical methods using
regression analysis began in the fifties when Mandel and
Linmig[1] first applied the jomt confidence interval test
for the intercept and the slope to chemical problems.
However, applying this test to the regression parameters
derived from the least squares method assumes that the
results in the x-axis (often the reference method) are error-
free, or that the errors assigned to the reference method
are negligible with respect to those given by the new
method (y-axis). This 18 not always true since the
precision of both methods must often be taken into
account. These precisions can be considered using the
different existing approaches for calculating regression
coefficients and related statistical parameters that
consider errors in both axes [2].

Linear Measurement error models arise when the
mdependent variable m a regression analysis 1s
measured with error. Tt is well known that this random
measurement error artificially inflates the dispersion of the
observations on the mdependent variable and biased
least squares estimates of slope towards zero [3]. The

least-squares method is frequently used to calculate the
slope and intercept of the best line through a set of data
points. However, least-squares regression slopes and
intercepts may be incorrect if the underlying assumptions
of the least-squares model are not met. Two factors in
particular that may result in incorrect least-squares
regression coefficients are: (a) imprecision in the
measurement of the independent (x-axis) variable and (b)
inclusion of outliers in the data analysis[4]. OLS assumes
an error-free x variable and a constant analytical
imprecision (s)of the y (also called
“homoscedastic” variance), both of which are seldom met
in practice [5].

Most of the statistical models used mm method
comparison studies are designed for normally distributed
data. However, some systems in clinical diagnostic are

variable

based on counting of certamn particles rather than
measuring a substance. In some of these cases,
particularly 1 hematology where counting of cell types 1s
of primary importance, the assumption of normal
distribution 1s not always appropriate. Thus, other
distributions  beside normal distribution need to be
considered [6].
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In considering the types of statistical model we might
wish to apply, a starting pomnt 1s to consider the types of
question we might which to address. Considering first the
comparison of two methods of measurement x and y, with
X being a standard measurement, we may wish to
substitute y for x so that y and x are interchangeable
without need for mformation regarding the method used.
The motivation for this may be that y is cheaper or less
mvasive to the patient than x, or one may suspect that y
is more reliable/precise than x. For this comparison x may
be a gold standard for the characteristic being measured.
Alternatively there may be a gold standard z against
which both x and y are to be compared. There may be a
trade-oftf between the precision of each measure and
accuracy/validity relative to z. The scales x and y may be
expressed m the same umts. For reasons of convention,
it may be important for y to have the same measurement
scale as x [7].

MATERIALS AND METHODS

A linear relationship between the target values of the
two methods 1s assumed as; [8]

Y, = a pX,

The measured value is likely to deviate from the
target value by some small “random” amount (¢ or &). For
a given sample measured by two clinical chemistry
methods, the following relations exist [8].

=X Tteg
»=Y+34
Under these conditions, in this study the real model
is planned as:

Yi=X +u,

This means that the real mtercept 1s equal to zero (0)
and the real slope is equal to one (1). Then,OLS,0LS-
Bisector, Major Axis (MA), Reduced Major Axis (RMA),
Deming, Passing-Bablok (Pas-Bab.) York and
TheilRegression techniques are applied to the data sets
which are simulated as shown above by MATLAB 7.02.
In simulation,these methods are comparedin estimating
the known slope and known mntercept of a regression line
when the independent variable is measured with error and
also MSE criteria is considered whether which technique
gives the best fit to the real data. Simulation numbers for

each sample is made as 100000/n and the MSE is
calculated as;

Z(K 7(50 + BlX:'))Z
n—k

MSE =

Here k 1s the number of the parameters. It’s equal to
2in this study because all of the techmquesare simple
linear regression techniques.

The computations of the parameters of OLS,0LS-
Bisector, MA, RMA, Deming, Pas-Bab.York and Theil
Regression techmquesare given mAppendix.

Table 1. shows the Mean Square Errors of the
Regression Techniqueswith Student distribution at 30
degrees of freedom and mcluding outliers mn different
sample sizes. In this table it’s clear that the OL.5-Bisector
Regression’s MSE value i1s smaller than all other
techniques and this technique fits the data sets better
than the others.

The performance of the OLS-Bisector Regression for
4, 10 and 30 degrees of freedom of Student distribution
and either mcluding or not any outliers can be seen In
Table 2. MSE value of OLS-Bisector Regression technique
1s again smaller than all other techniques.

Table 1: Mean Square Errors of the Regression Techniqueswith Stident
distribution at 30 degrees of freedom and including outliers in
different sample sizes

Sample Size

Regression

Technique n=>50 n=100 n=200
0oLS 2.8172 2.459 23171
OLS-Bisector 1.1504 1.0952 10789
MA 1.2782 1.177 1.1486
RMA 1.4962 1.3232 1.2786
Deming 1.27 1.1774 1.1488
Pas-Bab. 1.3539 1.241 1.1991
York 1.4486 1.3209 1.2353
Theil 1.3919 1.3404 1.313

Table 2: Mean Square Errors of the Regression Techniqueswith Student
distributions at different degrees of freedoms and either including
outliers or nat, in sample size 200

Distribution Type

Regression

Technique T-4 T-4-0 T~10 T~10-0 T-30 T~30-0
0oLS 2.9682 21475 43383 21573 53682 23171
OLS-Bisector 10401 10777 10324 10393 10577 10789
MA 1.1793 1.1335 1.3287 1.0¢6 1.5184 1.1486
RMA 1.2644 1.2763 1.2916 1.2053 1.3712 1.2786
Deming 1.1828 1.1303 1.3399 1.0953 1.5278 1.1488
Pas-Bab. 1.1601 1.1732 1.1394 1.1287 1.1873 1.1991
York 1.427  1.1851 14921 12643 1.3169 1.2353
Theil 1.3563 1.2816 1.2633 1.2869 1.2837 1.313

+ T-4: Student distribution at 4 degrees of freedom.
» T~4-0: Student distribution at 4 degrees of freedom and including outliers
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Fig. 3: Regression lines of different techniques at 30 degrees of freedom Student distribution and including outliers in

sample size 200.

Table 3. Estimated regression parameters andMean Square Errors of the data
sets of Student distribution at 30 different degrees of freedoms and
including outliers in sample size 200

Regression Technique Bo b MSE
OLS -0.2976 1.6063 2.3171
OLS-Bisector -0.0433 1.1077 1.0789
MA -0.0723 1.1712 1.1486
RMA -0.109 1.2477 1.2786
Deming -0.0719 1.1708 1.1488
Pas-Bab. -0.0985 1.2037 1.1991
York -0.0743 1.1752 1.2353
Theil 0.1038 0.7136 1.313

In Figure 3., lines of all eight regression techniques
are drawn at 30 degrees of freedom Student distribution
and including outliers in sample size 200. This figure is
also related with Table 3. and all the regression lines are
drawn by the coefficients in Table 3.

In real model the regression coefficients was planned
as 0 and 1 respectively. In Table 3. It can easily be seen
that the coefficients of OLS-Bisector Regression is near to
these values and MSE value of this technique is smaller
than the others, which means that this is the best
technique.

RESULTS AND DISCUSSION

In this study, performances of both Type I and Type
II linear regression techniques, which are commonly used
in method comparison studies, are compared via
simulation study. The MSE criteria is took into
consideration to determinate the best regression
technique. B, and [, are considered as 0 and 1

respectively in the real model. The performances of the
eight regression techniques are compared indifferent
sample sizes (n=50, 100 and 200) and in different
distribution types (student distribution at 4, 10 and 30
degrees of freedom) and either including or not any
outliers.

As a result the OLS-Bisector regression technique,
which bisects the OLS(Y|X) and OLS(X]Y), estimated the
parameters near to real values than all other Type I and
Type II regression techniques. MSE of this technique is
also smaller than all other techniques.

In other studies about method comparison studies, it
can be easily seen that the Deming regression is
widespread used,and in some studies Passing-Bablok
regression gives the best results. In this study the
performance of OLS-Bisectional regression technique is
tried to put forward and the findings showed that this
technique is better than the others, in conditions of
thisstudy.

When the conditions change this technique may or
may not give the best performance but in other studies if
the researchers think on OLS-Bisector regression, it will
be very useful for them to obtain the correct results.
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Appendix

OLS-bisector Regression Technique: The OLS-Bisector
regression Technique simply defines the line that
mathematically bisects the OLSYX and the OLSXY lines
[9]. The slope coefficient of OLS-Bisector Technique can
be calculated as in (1).

=B A) (B R

Here ﬁlzsv 1s the slope of OLS(X|Y) regression and
g

xx

PR}
_ W
Br=2

o

1s the slope of OLS(Y|X) regression [10].

Major Axis (MA) Regression Technique: Unlike standard
regression, the MA line does not depend on which
variable 13 called “independent” and which “dependent.”
It always lies between the regression line of y on x and the
regression line of x ony [11].

The calculation of the slope and the variance of this
slope which want to be estimated by tlus techmique are
given in (2).

ﬁ’\m —;|:()é2 _B\l_l)""Sign(Szy) 4+(ﬁ’\2_ﬁ1_1)2} (2)
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Reduced Major Axis (RMA) Regression Technique:
The reduced major axis regression was proposed to
alleviate the scale dependency of orthogenal regression
[12].

The calculation of the slope and the vanance of this
slope which want to be estimated by this techmque are
givenin (3).

ﬁWA = S'ign(sxy )(BIBE )”2 &

Demingregression Technique: Deming approaches the
problem by minimizing the sum of the square of the
residuals 1n both the x and y directions simultaneously.
This derivation results in the best line to mimmize the sum
of the squares of the perpendicular distances from the
data pomts to the line [13].

To estimate the regression line in Deming regression,
the & value, given 1n (4), must be calculated first:

2
_ Sex

A=
52 “4)

Here; S, and S, are the error variances of x and y
values respectively.

The calculation of the slope n Deming regression 1s
givenin (5). The terms u,p and q are also given in (6).

- (quu)Jr (uflq)2+42,p2
JBDEM = 24
14

(3)

g=2.(5-¥) (6)

Passing-Bablok Regression Technique: Passing and
Bablok have proposed a linear regression procedure with
no special assumptions regarding the distribution of the
data. This nonparametric method 1s based on ranking the
observations so it 1s computationally intensive. The result
is independent of the assignment of the reference method
as X (the independent variable) and the test method as ¥
(the dependent variable) [14].

The computation of the slope and the intercept are
given in (7), (8) and (9).

Yy
b =" 1<i<j=<n
- ! (7
[ﬂ*kj AfNis odd
. 2
Bz =11 o (®)
—| by b, AfNis even.
2 [E”(] [THK]

Here N is the sample size and K is the number of the
values of by with by<-1.

a = med{y,— bx} (N

The method takes measurement errors for both x and
y nto account, but the method presumes that the ratio
between analytical standard deviations is related to the
slope in a fixed manner Otherwise, a biased slope estimate
The method 1s
corresponding  parametric

arises. not as efficient as the

procedures, ie. Deming

procedure [15].

York Regression Technique: As York [16] stated in his
journal, this regression technique considers the errors in
both variables. The slope in York regression which
requires an iterative solution s given m (10), (11), (12) and

(13).
SRy -7)

b=
" (10
ZWIﬁE(xE—J?)
Here; "
W= wix w(y,)
Cowl(x) by )= 2hrfwlew(y) (1)
| BT BT e my ) e
B=w W(_)/,)Jr o (6%, —X)+(y,— ) o
(12)
aﬂd n n
D> Wk, >y,
x=- andy == (13)
v W,

Since W, and f3, are functions of b, Eq.(10) must be
solved iteratively. Given a set of weights w(X) and w(T))
and error correlation #, for each data point, choose an

1864



World Appl. Sci. J., 12 (10): 1560-1865, 2011

initial guess for b (possibly from either the OLSXY or
orthogonal technique). Iterate through the following steps
until successive values of b are within a predefined
tolerance:

*  Usmng b, wix,), w(y,) and r, calculate ¥, for each data
point from (11)
¢ Using the observed points (x, y) and ¥, calculate ;

and 3 from (13)

e Calculate f, for each data point from (12).

+  Calculate a new estimate for b from (10)and return to
step (1).

+  The intercept, a, is then found by 4—5_s .

The York regression technique 1s thus very
straightforward to implement end in our expenence seldom
requires more than 10 iterations (and usually much less)
for convergence [17].

For all the regression techmiques given above, the
mtercept term (except Passing-Bablok regression) can be

calculated as in (14).

a,=y7-Bx (14)

Here, 3 and 3 are the means of the y, and x; values

respectively.

Theil Regression Technique: Theil’s regression 1s a
nonparametric method which 1s used as analternative to

robust methods for data sets with outliers.

Although
reasonably well for almost any possibledistribution of

thenonparametric  procedures  perform
errors and they lead to robust regression lines, they
require a lot ofcomputation. This method 1s suggested by
Theil [18] and 1t 1s proved to beuseful when outliers are
suspected, but when there are more than few variables,
the application becomes difficult.

Sprent [19] states that for a simple linear regression
model to obtain theslope of a line that fits the data points,

the set of all slopes of lines joining pairs ofdata points.
(xi,y1), (x,v9), xj#x4, for | < 1 <] < nshould be calculated as

Hussaimn and Sprent [20] say that no generality is
losen if we takel < 1 <) < n assuming that the x, are
arranged in ascending order. Note thatb,=b,. According
to these results the theTheil’s slope estimator 1s
élzmgd{b”‘xj;sxj} where x,<x £...<x It is known that

median estimators are less affected compared to the
meanestimators.

Therefore, these estimators are resistant to outliers in
the sample data Nevitt and Tam [21] state that there are
several methods for computingthe y-intercept. One of
these methods 1s to calculate

XY Xy
XY XY, .
ay=—"— 1<, X1 # X],
XX

and taking the median of these a; values will give us the
y-intercept [22].
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