Tower of Hanoi Problem with Arbitrary Number of Pegs and Present a Solution

S. Kordrostami, R. Ahmadzadeh and A. Ghane

Department of Mathematics, Islamic Azad University, Lahijan, Iran

Abstract: Suppose that we have m pegs and n disks of distinct sizes such that initially disks are stacked on the first peg ordered by size with the smallest at the top and the largest at the bottom. In this paper we want to find a solution for transition disks to one of another pegs using the well-known movements of Tower of Hanoi such that there are no solution better than it yet.

Key words: Tower of Hanoi • Recursive formula • Pegs

INTRODUCTION

In the well-known Tower of Hanoi problem, composed over a hundred years ago by Lucas [1], a player is given 3 pegs and a certain number n of disks of distinct sizes and is required to transfer them from one peg to another. Initially all disks are stacked (composing a tower) on the first peg (the source) ordered by size, with the smallest at the top and the largest at the bottom. The goal is to transfer them to the third peg (the destination), moving only topmost disks and never placing a disk on top of a smaller one. The known recursive algorithm, which may be easily shown to be optimal, takes \(h_n = 2^n - 1 \) steps to accomplish the task. Since there is not much mathematical mystery left about the original game, its lovers developed various versions of it [2-6]. In this paper we want to solve Tower of Hanoi problem with arbitrary number of pegs.

Tower of Hanoi Problem with M Pegs: Suppose that we have n disks of distinct sizes \(d_1, d_2, \ldots, d_n \), such that \(d_1 > d_2 > \ldots > d_n \) and m pegs (m>3). Initially disks are stacked on the first peg ordered by size (Fig.1.). The goal is to transfer all disks to one of another pegs.

Algorithm of Solution: For transfer of disks from peg 1 to one of another pegs such as peg m, at the first disk must be placed in the bottom of the peg m. It is possible when all other disks be stacked in another pegs. Then disk must be transferred to peg m, top of first disk. But it is possible when disk be in one peg alone, for example peg 2 and all disks except disk and disk be stacked in another pegs. In this manner for transition of disks to peg m top of disks must have been a position as following. (Fig.2.)

That means \(n-(m-2) \) remainder disks must be stacked on one peg such as peg \(m-1 \) in Fig.2. certainly. In fact we want to find a recursive formula using this idea for solving this problem.

If we show the number of motions for transition of n disks to the peg m with \(H_n^m \), it is obvious that if \(n < m \) then \(H_n^m = 2n - 1 \).

Corresponding Author: S. Kordrostami, Department of Mathematics, Islamic Azad University, Lahijan, Iran.
Tel: +98-1412222602, Fax: +981412222602, E-mail: krostami@guilan.ac.ir
Now with this introductions we want to find H_n^m for $n \geq m$, using following steps:

Step 1: Transition of disks d_m, \ldots, d_n with $H_{n-(m-2)}^m$ motions from peg 1 to peg $m–1$.

Step 2: Transition of disks $d_2, d_3, \ldots, d_{m-2}$, from peg 1 to pegs $2, 3, \ldots, m–2$ with $m–3$ motions

Step 3: Transition of disks $d_1, d_3, \ldots, d_{m-2}$, to peg m with $m–2$ motions.

Step 4: Transition of disks d_m, \ldots, d_n with $H_{n-(m-2)}^m$ motions from peg $m–1$ to peg m.

Therefore for \geq, we have:

$$H_n^m = H_{n-(m-2)}^m + (m-3) + (m-2) + H_{n-(m-2)}^m$$

$$\Rightarrow H_n^m = 2H_{n-(m-2)}^m + 2m - 5$$

Upper relation is a non-homogeneous recursive formula of degree $m–2$ and we want to solve it with primal conditions:

$$H_0^m = 0, \ H_1^m = 1, \ H_2^m = 3, \ldots, H_{m–3}^m = 2(m–3)–1$$

We must solve this recursive formula in $m–2$ cases:

Case 1: $n = (m–2)k$
Case 2: $n = (m–2)k + 1$
Case 3: $n = (m–2)k + 2$
\vdots
Case m-2: $n = (m–2)k + (m–3)$

In all upper cases n is a non-negative integer number.

Studing of Case 1: In this case $n = (m–2)$ and we have:

$$H_n^m = 2H_{n-(m-2)}^m + 2m - 5$$

$$= 2(2H_{n-2(m-2)}^m + 2m - 5) + 2m - 5 = 2^2 H_{n-2(m-2)}^m + 3(2m - 5)$$

\vdots

$$= 2^k H_{n-k(m-2)}^m + (2^k - 1)(2m - 5)$$

$$\Rightarrow H_n^m = (2^{m-2} - 1)(2m - 5)$$
Studing of Case 2: In this case \(n = (m-2)k + 1 \) and we have:

\[
H_n^m = 2^kH_1^m + (2^k - 1)(2m - 5) = 2^k + (2^k - 1)(2m - 5)
\]

\[
\Rightarrow H_n^m = 2^{m-2} + (2^{m-2} - 1)(2m - 5)
\]

Studing of Case 3: In this case \(n = (m-2)k + 2 \) and we have:

\[
H_n^m = 2^kH_2^m + (2^k - 1)(2m - 5) = (2^k \times 3) + (2^k - 1)(2m - 5)
\]

\[
\Rightarrow H_n^m = 3 \times 2^{m-2} + (2^{m-2} - 1)(2m - 5)
\]

Studing of Case m-2: In this case \(n = (m-2)k + (m-3) \) and we have:

\[
H_n^m = 2^kH_{m-3}^m + (2^k - 1)(2m - 5) = 2^k(2(m-3) - 1) + (2^k - 1)(2m - 5)
\]

\[
\Rightarrow H_n^m = (2(m-3) - 1)2^{m-2} + (2^{m-2} - 1)(2m - 5)
\]

Therefore in the abstract we have:

If \(n = (m-2)k \) then \(H_n^m = (2^{m-2} - 1)(2m - 5) \)

If \(n = (m-2)k + 1 \) then \(H_n^m = 2^{m-2} + (2^{m-2} - 1)(2m - 5) \)

If \(n = (m-2)k + 2 \) then \(H_n^m = 3 \times 2^{m-2} + (2^{m-2} - 1)(2m - 5) \)

\[
\vdots
\]

If \(n = (m-2)k + (m-3) \) then \(H_n^m = (2(m-3) - 1)2^{m-2} + (2^{m-2} - 1)(2m - 5) \)

Concluding Remarks: We found a solution for transfer of \(n \) disks using the well-known movements of Tower of Hanoi with \(m \) pegs from one peg to one of another pegs. We did not find optimal solution, but there are no solution better than this solution yet. In general case, \(H_n^m \) can be obtained as following:

\[
H_n^m = \begin{cases}
\frac{n}{(2m - 5)2^{m-2} - 1} & i = 0 \\
\frac{n}{(2i - 1)2^{m-2} + (2m - 5)2^{m-2} - 1} & i \neq 0
\end{cases}
\]

Such that \(i \) is remainder of division of \(n \) by \(m-2 \) (\(i = n \mod(m-2) \)).

REFERENCES