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Abstract: Due to the fact that mediation model involves several linear regression equations, there is concern
not only when the data contain observations that are extreme in the response variable but also in the regressor
space, namely the leverage points. The Diagnostic Robust Generalized Potentials (DRGP) procedure in multiple
linear regression incorporated the Robust Mahanalobis Distance based on the minimum volume ellipsoid and
uses Median Absolute Deviation as its cut-off points. In this paper, a slight modification to the DRGP is
proposed and we call it ModDRGP. The ModDRGP is applied to the mediation model. The performance of our
proposed ModDRGP is evaluated based on Monte Carlo simulation study. The simulation results suggest that
ModDRGP has improved the accuracy of the identification of high leverage points when the percentage of high
leverage points is medium or high. The method can also be used for the identification of high leverage points
in multiple mediation models, as well.

Key words: Mediation analysis  Mahalanobis distance  Potentials  Monte Carlo

INTRODUCTION w  which is considered as large only when it exceeds

Consider the standard p variables multiple linear
regression models which can be presented in the matrix
notation as  = X  + , where  is an n×1 vector of
response (dependent variables), X is an n × p matrix of
predictors (explanatory variables) and is an n × 1 vector
of error terms with zero mean and an unknown variance .2

The  is n×1 vector of regression coefficients. The
predicted value can be written as  = X(X X) X'Y’,T 1

where' X(XTX)  X  matrix is formally known as a weight1

matrix or leverage matrix or also hat matrix, denoted by W.
Usually the diagonal elements w  of the weight matrix Wii

are considered as leverage values, which measure
influences in the x-space. The mean value of leverage wii

for the n points in the sample is , where p is the

number of the independent variables and n is the number
of observations. Based on the twice-the-mean-rule [1],
observations are considered unusual when w  exceededii

. Afterwards, [2] updated  the  cut-off  points  for

ii

. Meanwhile, [3] suggested that the value of wii

¡ 0.3 of the range of possible values of w , (0 ! Üwii !ij

Ü1) appear to be secure, whereas values between 0.2 and
0.5 are risky. Hadi [4] revealed that high leverage points
may distort the leverage structure in such a way that the
above leverage diagnostics may fail to identify the
genuine high-leverage points. He introduced a new type
of measure, where the leverage of the i  point is based onth

a fit to the data with the i  point deleted. Every possibleth

subset of n-1 observations is used to form the weight
matrix and weight of every deleted observation in turn is
generated externally which is known as potentials. Imon
[5] defined the i  leverage value asth

(1)

According to Hadi [4], the i  potential can be definedth

as , where X   is  the  data  matrix X(i)
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with the i  row deleted. Meanwhile, p  is interpreted as set X ={x , x ,...,x }  to which the smallest regularth
ii

the amount of leverage each value y  has in ellipsoid could cover. In this case, h can be chosen to bei

determining . Observations corresponding to equal to . This is called the minimum volume

excessively large potential values are considered as high
leverage points. In his article, Hadi [4] also proposed a
cut-off point for p  as: median (p ) + cMAD(p ), whereii ii ii

and c is a constant

usually chosen to be 2 or 3. Subsequently, Imon [5] has
shown a simple relationship between w  and p  as asii ii

. The leverage value is closely related with the

Mahalanobis distance [6, 7] and can be seen as a measure
of the distance of the object to the centroid of the data.
This mahalanobis distance is a common non-robust
multivariate approach that can be presented as diagonal
elements of the matrix:

(2)

Where µ is the arithmetic mean vector and S is the
covariance matrix. The classical Mahalanobis Square
Distance  (MSD)  is  not  ideally suited to multivariate
outlier  detection  because  it   is   not   resistant to
outliers.  This  is  due  to  the fact that the standard
sample location and shape parameters are not robust to
outliers and the distributional fit to the distance breaks
down when robust measures of location and shape are
used in the MSD [8]. Rousseeuw and Leroy [9]
recommended to use distance based on robust estimators
of multivariate location and scatter (µ , S ) to avoidR R

masking effect. A  is used as the cut-off point.

Any points which has MSD value larger that the cut-off
point is considered as outlier, since for normally
distributed data, the MSD is approximately chi square
distributed with p degrees of freedom.

General form of Mahalanobis Squared Distance
(MSD) can be expressed as

(3)

Where T(X) and C(X) are robust estimations of location
and scatter, respectively. Potential multivariate outliers xi

will typically have large MDi values and a comparison
with the distribution can be made. The T(X) can be

taken as the center of the minimum volume ellipsoid
covering at least half of the h points as suggested by
Rousseeuw [10], where h is number of points of  the  data

1 2 n
p

ellipsoid  (MVE)  estimator.  The  ellipsoid  can be
employed   as    the    corresponding   covariance
estimator. Habshah, et al. [11] revealed that the
calculation of MVE can be started by drawing a sub
sample  of  (p  +  1)  different  observations,   indexed   by
J = (i ,i ,...i ). Then they determined the arithmetic mean1 2 p+1

and the corresponding covariance matrix, given
respectively by.

  and
(4)

Where C  is non-singular. The corresponding ellipsoidJ

should then be inflated or deflated to contain exactly h
points, which corresponds to compute

. The volume of the

resulting ellipsoid, corresponding to m C  is proportionalJ J
2

to [det(m
It is repeated for many J so that the above

determinant becomes the minimum and its corresponding
values yield  and ,

where  is the median of the chi-squared distribution

with p degrees of freedom. This correction factor is
required to attain the consistency for multivariate normal
data.

After obtaining the robust multivariate location and
scale estimates given by MVE, we compute the robust
M a h a l a n o b i s d i s t a n c e

. Rousseeuw

and Leroy [9] suggested a cut-off point for RMD  asi

. This cut-off value comes from the assumption

that the p-dimensional variables follow a multivariate
normal distribution. Nevertheless, in a real life problem
there is no guarantee that data would come from a
multivariate normal distribution. Another disadvantage of
the usual cut-off point is that it depends only on the
dimension of the regressors, but does not take any
account of the number of observations. To overcome
these shortcomings, Imon [12] suggested a cut-off value
for the robust Mahalanobis distances as:
Median(RMD )+3MAD(RMD ).i i
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Diagnostic-Robust Generalized Potentials (DRGP):
There is evidence that all diagnostic techniques
discussed  above fail to identify multiple high-leverage (6)
points  [5].  To  overcome  the  problem,  Imon  [5]
extended  the  idea  of  Hadi’s  potential  to  a  group This tells us that the potential value of any point i,
deletion study. Let us denote a set of points ‘remaining’
in  the  analysis  by  R  and  a  set  of  points  ‘deleted’  by
D. Hence, R contains (n - d) points after d < (n - k) points
in  D  are deleted.  Without  loss of generality, assume
that  these  observations  are  the  last  of  d  rows  of X
and Y so that the weight matrix W = X(X X) X  can beT 1 T

partitioned as

Where UR = X (X X) X  and UD = X (X X) X  areR R D D
T 1 T T 1 T

symmetric matrices of order (n-d) and d respectively and
V = X (X X) X  is a (n-d)×d matrix.R D

T 1 T

Habshah, et   al.   [11]   proposed  Diagnostic
Robust Generalized Potentials (DRGP) for the
identification of high leverage point. It was done by
computing generalized potentials based on a set R
obtained  from  the  robust  Mahalanobis  distances
(RMD)   which   were   obtained   from  minimum variance
ellipsoid (MVE) method suggested by Rouesseuw and
Leroy [9]. They applied the cut-off value proposed by [12]
to identify whether all elements of the deletion set have
potentially high-leverages or not. The set is expected to
possess the right deleted points with high p  values dueii

*

to the fact that the D set is based on RMD.
Based on a group of deleted points indexed by D,

Habshah, et al. [11] defined.

(5)

It should be noted that w  is the i  diagonalii
(-D) th

element of X(X X ) X  matrix. When the  size  of  R  isR R
T 1 T

(n-1) and D = i, we observe from the equation 1 that wii
(-D)

= x (X X ) x , = p  which shows that w  is a naturalT T 1 (-D)
i (i) (i) i ii ii

extension of p .ii

Suppose   now  that    a   further   point   I  is
removed  from    the    remaining   subset   R   and  joins
the  deletion  subset  D.  For  any  such  I,  it  is  easy  to
show that.

generated externally should be equivalentto the quantity 

when w  is generated internally on a reduced space.ii
(-D)

Using these facts, Habshah, et al. [11] used the
generalized potentials for all members in a data set which
are defined as.

(7)

Where  D   is   any   arbitrary   deleted   set   of  points.
There   exists   no   finite   upper  bound   for   p ’s   and*

ii

it  may  not  be  easy  to  derive  a  theoretical  distribution
of  them.  Habshah,  et  al.  [11]   considered  p   to be*

ii

large if p  > Median(p )+cMAD(p ). The merit of this* * *
ii ii ii

method is swamping less good leverage as high leverage
points.

New Approach of Diagnostic-robust Generalized
Potentials: The identification of high leverage point is an
important area of research in the mediation model as its
presence will have an unduly effect on the estimation of
the mediation model. This motivates us to apply the DRGP
technique to the mediation model with a slight
modification. The DRGP used the MAD as the cut-off
point in the identification of outlier. We call our proposed
approach of DRGP as Modified Diagnostic-Robust
Generalized Potentials (ModDRGP). The ModDRGP
involves a sophisticated Q  estimator to which MAD isn

developed.
A very robust scale estimator is the median absolute

deviation about the median, given by MAD  = c med|xi –n

med x |. This estimator is also known as median absolutej j

deviation (MAD) or even median deviation. The MAD is
an estimator of scale with a 50% breakdown. It was first
promoted by Hampel [13], who attributed it to Gauss. Here
c is a constant, a small sample correction factor that can
be chosen depending on the sample size to achieve
unbiasedness.
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Rousseeuw and Croux [14] mentioned that the MAD verified that both MAD and Q have the same breakdown
also has some drawbacks. First, its efficiency at Gaussian point that is 50%. Nonetheless, the efficiency of the Q  is
distributions is very low; whereas the location median's higher (86%) than the MAD (37%). This work inspire us
asymptotic efficiency is still 64%, the MAD is only 37% to incorporate the Q  instead of MAD. By using the Q
efficient. Second, the MAD takes a symmetric view on rather than the MAD in the equation of cut-off point in
dispersion, because one first estimates a central value (the the DRGP, we hope a more powerful scheme that can
median) and then attaches equal importance to positive detect more outliers in mediation analysis which involves
and negative deviations from it. Rousseeuw and Croux several regression equations.
[14] then proposed a location-free estimator, Q , with 50% We use the following procedure to identify potentialn

breakdown point and higher efficiency based on an order outliers in mediation analysis as follows:
statistic of all pairwise distance, which ca be written as: Qn

= c.{|x  – x |; < }  The c is a constant factor and i j i j (k).

which is approximately  and h is a subsample size

in the data set (h n). The value of h is  (i.e.,

roughly half the number of observations). In words, we

take k  order statistic of the  interpoint distances. Weth

use the value 2.2219 (as in [14]} since this is the value that
makes Q  a consistent estimator for Gaussian data. The Qn n

estimator has positive small-sample [17].
Their Q  estimator is given by the k  order statistic ofn

th

the  inter-point distances. It also possesses a

breakdown point of 50%, i.e. it can resist up to almost 50%
large outliers without becoming extremely biased (50% also propose another diagnostic method which we call
breakdown point, bounded influence function).
Additionally, its Gaussian efficiency is 82% in large
samples, which is much higher than that of other robust
scale estimators. The Q  estimate does not depend onn

symmetry [15]. The Q  scale estimate is motivated by then

Hodges-Lehmann [16] estimate of location of

, for 1< i j < n.

The Proposed Methods (MODDRGP): We propose a
diagnostic technique to identify multiple high-leverage
points in mediation analysis. To the best of our
knowledge, no work is found in the literature on the
identification of high leverage points in mediation models.
Most of such works are devoted only to multiple linear
regression models (as in [4], [5], [11]). Our proposed
method is based on the DRGP that has been proposed by
Habshah et al. [11]. The proposed method employs the Qn

estimator instead of MAD. Croux and Rousseeuw [17]

n

n

n n

Step 1 : For each i point on (x ,m ) pair, calculate thei i

RMD ,i
Step 2 : An i  point with (RMD ) exceeds cut-off pointth

i

of median(RMD )+ 3MAD(RMD ) is suspectedi i

a high-leverage point and included in the
deleted set D. The rest of the points are put
into the R set,

Step 3 : Based on the above D and R sets, compute the
p using the formula written in the equation 7,*

ii

Step 4 : Any deleted point having p  exceeds cut-off*
ii

point of median(p )+ c Q (p ) is finalized and* *
ii n ii

declared as the high-leverage points, where c
=3.

For convenience, we refer the above new method of
identifying potential outliers in mediation analysis as
ModDRGP1 where the MAD is incorporated in the
second step of the ModDRGP1 algorithm. In this paper we

ModDRGP2 whereby a slight modification is made on the
second step of ModDRGP1 and keeps other steps the
same. The ModDRGP2 modifies the criteria of determining
the cut-off point in the step 2 of ModDRGP1. Instead of
using median(RMD )+ 3MAD(RMD ), to suspect a high-i i

leverage point, the ModDRGP2 employs the
median(RMD )+ 3Q (RMD ).i n i

Examples
Harris and Rosenthal’s Data: This data set which is taken
from Harris and Rosenthal [18] consists of 40 subjects
that describes teacher expectancies and student
achievement. They described potential mediational
processes for how expectancies about a person’s
behavior lead to actual changes in behavior. The
dependent variable (Y) was the score on a test of basic
skills after one semester in the classroom. There are two
mediator  variables,  M   and  M   to  represent  social1 2

climate  and  teacher  input,  but  we  arbitrary  use  M   for1
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Table 1: Robust mahalanobis distance (RMD), DRGP, ModDRGP1 and
ModDRGP2 for Harris and Rosenthal data

RMD DRGP ModDRGP1 ModDRGP1
Index (3.3914) (0.0891) (0.0920) (0.0920)

1 0.9505 0.0511 0.0511 0.0511
2 1.4991 0.0236 0.0236 0.0236
3 1.3038 0.0766 0.0766 0.0766
4 2.4250 0.0613 0.0613 0.0613
5 1.4226 0.0694 0.0694 0.0694
6 0.8779 0.0399 0.0399 0.0399
7 0.6064 0.0324 0.0324 0.0324
8 0.3178 0.0297 0.0297 0.0297
9 1.6705 0.0216 0.0216 0.0216
10 2.7710 0.0803 0.0803 0.0803
11 1.5762 0.0973 0.0973 0.0973
12 1.0961 0.0577 0.0577 0.0577
13 2.2946 0.1006 0.1006 0.1006
14 0.7960 0.0253 0.0253 0.0253
15 0.5287 0.0249 0.0249 0.0249
16 0.5227 0.0307 0.0307 0.0307
17 2.0602 0.0644 0.0644 0.0644
18 1.7370 0.1018 0.1018 0.1018
19 1.0028 0.0353 0.0353 0.0353
20 0.3232 0.0293 0.0293 0.0293
21 1.9348 0.1361 0.1361 0.1361
22 1.7160 0.1104 0.1104 0.1104
23 1.7151 0.0484 0.0484 0.0484
24 2.1754 0.0261 0.0261 0.0261
25 2.4637 0.0349 0.0349 0.0349
26 0.8243 0.0401 0.0401 0.0401
27 0.8964 0.0493 0.0493 0.0493
28 0.9222 0.0479 0.0479 0.0479
29 0.5063 0.0300 0.0300 0.0300
30 2.0079 0.1240 0.1240 0.1240 study, we used a newly measure for the identification of
31 2.4477 0.1849 0.1849 0.1849
32 0.9370 0.0318 0.0318 0.0318
33 1.0944 0.0392 0.0392 0.0392
34 0.7729 0.0335 0.0335 0.0335
35 0.8624 0.0282 0.0282 0.0282
36 0.3127 0.0258 0.0258 0.0258
37 0.4650 0.0265 0.0265 0.0265
38 2.0069 0.0193 0.0193 0.0193
39 0.5507 0.0318 0.0318 0.0318
40 0.8507 0.0326 0.0326 0.0326

this example. It is hypothesized that the general social
warmth provided to the student is what leads him or her
to achieve more. On the other hand, teacher expectancy
may lead to increase student achievement.

With the purpose of evaluating the performance of
the proposed ModDRGP1 and ModDRGP2, we present
comparisons with the DRGP proposed by Habshah et al.
[11]. Using RMD, at cut-off value of 3.391, no
observations can be  identified  as  high leverage  points.

Fig. 1: Index plot of robust mahalanobis distance for
Harris and Rosenthal data

Fig. 2: Index plot of DRGP, ModDRGP1 and ModDRGP2
for Harris and Rosenthal data

Since we could not detect any observation as high
leverage point using the well known RMD method, we
need to investigate it using more credible method. In this

high-leverage point which is based on Diagnostic Robust
Generalized Potentials (DRGP).

While  the  numerical  result  is  also  presented  in
Table  1,  the  graphical  result is presented in Figure 2.
The plot in the Figure 2 clearly indicates much
improvement of the outlier identification when we
compared to Figure 1. The ModDRGP1, ModDRGP2 and
the previously established DRGP detect same
observations as high leverage points. Those observations
are observation 11, 13, 18, 21, 22 and 30. If we compare
them to the RMD which could detect no observation, all
DRGP-based methods perform better in this Harris and
Rosenthal data. It shows the merit of the ModDRGP1 and
ModDRGP2 which is at least possesses the same as the
DRGP method in this data. Moreover, as we can observe
in the Table 1, all the DRGP-based method produced the
same p  which mean that in this Harris and Rosenthal*

ii

data, the modification of the cut-off values did not have
any effects to the p .*

ii
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Table 2: Robust mahalanobis distance (RMD), DRGP, ModDRGP1 and
ModDRGP2 for Woodworth data

RMD DRGP ModDRGP1 ModDRGP1
Index (2.4877) (0.1004) (0.0745) (0.0745)
1 1.0315 0.0391 0.0391 0.0391
2 1.0136 0.0379 0.0379 0.0379
3 2.1760 0.1218 0.1218 0.1218
4 2.1281 0.1275 0.1275 0.1275
5 0.7882 0.0217 0.0217 0.0217
6 1.0315 0.0391 0.0391 0.0391
7 1.2111 0.0201 0.0201 0.0201
8 2.0581 0.1074 0.1074 0.1074
9 1.0315 0.0391 0.0391 0.0391
10 2.2214 0.1004 0.1004 0.1004
11 1.5423 0.0507 0.0507 0.0507
12 0.7882 0.0217 0.0217 0.0217
13 2.0581 0.1074 0.1074 0.1074
14 1.0136 0.0379 0.0379 0.0379
15 1.0136 0.0379 0.0379 0.0379
16 1.1002 0.0478 0.0478 0.0478
17 1.0315 0.0391 0.0391 0.0391
18 1.2111 0.0201 0.0201 0.0201
19 1.7788 0.0227 0.0227 0.0227
20 0.7882 0.0217 0.0217 0.0217
21 1.5423 0.0507 0.0507 0.0507
22 1.7788 0.0227 0.0227 0.0227
23 3.3285 0.1000 0.1000 0.1000
24 1.0136 0.0379 0.0379 0.0379
25 0.7882 0.0217 0.0217 0.0217
26 0.2356 0.0209 0.0209 0.0209
27 1.1002 0.0478 0.0478 0.0478
28 1.2111 0.0201 0.0201 0.0201
29 1.7543 0.0403 0.0403 0.0403
30 0.2356 0.0209 0.0209 0.0209
31 1.5423 0.0507 0.0507 0.0507
32 2.1281 0.1275 0.1275 0.1275
33 1.1002 0.0478 0.0478 0.0478
34 1.1002 0.0478 0.0478 0.0478
35 1.0136 0.0379 0.0379 0.0379
36 2.1920 0.0423 0.0423 0.0423
37 1.7227 0.0369 0.0369 0.0369
38 1.2111 0.0201 0.0201 0.0201
39 0.2356 0.0209 0.0209 0.0209
40 2.2034 0.0195 0.0195 0.0195
41 2.2034 0.0195 0.0195 0.0195
42 1.0315 0.0391 0.0391 0.0391
43 1.0136 0.0379 0.0379 0.0379
44 1.4210 0.0450 0.0450 0.0450
45 1.2111 0.0201 0.0201 0.0201
46 0.7882 0.0217 0.0217 0.0217
47 1.0136 0.0379 0.0379 0.0379
48 0.7882 0.0217 0.0217 0.0217
49 1.7227 0.0369 0.0369 0.0369
50 1.1002 0.0478 0.0478 0.0478

Woodworth Data: This example is a stimulus-organism-
response mediation study [19], in which the effect of a
stimulus  on a  response  as  mediated  by  the  organism.
The data for the 50 subjects in this hypothetical study of

Fig. 3: Index plot of robust mahalanobis distance for
Woodworth data

Fig. 4: Index plot of DRGP, ModDRGP1 and ModDRGP2
for Woodworth data

the effects of room temperature on water consumption is
taken from [20], where X is temperature in degrees
Fahrenheit, M is a self-report measure of thirst at the end
of a 2-hour period and Y is the number of deciliters of
water consumed during the last 2 hours of the study.

In order to evaluate the merit of the ModDRGP1 and
ModDRGP2 methods, we present a comparison of it with
the usual DRGP method. Table 2 displays Robust
Mahalanobis Distance, p , of each observation of the*

ii

Woodworth data. Figure 3 shows a scatter plot of the
Woodworth based on usual Robust Mahalanobis
Distance. We can see from the figure that nothing
extraordinary on the observations except only one
observation (observation 23) which is located far from the
remaining observations. Only this single observation is
detected as outlier by the RMD. Six observations
specifically observation 3, 4, 8, 10, 13 and 32 can be
detected as high leverage points using the DRGP. And
finally, when ModDRGP1 and ModDRGP2 are applied, we
can detect one more observation to have high leverage,
which is observation 23 as can be sought in Figure 4
below. It denotes that in this Woodworth data, our
proposed method has an advantage in detecting high
leverage points.
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Table 3: Identification of multiple high leverage points based on 10,000 simulations
Diagnostic Methods
---------------------------------------------------------------------------------------------------------------------------------

% HLP n HLP Dist. HLP Twice Thrice Huber p DRGP Mod DRGP1 Mod DRGP2ii

5 20 5 1 2.9738 1.3834 2.9738 2.5902 1.7032 1.6154 1.6046
10 2.8325 1.3546 2.8325 2.9841 1.7033 1.6152 1.6045

40 5 2 5.8812 2.8122 2.0736 4.6527 2.9110 2.9166 2.9027
10 5.6165 2.7622 2.0667 5.5025 2.9110 2.9161 2.9022

80 5 4 11.7001 5.6668 2.0440 8.7304 5.2810 5.4914 5.4825
10 11.2035 5.5657 4.0000 10.5188 5.2810 5.4903 5.4814

100 5 5 14.6262 7.0838 0.3188 10.7902 6.4896 6.8039 6.7967
10 14.0203 6.9774 1.0353 13.0620 6.4896 6.8024 6.7952

160 5 8 23.2832 11.3281 0.0000 16.9073 10.0982 10.6791 10.6758
10 22.3550 11.1456 0.0000 20.4672 10.0982 10.6766 10.6733

10 20 5 2 3.9200 2.3986 3.9200 3.3190 2.5300 2.4271 2.4235
10 3.8527 2.3870 3.8527 3.5849 2.5252 2.4224 2.4187

40 5 4 7.7612 4.8607 4.0844 6.1795 4.6233 4.5532 4.5478
10 7.6449 4.8371 4.0951 6.7580 4.6233 4.5510 4.5457

80 5 8 15.4860 9.7410 0.0031 11.8317 8.7990 8.8115 8.8089
10 15.2857 9.7067 0.0013 13.0944 8.7990 8.8079 8.8053

100 5 10 19.3369 12.1838 0.0000 14.6690 10.9194 10.9646 10.9630
10 19.1051 12.1498 0.0000 16.2423 10.9194 10.9610 10.9594

160 5 16 30.8483 19.5065 0.0000 23.1468 17.2536 17.3950 17.3947
10 30.5060 19.4487 0.0000 25.6479 17.2536 17.3883 17.3880

15 20 5 3 4.9101 3.0842 4.9101 3.8540 3.3770 3.2807 3.2806
10 4.8725 3.4086 4.8725 4.1522 3.3678 3.2698 3.2691

40 5 6 9.7406 6.2361 0.8620 7.2565 6.3775 6.3044 6.3033
10 9.6779 6.8928 0.8892 7.9537 6.3775 6.3011 6.3000

80 5 12 19.4321 12.5014 0.0001 14.0879 12.4377 12.3792 12.3787
10 19.3606 13.8095 0.0000 15.5384 12.4377 12.3730 12.3725

100 5 15 24.2797 15.6529 0.0000 17.5549 15.4803 15.4249 15.4246
10 24.1866 17.2763 0.0000 19.3105 15.4803 15.4175 15.4172

160 5 24 38.7446 25.0536 0.0000 28.0973 24.6100 24.5850 24.5850
10 38.6264 27.6627 0.0000 30.6727 24.6100 24.5747 24.5747

20 20 5 4 5.8832 1.2463 5.8832 2.3214 4.2500 4.1700 4.1688
10 5.8764 1.2533 5.8764 2.8390 4.2489 4.1665 4.1662

40 5 8 11.7179 2.7236 0.3666 3.4765 8.2144 8.1524 8.1521
10 11.7054 2.7663 0.3351 4.5875 8.2144 8.1476 8.1473

80 5 16 23.3686 5.5882 0.0000 5.5618 16.1980 16.1447 16.1447
10 23.3570 5.7254 0.0000 7.6122 16.1980 16.1390 16.1390

100 5 20 29.1918 7.0286 0.0000 6.5780 20.1976 20.1417 20.1417
10 29.1848 7.1965 0.0000 8.9722 20.1976 20.1373 20.1373

160 5 32 46.6307 11.3456 0.0000 9.6294 32.2160 32.1601 32.1601
10 46.6316 11.6489 0.0000 13.0530 32.2160 32.1529 32.1529

25 20 5 5 5.5154 0.8865 5.5154 1.0927 5.1426 5.0895 5.0897
10 5.9327 0.8639 5.9327 1.2551 5.1573 5.0984 5.0983

40 5 10 11.0335 1.9649 0.2581 1.4374 10.1012 10.0633 10.0639
10 11.8272 1.9177 0.2490 1.6867 10.1020 10.0604 10.0604

80 5 20 22.1212 4.0665 0.0000 2.1232 20.0713 20.0433 20.0433
10 23.7109 3.9814 0.0000 2.5249 20.0713 20.0405 20.0405

100 5 25 27.6527 5.1440 0.0000 2.4572 25.0597 25.0392 25.0392
10 29.6384 5.0299 0.0000 2.8869 25.0597 25.0362 25.0362

160 5 40 44.2109 8.2731 0.0000 3.4167 40.0463 40.0278 40.0278
10 47.3548 8.1163 0.0000 4.0230 40.0463 40.0248 40.0248

30 20 5 6 4.2001 0.7834 4.2001 0.8289 6.0583 6.0270 6.0289
10 4.1328 0.7690 4.1328 0.8102 6.0890 6.0523 6.0523

40 5 12 8.4153 1.6947 0.2327 1.1274 12.0383 12.0246 12.0246
10 8.2969 1.6690 0.2381 1.0734 12.0396 12.0231 12.0231

80 5 24 16.7952 3.4955 0.0000 1.7156 24.0211 24.0116 24.0116
10 16.6170 3.4347 0.0000 1.6074 24.0211 24.0098 24.0098

100 5 30 21.0023 4.3995 0.0000 2.0033 30.0148 30.0067 30.0067
10 20.7886 4.3249 0.0000 1.8563 30.0148 30.0054 30.0054

160 5 48 33.5222 7.1183 0.0000 2.8888 48.0062 48.0027 48.0027
10 33.2571 6.9848 0.0000 2.6650 48.0062 48.0021 48.0021
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Results on Simulated Datasets: The Monte Carlo we can easily say that the DRGP has advanced
simulation study in this section focuses on the detection performance than our proposed ModDRGP1 and
of high leverage points. The performances of our new ModDRGP2, but both twice-the-mean rule and thrice-the
proposed cut-off point, ModDRGP1 and ModDRGP2, was mean rule looks to have slightly better performance than
done by comparing it to several other common method of the DRGP-based methods.
identification of high leverage points. They are twice-the- Meanwhile,  in  medium  or   large   percentage of
mean rule [1], thrice-the-mean-rule [2], Huber choice with HLP,  from  the  Table  3,  we  can  say  that  in general,
w  >0.2 cut-off point [3], Hadi’s potentials based on MAD both DRGP and the proposed ModDRGP1 andii

[4]  and  Habshah’s  DRGP  [11].  We have considered the ModDRGP2 have better performance compared to the
constant, c, equals to 3 in this simulation study which is other methods.  When the percentage of HLP increases,
needed in Hadi’s potentials and the Habshah’s DRGP. it  clearly shows   that   ModDRGP1   and  ModDRGP2

In this simulation study, we considered five different also have outstanding presentation. Our proposed
sample  sizes  of  20,  40, 80, 100 and 160 to reflect small ModDRGP2 is the only method achieving best result
(20-40), medium (80-100) and large sample sizes (160), amongst the other method under study regardless the
respectively.  Two  variables  were  generated  to  reflect sample size as long as the percentage of the high leverage
the necessary condition in simple mediation model of x points are relatively medium or high. Especially when we
and m which are selected at random from the U(0,1) compare the previous DRGP and our new proposed
distribution. Several contamination scenarios were done ModDRGP2, at medium or high percentage of HLP, it is
with regard to distance (in  units) and percentage of clear that this new method enhanced the previous DRGP
contaminated observations of the sample sizes. We used and ModDRGP1 method.
HLP distances of  and . Meanwhile, 5%, 10%, 15%,
20%, 25% and 30% observations were used to replace the CONCLUSION
last observations of the generated data. We consider of
low, medium and high percentage of HLP when the There were two case studies that comprised the
percentage of the HLP are 5%-10%, 15%-20% and 25%- material in this study. In the first case, we presented
30%, respectively. By doing that manner, each generated Harris and Rosenthal data which is well known example of
sample  will  contain (1 – )% clean observations and the mediation analysis. From the result we found that our
last % observations of both variables are considered as newly proposed cut-off point of the DRGP is equally good
equally high leverage points. We repeated the simulation in detecting of high leverage point. Both methods could
by 10000 on each combination. detect more observations compared to the Hadi’s

Result of the Monte Carlo simulation discussed is potentials. The second case study was dealt with the
presented in Table 3. After the huge number of simulation, Woodworth data. The data is also very common in
a method which can identify the same or nearly the same discussions of mediation analysis, especially the simple
number of pre-defined HLP is considered as the good one. mediation analysis. It was demonstrated that when both
The first four columns of the table show the simulation Hadi’s potentials and the previous DRGP could identify
combination of percentage of high leverage points (% 1 observation and 6 observations respectively, our newly
HLP), sample size (n), HLP distance (HLP Dist.) and the proposed ModDRGP1 and ModDRGP2 method could
number of high leverage points (No. HLP). The value in detect 7 observations. It validated that the ModDRGP1
columns 5 onwards is the mean or average number of HLP and ModDRGP2 deserve as an alternative method in
which can be identified by particular method. detection of high leverage point.

Following the columns in the Table 3, we initiate to In order to strengthen the analysis, we provided a
talk about the Monte Carlo simulation result based on the Monte Carlo simulation to evaluate the performance of
percentage of high leverage points. When the percentage our proposed ModDRGP1 and ModDRGP2. The
of HLP is small, diagnostic tools based on w , such as simulation results suggested that by applying our newlyii

twice or thrice the mean rule, look to have better proposed method has improved the accuracy of the
performance than the other methods, but it is disturbed by identification of high leverage point when the percentage
our some good result from new proposed method and of high leverage points is medium or high. Even though
DRGP as well. As a result, at smaller percentage of HLP, the method was studied in simple mediation analysis, but
we  cannot  easily  conclude  which  ones perform better. it can be used to identify multivariate high leverage point
It also  can  be seen that at the small proportion of HLP, as well.
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