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Estimation of Core Loss in Transformer by Using Finite Element Method (FEM)
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Abstract: Transformers are the most inportant component in power system and are interfaces between

consumers and suppliers. Users and manufacturers of transformers are nowdays capitalising the core losses
while considering the costings. Therefor, a software package witch enables an engineer to predict within a short

period the approximat core loss in transformer of any rating and geometry will be very useful. The use of Finite

Element Methods for transformer design and analysis has been proven as a very powerful tool over recent

years. This paper describs a numerical solution to use a 2D Finite element method (FEM) to accurately calculate
the flux distribution and total core losses in single phase transformer with PDE toolbox of MATLAB software.
Tt also presents the localised flux density and loss over a core. This computational result of core loss agrees

with experimental result obtained by us in machine laboratory.
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INTRODUCTION

Transformers are essential and mmportant element of
power system. Core loss in transformers are much lower
than those found in transformers a decade age because of
the availability of better quality core materials and
improvements 1n thire usage nowdays, however in order
to save more energy, there i3 a need for better
understanding flux distributions and loss in transformer
cores built with different materials using various
configurations [1].

For calculate the flux distribution and total core
losses has been solved via many traditional techniques
such as nonlinear programming, numerical method and
..[2, 5, 7-10]. At peresent the availability of personal
computers with very large memory makes it possible to
predict magnetic flux distributions and loss in various
transformer cores and allow one to come up with an
optimum design reasonably fast. The fimte element
method while is based on solving the Poisson’s equation
of the magnetic fild problem in variational terms and
minimizing the associated functional by set of trial
functions [2].

Finite element method ( FEM ) technique are useful to
obtain an accurate charaterization of the electromagnetic
magntic such as

behavior or the compornents,

transformers [3].

In this paper, FEM techniques is applied to calculat
the flux and loss distributions in single phase transformer
using PDE toolbox of MATLAB software [4]. For our
purpose, modeling of just the transformer is adequate.
Therefore an appropriate model of the transformer is
defined considering the construction and position of the
coils and the current density of them and permeability of
transformer core. Then, this model is divided into
triangular elements.

By usmng magnetostatic analysis of the fimte
element method, the magnetic vector potential of
three nodes of each triangular element is calculated
and therefore the flux distribution over the model is
obtained. Then, the flux density of each element is
evaluated. Because the magnetic vector potential of
each element is considered as a linear function of
x and v, the flux density of each element becomes a
constant value [5, 6].

In section 2, the fundumental principles of the
transformer modeling using finite element method is
briefly discussed. Then the detail modeling procedures
mtrodused 1 section 3. In section 4, some simulation
results are discussed and compared with the xperimental
results. The conclutions are givn in section 3.

Principals: Fiuite Element Method: The fimte element

method 13 a numerical techmque for obtaming
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approximation solution to boundary value problems of
mathematical physics. HEspecially it has become a very
umportant tool solve electromagnetic problems because of
its ability to model geometrically and compositionally
complex problems [7].

Using FEM to solve three
stages. The consists of meshing the problem space

problems  involves
mto contiguous elements of the suitable geometry and
assigning appropriate values of the material parameter -
conductivity, permeability and permitivity - to each
element. Secondary, the model has to be excited, so that
the initial conditions are set up. Finally, the values of the
potentials are suitably constrained at the limits of the
problem space. The finite element method has the avantag
of geomtrical flexibility. It 13 possible to mclude a greater
density of elements m regions where fields and geometry

vary rapidly [1, 7].

Formulation: In this section, the partial differential
equation that governs calculation of the electromagnetic
field inside the transformer problem is determined. The
Amperes law states that:
VxH=] (1)

Where:
H: magnetic field intensity
J: total current density

It 1s assumed that H 15 only due to the source
currents i.e. no permanent magnets are present.

Linear Magneto-Static Analysis: Current density Jin
Equ.l is due to the current sources, i.e. current densities
of the transformer’s primary and secondary windings.
The following relation between the magnetic field
mntensity and the magnetic flux density exists:
B=pH=H=uB 2
The relationship between the magnetic flux density
and the magnetic vector potential is:
B=V=4 3
Hence:
Vx(LV=xAI=]T (4)
Where:
v 18 the reluctivity 1.e. the mverse of the magnetic
permeability (p).
And, 4: is the magnetic vector potential.

051

For the 2D models in x-y plane, the non-zero
component of 4 1s the z component of magnetic vector
potential which is a function of x and y only. Therefore,
(4) takes the following scalar form:

8, o4
W)=

2(1)67'{4)4_
dx- ox” oy dv

(5)
the magnetic vector potential can be obtained by Solving
Equ.6 and the magnetic flux density can be calculated
bysolving Equ.4. By using magneto-static analysis of PDE
TOOLBOX of MATLAB software, the flux distribution for
our defined model is obtained[. In 2D FEM, the flux
density 1s given by:

2 2
(i (4] o

Where B is the flux density. [1, 4-7]

(6)

Transformer Models Using Fem

Transformer Parameter: Simulations were carried out
based on custom-built 1KVA, 50 Hz, singl phase
transformer. The design data were as follows:

The rate voltage ratio 1s 220 V/ 220 V.

The primary and secondary winding are made of
copper.

The gometriy mformation 15 shown n Fig.1.

The depth of the transformer is 84 mm.

B. B-H curve ( or loop ): In transformer analysis, because
of feromagnetic materials properties, usually the problems
appear in nonlinear form. Magnetic permeability, u = B/H,
is not constant and is a function of magnetic field in each
mesh. Therefor the S matrix in Equ.1 is not constant. Tt is
a function of Magnetic permeability or magnetic field in
each mesh.

The B-H cure of a ferromagnetic core, 1s a
like Fig.2. In FEM method, for
representation of magnetic curve of steel, usually the

hystrisys  loop
normal magnetic curve (Fig. 2) 18 used. The upper
approximation of hystrisys loop can be used for
calculation of short circuit reactance or radial and axial
electromagnetic forces on the transformer coils. But for
calculation of flux distributions and loss in transformer

cores The B-H loop is used [5, 6].
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Fig. 1: The design data; 1: core; 2: window; 3: secondary winding; 4: primary winding

Fig. 2: (1) hystrisys loop, (2) B-H curve

For the single phase transformer(our case) in nominal

circumistance, the noload current and voltage Can be (10)
measured by digital scope. Noload current and voltage are
shown in Fig.3a,b. o :ﬂ

Nominal voltage of primary winding, the valuse of B L (1D
and H can be caculated from followed equations: Where

i, : Noload current
e(t) =V (t)~Ri, = Nﬂ J(¢) . Terminal voltage in noload circumistance
dt ®) e(?) : Emf

¢ : Flux
1 R : Risistance of winding
=— |e(t)dt
0= Je N
L

) : Number of turns (N = 220)

. Mean length
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Fig. 3a: Experiment noload current

" Terminal Voltage
‘

4007 T T T T
Volt

300}

100}

ime

<100 | N

-200 -

=300

-400

L L I L L I I L L
o 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Fig. 3.b: Experiment terminal voltage
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Fig. 4: Actual B-H loop
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Fig. 6: algoritm of hystrisyse loop
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By useing of this equations, actual B-H loop of core
is obtained which is shown in Fig.4.

B-H loop model: The principal procedure in transformer
analysis in FEM method, is selection of a proper model for
hystrisys loop. In this paper, to model the B-H loop,
actual loop is devided into four part ( Fig.5 )and according
to the data which is reached in measuring and fitting of
each part with third order equation, the seperated third
order equation for each part is accessed.

The actual B-H loop of transformer core, which I
accessed from experiment is used. Simulation algoritm of
hystrisyse loop in this paper is like below flowchart Fig.6
using these third order equation, permeability of each part
can be calculatd as a function of B (4 =f{(B)). for example:
the third order equation for parts 1,2 is:

Partl: H=151.7B" + 39.45B + 67.98 (12)
. dB_ 0.0253

YAl 1153682 +1 (13)

Part2: H=338.888° +25.11B-81.75 (14)
e dB_ 0.0398

2TdH 404882 +1 (15)

Simulation and Results

Transformer Model: Calculation of the Flux distribution
and core losse in transformer is presented in this paper.
As shown in Fig.7. the complete single phase transformer

T T T T T T
200} boundary < -0 -
150 =
core
boundary
mE v a=0 coil 7
boundary
coil A=0
501 window \ |
Ry
window
ok -
A= O/blmdmy
E0F -
L 1 L L 1 1
50 0 50 100 150 200 250

Fig. 7: Single phase transformer model
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Fig. 8a: Flux distribution over the model defined for the transformer
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Fig. 8c: Magnetic flux density distribution (Tesla).
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Fig. 9: Absolute magnetic flux density distribution (Tesla)

is modeled. For transformer simulation, the transforer is
first divided into 1056 meshes and is set as A=0. the
boundary condition over the rectangle that enclosed the
single phase transformer model.

Solving (5), the magnetic vector potential can be
obtained and solving (3), the magnetic flux density can be
calculated.By using magneto-static analysis of PDE
TOOLBOX of MATLAB software [6], the flux distribution
for our defined model is obtained, as shown in Fig.8a-8c.
Figs.9 is the three-dimensional pictures of the absolute
flux density.

Core loss calculation: The magnetic vector potential
of each triangular element was considered as a linear
function of x and y (Equ.16). Therefore, the radial and axial
components of the magnetic flux density and
consequently the absolute value of B of each triangular
element become fix values as shown in the following
equations.

A=C,+Cx+Cy (16)
0A
B =
ooy a7
)
Yo ax (18)

956

_ [z 2
B_/Bx+By 19)

Where, C,, C, and C; are constant coefficients. B, and B,
are radial and axial components of the magnetic flux
densities. After calculation of absolute value of B for each
element, the magnetic energy stored in the core space can
be calculated by Equ.20.

To calculate loss, we use from equation(20).

n r
W= (voly; [#,aB, ()

(20)
i=1 0
Where:
H, : Magnetic field intensity in mesh (i)
B, . Magnetic field density in mesh (i)
(Vol), Volume mesh (i)
Andn : Number of meshes (n= 1056, T =20 ms)
Table 1 shows compare between numerical

calculation and experimental value. In table(1) it is shown
that As the number of meshes is increased, the numerical
calculation error is decreased.

Numerical calculation shows that flux density in any
points of core is different from the other one. Fig.10
shows the figuer of flux distribution in different points of
core. According to this figure this is concluded that Flux
at the corners of window has maximum value and these
points are (called) hot spots of transformer.
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Fig. 10: flux density distribution and Hot spot points

Table 1: compare between numerical calculation and experimental value

# mesh PRACTICAL NUMERICAL ERROR

1056 36.1 38.7 7.2%

4183 36.1 37.35 346%
CONCLUSION

Core treatment can be well predicted by using the
suggested third order equation model. Calculation results
accessed in FEM, shows that by the model of core
presented in this paper, we can estimate core loss with
high accuracy and flux distribution in the core can
determined locally, We also can find hot spots inside the
core. Calculation shows that: as the number of used
meshes is increased, the more exact result is accessed.
The modeling that is shown in this paper allows us to
know the transformer behavior before manufacturing them
and, thus reducing the design time and cost.
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