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Abstract: Wavelet transforms have gotten very high attention in many fields such as physics, engineering,

signal processing, applied mathematics, statistics and forecasting. In this paper, we present the advantage of
wavelet transforms n forecasting volatility data. Amman stock market (Jordan) was selected as a tool to show

the ability of wavelet transforms in forecasting experimentally. This article suggests a novel technique for
forecasting the financial time series data based on Wavelet transforms and ARIMA model. The volatility data
are decomposed via Haar Wavelet transforms and Daubechies wavelet transform, the future observations of

thus series are forecasted then the forecasting results are compared using a suitable statistical criteria. Volatility

data from 1993 until 2009 are used in this study.
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INTRODUCTION

Stocks markets forecasting 18 requwed for the
investors and it has gotten high attention in financial
time series and financial researchers. Forecasting stocks
market forecasting is difficult because unlike demand
series, price series present such characteristics as
mconstant mean and variance and significant outliers.

The developing facing many
impediments in their financial markets and with many
other factors, such that the change point [1], high

economies are

volatility in prices which also considered as high risk or
uncertainty 1s a major factor of erosion of capital from
markets. As due to this the investors becomes fearful and
run away from the market. Though it 1s not the sign of
inefficiency of market but it poses a threat to ‘crash” the
market due to lugh volatility. High volatility creates a
high uncertainty
security prices and these may curtail down the prices
return.  The stock market volatility
caused by number of factors such as; credit policy,

in a stock market and individual
and assoclated

mflation rate, interest, financial leverage, corporate
earnings, dividends yield policies, bonds prices and
many other macroeconomic, social and political variables
are involved [2]. Madhavan defines volatility n terms of

price variance. Low volatility is preferred as it reduces

unnecessary risk bome by mvestors thus enables
marlket traders to liquidate their assets without large
price movements [3]. Glen defines volatility as the
frequency and magnitude of price movements and
comparing the various microstructure attributes argues
that liquid and efficient markets have less volatility than
illiquid and inefficient marlkets.

The three main purposes of forecasting volatility are
for risk management, for asset allocation and for taking
bets on future volatility. A large part of risk management
is measuring the potential future losses of a portfolio of
assets and in order to measure these potential losses,
estimates must be made of future volatilities and
correlations.

Recently, wavelet transforms are used for filtering
time series representing. Wavelet analysis has grows very
quickly 1 the recent vears and more recently Wall Street
analysts have started using mathematical models to
analyze their financial data. Moreover, wavelet analysis
has been used m signal processing (time scale analysis),
frequency analysis, regression function, pattern
recognition, decomposition, approximation techmques,
quantum field and Tmage Compression. For more details
and examples refer to [4, 5, 6]. The wavelet transforms
conwvert the financial series m a set (typically three to six)
of constitutive series. These series show a better behavior
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than the original price series. In other hands, more stable
i variance and no outliers. Wavelet transforms are
more efficient than Fourier transform [7-12]. This is
because wavelet transforms can be used to analyze
nonlinear and non-stationary time series signals, useful in
identifying transient events, used to filtering the de-noise
data to get more accurately data, provided decomposition
of a time series into several components from different
scale and appears their correlation as a function on scale
and time (localized in both). Although, wavelet transform
utilizes to decompose cloudy 1images into several
frequency level components
developed to enhance cloud-associated shadow areas in
satellite images while preserving details underneath these
areas [13].

The and novel contribution of the
paper is to use the wavelet transforms, to decompose the

fundamental

volatility data mto a set of better-behaved approximation
series. The forecasting results based on wavelet
transforms methods and ARTMA models will compare by
using some statistical criteria. MATLAB 2008a and SAS
9.1 programs have been used to get significant results and
fair comparison.

This paper is organized as follows. The next section
describes the principle of the mathematical framework.
Section 3 provides a description of data set. In Section 4
the comparison of the experimental results is presented.
In Section 5 we summarize our contributions and
mention the conclusion. And finally we mention the
acknowledgement.

MATERIALS AND METHODS

Wavelet Analysis: Wavelet analysis is a mathematical
model that transforms the original signal (especially with
time domain) into a different domain for analysis and
processing [11, 14, 15] This model is very suitable with
the non-stationary data, 1.e. mean and autocorrelation of
the signal are not constant over time, that is well know,
most of the financial time series data is non- stationary,
that is why we applied wavelet transform.

literature, Fourier transforms
decomposed the original signal mto a linear combmation

as a sine and cosine function whereas by wavelet

In mathematical

transform the signal 1s decomposed as a sum of a more
flexible function called wavelet that is localized in both
time and frequency. The wavelet transforms were used
to adopt a wavelet prototype function (mother wavelet).
Temporal analysis is constructed with a contracted,
high-frequency version of prototype wavelet, whereas

a new technique was
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frequency analysis is performed with a dilated, low
frequency version of the prototype wavelet. Because
the function can be represented in terms of a wavelet
expansion (using coefficients i a linear combination of
the wavelet functions), data decompositions can be
constructed by just using the corresponding wavelet
coefficients. several types
transforms. Depending on the applications, regarding the

There are of wavelet
continuous mput signal, the time and scale parameters
can be continuous, leading to the continuous wavelet
transform (CWT). On the other hand, the discrete wavelet
transform (DWT) can also be used for discrete time
signals [11].

In the wavelet transforms case, consider that the time
domain is the original domain. Although, wavelet
transforms 18 the transformation process from time
domain to time scale domain, these processes are known
as signal decomposition because a given signal is
decomposed mto several other signals with deferent
levels of resolution. These processes allow recovering
the original time domain signal without losing any
information. Wavelet transforms has reverse process
which 13 called the mverse wavelet transform or signal
reconstruction [16].

The wavelet transform is implemented using a
multiresolution pyramidal decomposition technmique. In
fact, a recorded digitized time signal x, can be analyzed
into 1its detailed ¢D1(n) and smoothed (approximations)
cAl (n) signals using high-pass filter (HiF-D) and
low-pass filter (LoF-D), respectively. High-pass filter has
a band-pass response. Consequently, the filter signal
c¢D1(n) is a detailed coefficient of x, and contains higher
frequency components. While the approximation signal
cAl (n) has a low-pass frequencies filter response.
The decomposition of x, mto cAl (n) and ¢D 1(n) 1s the
first scale decomposition. Inversely, that is possible to
perform the original signal from the approximations and
details coefficients [17].

In this paper we will focus in the most famous types
of discrete wavelet transforms which are Haar wavelet
transform and Daubechies wavelet transform. The
wavelets having compact support or narrow window
function are suitable for local analysis of the signal
Daubechies wavelets and Haar wavelet are compactly
supported orthonormal wavelets and are the most
appropriate for treating a non-stationary series.

Definition: [18] suppose that (1) is the mother wavelet,
then the sequence of Wavelets can be defined, by using
the translations and dilations of (#) as the following:
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Where a: real number (a # 0) and represents the
dilation parameter and b: real number also and represent
the translation parameter. £ Represents the tune.

In some special cases of a, b and the mother wavelet
(yri#)), W, constitute an orthonormal basis for L,(R) more
specifically, if we suppose that @ = 2, b = £2/then there
exits i, such that the following functions constitute an
orthonormal basis for L,(R):

=L
V=V, 0=27y@ -k,
SkeZ, z=4{012 .}

Generally, the wavelet transforms were evaluated by
using dilation equations, given as:

¢(z>:«/5%lk¢(zz—k>,
v =2Zh 9021

Father and mother wavelets were defined by the last
two equations where @2r-k) represents the father
wavelet and (f) represents the mother wavelet. Father
wavelet gives the lugh scale approximation components
of the signal, while the mother wavelet shows the
deviations from the approximation components. This 1s
because the father wavelet generates the scaling
coefficients and mother wavelet evaluates the differencing
coefficients. Father wavelet defines the lower pass filter
coefficients (%,). High pass filters coefficients (f) are
defined as [19].

I=2 jﬁow)rp(zr —k)dt,

h =2 Ojo Wty (2t —k)dt.

Note: the mother wavelet y(f) satisfies the followmg
conditions [20]:

2
. . o (@
joow(r)dt =0, JLO () <o, joo de <,

Where ir,(w) presents the Fourler transform, that 1s,

vy (@)= | wte e

Haar wavelet transform 1s the oldest and simplest
example in the wavelet transforms and is defined as:

1, 0=<t< l

2

v =1, %Std
0 otherwise.

>

Daubechies wavelet transforms: Since Haar wavelet
is the simplest and oldest wavelet transform; it was
improved by Daubechies in 1992 [21]. He developed the
frequency — domain characteristics of the Haar wavelet.
However, we do not have a specific formula for this
method of wavelet transform. So, we tend to use the
square gain function of their scaling filter, the square gain
function was defined as [11].

L
L
-2 tepyy 2 s g

i

I: Positive number and represents the length of the filter,
for more details [5].

ARIMA Model: Application of nonlinear regression to
price forecasting has not been reported so far. Other
approaches of econometric modeling are univariate
time series methods like auto regressive moving
average (ARMA) [22, 23]. ARMA is a suitable model for
the stationary time series data, although most of the
software uses least square estimation which requires
stationary. To overcome this problem and to allow ARMA
model to handle non-stationary data, the researchers
investigate a special class for the non-stationary data.
This model 1s called Auto-regressive Integrated
Moving Average (ARIMA). This idea 1s to separate a
non-stationary series one or more times until the time
series becomes stationary and then find the fit model.
ARIMA model has got very lugh attention in the
salentific world. This model 1s popularized by George Box
and Gwilym Jenking in 1970s, for more details and
examples refer to [24].

There are a huge variety of ARIMA models.
model 15

The general non-seasonal known as

ARIMA (p, d, q) [24].
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AR:
P = Order of the autoregressive part.
I.d = degree of first degree mvolved.

MA: q = order of the moving average part.

Note that, if there is no differencing been done
(d = 0), Then ARMA model can be got from ARIMA
model.

If non- stationary is added to a mixed ARMA model
and then the general ARTMA (p, d, ) is obtained. The
equation for the simplest case ARIMA (1, 1, 1) 18 as
following:

(- B~ B); =c+(1-0,B),

The model building process mvolves the following
steps [25]:

Model Identification: The first step 1s to determine
whether the time series data 13 stationary or non-
stationary. The stationarity can be assessed either
using Dickey Fuller test or run sequence plots. If the
original series has no trend (stationary) then the series 1s
an 1deal candidate for ARIMA. If the original series has
trend (non-stationary), the series can be converted to
stationary by differencing the series. The order of
differencing 1s zero for a stationary series and greater than
zero for non- stationary series.
Model Parameter Estimation: The estimation of
parameters 1s very importance in the model building.
The parameters thus obtained are estimated statistically
by the method of least squares. A t-statistic shall be
employed to test the parameters significance.

Model Diagnostics: Once the parameters are statistically
estimated, before forecasting the series, it is necessary
to check the adequacy of the tentatively identified
model. The model 13 declared adequate if the residuals
cannot 1mprove forecast anymore. In other words,
residuals are random. To check the overall model
adequacy, the Ljung-Box Statistic is employed which
follows a Chi-Square distribution. The null hypothesis 1s
either rejected or not rejected based on the low or high
p-value associated with the Statistic.

Forecasting: Once the model adequacy 1s established
the series in question shall be forecasted for specified
period. Tt is always advisable to keep track on the forecast
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errors and depending on the magnitude of errors, the
model shall be re-evaluated.

The model building process invoelves the following
steps; Model identification, Model parameter estimation,
Model Diagnostics and Forecasting. For more details refer
to [24].

In order to apply ARIMA model, the data should be
stationary. Therefore, the return data can be considered
for this comparison. Because in the financial literature,
that is well known the retum series is a stationary.
Moreover, this result can be checked empirically provided
that 1s a sufficient number of historical returns are
available [26].
uncorrelated which means that the data are stationary and
suttable to apply ARIMA model with the return data
directly without any treatments [27].

The daily logarithmic return, #, for all market prices

Moreover, the returns are serially

can be calculated using the definition of historical
volatility as [25]:

= IH(P:) N IH(P:-;
Where p, mdicates to the price information at time t.

Volatility: Researchers have already improved a lot of
the definitions about volatility. In this paper we use the
most popular and modern technique defimition. In other
words, it 13 defined as the absolute value of the daily
return. Tt is mathematically expressed as [11]:

v =] = ‘log(xt)—log(x |

Where x, represents the time series and #,represents
the daily return. stochastic volatility or time varying
stochastic volatility model 15 very important in the
financial mathematical fields to evaluate the derivative
securities, such as options. the name derives from the
models' treatment of the underlying security's volatility as
a random process, governed by state variables such as
the price level of the underlying security, the tendency of
volatility to revert to some long-run mean value and the
variance of the volatility process itself, among others. the
volatility mn a stochastic volatility model 18 changing
randomly according to some stochastic differential
equation or some discrete random processes [28].

In general, both the conditional volatility models and
Time-Varying long memory m volatility are estunated
under the assumption that the returns follow a t-

distributional because this distribution performs far
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better than normal distribution. Moreover, the
autocorrelation function plot (ACF) is used to identify
the orders of an ARIMA process and then we obtain an

appropriate model fitted to the data [29].

Mathematical Criteria: Two mathematical criteria have
used in this comparison paper to justify the best model;
root mean square error and mean absolute error [25]:

RMSE can be defined by:

N . 212
> (actual value-predicted value)

Where N represents the number of observations used for
analysis.

DATA DESCRIPTION

order to illustrate the effectiveness of Haar
wavelet transforms and Daubechies wavelet transform,
the Amman Stock Market data sets are selected for
discussion. We consider volatility data for the time
period from April 1993 (the days when stock exchanges
were open) until December 2009 with a total of 4096
observations. The total number of observations for
mathematical convenience is suggested to be divisible by

In

RMSE =| =1 , . .
N 2/ [21]. It means that the data should satisfy the condition
of observations 2. For more details refer to [25, 30].
MAE can be defined by: The volatility data can be considered for this
N ) comparison without any treatment. Because in the
MAE :L > |actual value-predicted Value|' mathematical literature, it is well known that ARIMA
N i=l| actual value | models can be used for the stationary and non-stationary
Otiginal signal
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Fig. 1: Statistical analysis for the original data
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data. Moreover, in financial mathematics literature
many researcher showed that the forecasting
based on wavelet-ARIMA model is better than the
forecasting based on ARIMA directly and gives more
accuracy results, in 2002 the forecasting financial
data in Saudi stock market has discussed and they
showed that forecasting based on wavelet-ARIMA
model is better than the forecasting based on ARIMA
directly [17], as well as 2005 this results have emphasized
[31]. So that this paper we will discuss the
comparison of the forecasting in the orthogonal wavelet
transforms methods deeply by using the approximation

in

series data, since approximation series contains the main
component of the transformed data and it shows all the
important and sufficient information about the original
series.

The following figure gives the basic statistical data
description with its distributions for the original data set.
Wavelet tool was used in this decomposition.

PROCEDURE AND RESULTS

Wavelet Levels and Coefficients: Figures 2 and 3 shows
the distributions of the wavelet coefficients until level 2
based on Haar wavelet and Daubechies wavelet. The data
set can be decomposed until level 12 since the total

number is 4096 (4096=212 observations). However, similar
results are returned from level 2 onwards, so only the data
up to level 2 are decomposed, as suggested in [21].

Forecasting Procedures: The Prediction technique for the
volatility time series data taken from Amman stocks
market works as follows:

First Step: Transform the original data through the
wavelet transform based on Haar wavelet transform and
Daubechies wavelet transform.

Second Step: Evaluate the volatility data for the
transformed data (based on Haar and Daubechies
wavelets).

Third Step: After that evaluate the return data for the
volatility data.

Fourth Step: Select the fitted ARIMA models for the
approximation Haar wavelet series and Daubechies
wavelet series, after that make the forecasting for the
future data for each approximation series.

Fifth Step: Comparison all of these results and decide the
best model depending on statistical criteria.

Decomposition atlevel 2:s=a2 +d2 +df .

002F T T T
0015
g 0m

0.005

| | |
500 1000 1500

Fig. 2: Wavelet levels for Daubechies wavelet
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Decompostion at level 2:5=a2 +d2 +d1

i) T
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Fig. 3: Wavelet levels for Haar wavelet

ARIMA Forecasting Results: In this paper, the minimum
value of RMSE and MAE is considered to select the best
ARIMA model of the daily volatility data. All choices of
ARIMA models for the volatility data are included in this
test between (0,0,0) and (2,2,2). If we choose more than
two, then there are more complicated conditions that
should be satisfied. Also, if p and q are more than two,
then Autocorrelation function (ACF) and partial
Autocorrelation function (PACF) will be presented as an
exponential decay. This means that ARIMA model
becomes worthless and there is no importance.

Before forecasting with the final equation, it is
necessary to perform various diagnostic tests in order to
validate the goodness of fit of the model. A good way to
check the adequacy of a Box-Jenkins model is to analyze
the residuals (y _y,. If the residuals are truly random,

the autocorrelations and partial autocorrelations
calculated using the residuals should be statistically
equal or approximately to zero. If they are not, this is an
indication that we have not fitted the correct model to
the data. When this is the case, the residual of the ACF
and PACF are contained information about which
alternative models to consider.

000
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200 3000 3600 4000

Figures 4 and 5 showed the residuals of ACF and
PACEF for the return volatility data. All these values have
significant t-test (less than 2). Thus, the residuals are
random and the model is a good fit to the data. Also, the
spikes are within the confidence limits.

The volatility data for Amman stocks market has been
used as case study. Price forecasting is performed using
daily data. Basically, the forecasting by using ARIMA
(p, d, q) models under the wavelet transforms is better
than the forecasting directly as well as it gives more
accuracy results. So that, as a new contribution in this
paper, the approximation series data have selection to
make comparison fairly, also the same sample data are
selected (From 1993-2009) for transforms and forecasting.
The fit ARIMA model for the transform data by using
Haar wavelet transform is selected as ARIMA (1,0,1) with
root mean square error equal to 0.00238as presented in
Table 1 also. Although the fit ARIMA model for the
transform data by using Daubechies wavelet transform is
selected as ARIMA (2,2,0) with root mean square error
equal to 0.00349 Table 1 shows some other criteria about
these results. All of these criteria explain that the Haar
wavelet transform gives more sufficient result and better
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Table 1: Shows all of the ARTMA options based on Haar wavelet
transforms

Model (ARIMA) RMSE Model (ARTMA) RMSE
(1,0,0) 0.0023824 (1,2,00 0.002695
(1,0,1) 0.0023823 (1,2,1) 0.0027675
(1,0,2) 0.0023825 (1,2,2) Not fitted
(1,1,0) 0.0024111 (2,0,0) 0.0023824
(1,1,1) Not fitted (2,0,1) 0.0023824
(1,1,2) 0.0033855 (2,0,2) Not fitted
(2,1,0) 0.002468 (2,2,0) 0.0027351
(2,1,1) 0.003080 (2,2,1) 0.0028409
(2,1,2) 0.0030198 (2,2,2) Not fitted
(0,0,1) 0.004990 (0,1,2) 0.0024200
€0,1,1) 0.0042154 €0,1,0) 0.0024096
(0,0,2) 0.0036271 (0,2,0) 0.0028595
(0,2,1) Not fitted (0,2,2) Not fitted

Haar ACF Haar PACF
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0.0 AL s LT ) E
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0 10 20 30 0 10 20 30
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Fig. 4 Shows the Autocorrelation and  partial
Autocorrelation functions for the return volatility
data based on Haar Wavelet
Daubechies ACF Daubechies PACF
02
01
3
S < |
<< £ 00
o
o
t
-01
LI L L L
0 20 30
Lag Lag
Fig. 5: Shows the Autocorrelation and partial

Autocorrelation functions for the return volatility
data based on Daubecies Wavelet

than Daubechies wavelet transform m the forecasting.
However, m some statistical literature, Daubechies
wavelet transform is better than Haar wavelet in the
decomposition, however, experimentally in this paper we
found a negative result, the reason 1s related to the data
set since just the approximation coefficients series have

used in the comparison.
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Table 2: Shows all of the ARTMA options based on Daubechies wavelet

transtorms
Model (ARTMA) RMSE Model (ARTMA) RMSE
(1,0,0) 0.00359 (1,2,0) 0.0035313
(1,0,1) 0.00357 (1,2,1) 0.003531
(1,0,2) 0.00359 (1,2,2) 0.003539
(1,1,0) 0.00372 (2,0,0) 0.003600
(1,1,1) 0.00436 (2,0,1) 0.00429
(1,1,2) Not fitted (2.0,2) 0.00356
(2,1,0) Not fitted (2,2,0) 0.00349
(2,1,1) 0.00371 2,2,1) 0.00357
(2,1,2) Not fitted 2,2,2) Not fitted
(0,0,1) 0.00525 (0,1,2) 0.00700
(0,1,1) 0.003711 (0,1,0) 0.003725
(0,0,2) 0.00430 (0,2,0) 0.00416
(0,2,1) 0.00364 (0,2,2) 0.00352

Table 3: Statistical of fit ARIMA model based on wavelet transforms
Statistical fit

Daubechies wavelet transform  Haar wavelet transform

RMSE 0.0027239 0.00238
MAE 0.0002457 0.0002200
CONCLUSION

As conclusion for thus article, if the Wavelet
transform is used for the volatility data, then there is no
outlier, seasonal effects and other wregular effects. Also
In this work, ARIMA based method for volatility
forecasting involving application of wavelet transform
has been presented. Wavelet transform has been applied
to volatility to convert it into its constitutive series and
their statistical properties are more like a mnormal
distribution curve than the original series and can be
utilized for better prediction. Therefore, experimentally
the proposed model based on Haar wavelet transform
gives better accuracy than the proposed model based on
Daubecies wavelet transform 1n forecasting.
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