
Middle-East Journal of Scientific Research 8 (2): 536-540, 2011
ISSN 1990-9233
© IDOSI Publications, 2011

Corresponding Author: H. Zareamoghaddam, Islamic Azad University, Kashmar Branch, Kashmar, Iran
536

A Numerical Comparison of Two Different Implementations of GMRES Method
1H. Saberi Najafi and 2H. Zareamoghaddam

1Lahijan Branch, Islamic Azad University, Lahijan, Iran
2Kashmar Branch, Islamic Azad University, Kashmar, Iran

Abstract: In this article, we compare two different implementations of GMRES, namely [1, 2]. These
methods do not use Given's rotations. Some numerical examples are presented to show the difference of the
processes.

Key words: Arnoldi process • AGMRES • SGMRES • linear systems • Krylov subspaces

INTRODUCTION

One of the important computational method for
solving a linear system of equations

 Ax = b (1)

where A is a nonsymmetric, n×n, matrix, is the GMRES
method. This method has been developed in 1986 by
Saad and Schultz [3]. In this method by using the
Arnoldi process an orthogonal basis V = {ν1, ν2,…. νk}
is made for krylov subspace

{ }k 1
k 0 0 0 0K (r ,A) span r ,Ar , .A r−≡ 

where x0 is an initial vector and r0 = b-Ax0. The
approximation solution in kth step is xk = x0+Vky where
y minimizes the least square problem.

For the rest of article we use the two following
algorithms:

Algorithm 1: Arnoldi-modified Algorithm
0. Choose a vector ν1 such that ||ν1|| = 1.
1. for l = 1,…,m do

νk+1 = Aνk,
for i = 1,…,k do

hi,k = 〈νk+1, νi〉,
νk+1 = νk+1 - hi,kνi ,

End.
hk+1,k = ||νk+1||,
νk+1 = νk+1/hk+1,k ,

End.

In this algorithm by using a unit vector ν1, the k
orthonormal vectors generates for Kk(r0,A) and
therefore we have k k 1 kAV V H+= which is the base of

GMRES method. kH is the (k+1)×k upper Hessenberg
matrix obtained by h i,k and in GMRES method we
try to minimize 1 ke H z− where z∈Rk and e1 =

(1,0,…,0)T∈Rk+1.
Now the algorithm is:

Algorithm 2: Restarted GMRES method (GMRES(k))
0. Choose a starting point x0 and compute

0
0 0 1

0

r
r b Ax and v

r
= − =

1. Construct the orthonormal vectors ν1, ν2,…, νk, by
Algorithm 1.

2. Find kz R∈ which minimizes 1 ke H z− .

3. k 0 0 kx x r V z= + , if xk salves (1) exit, otherwise set

x0 = xk, r0 = rk, ν1 = r0/||r0|| and go to 1.

IMPLEMENTATIONS
OF SGMRES AND AGMRES

After developing the GMRES method in [3],
different implementations have been introduced such as
[1, 2, 4] and more research works have been done [5-8].
Brown [9] considers the GMRES as an analytical
method and compares with FOM by some examples.
Rozloznik [10] shows that GMRES is a stable
numerical method and is a powerful method for parallel
computing. The other ideas in [6, 11] describe that how
we can increase the speed of convergence of GMRES.
As we already described this method by using the
Arnoldi projection process instead of solving a linear
system with dimension n, uses Given's rotations for
solving a least square problem (k+1)×k. Since using
Given's rotations has a high cost, so we are interested in

Middle-East J. Sci. Res., 8 (2): 536-540, 2011

537

not using those rotations, therefore we present two
different implementations of GMRES method without
using Given's rotations, they are called SGMRES and
AGMRES.

SGMRES: The SGMRES is known as simpler
GMRES and developed by Walker and Zhou in
1994 [2]. They suggested that if the vector Ar0
instead of r0 uses for generating the orthonormal
basis Vk we have an upper triangular system to solve
which is much easier then upper Hessenberg problem.
In this method the orthonormal vectors ν1, ν2,…, νk
generates by Algorithm 1 and r0 make an
orthogonal set with ν1, ν2,…, νk-1 by using Gram-
Schmidt process. Finally the approximate solutions
xk = x0+d obtain.

Algorithm 3 shows how vector d produces. For
more information [2].

Algorithm 3: Simpler GMRES (SGMRES)
0. Given x, set r = b-Ax and ρ0 ≡ ||r||. If ρ0<eps,

accept x and exit; otherwise, update
0

r
r =

ρ
 and

Set ρ = 1.

1. For k = 1,2,…,m do
a. Evaluate νk ≡ Aνk-1 (ν1 ≡ Ar).
b. If k>1, then for j = 1,…, k-1 do

i. Set hj,k = 〈νj, νk〉.
ii. update νk = νk- hjk νj.

 c. Set hkk = ||νk||2 update k
k

kk

v
v

h
= .

d.Set ()()
k 1 1k

k 1 11

kk

H h
H H h

0 0 h

− 
 = = 
 
 

.

e. Set ξk = 〈r, νk〉; update 1 ksin cos−
  ξ

ρ=ρ   ρ  
; If

ρ,ρ0≤eps, go to 2.
f. update r = r-ξkνk.

2. Let k be the final iteration number from 1.
a. Solve ()T

k 1 kH z , ,= ξ ξ for ()T
1 kz , ,= η η .

b.Form
()

1
k 1

1 i 1 1 i i
i 1

r , i fk 1
y

r v , i fk 1
−

+
=

η =
= η + η +η ξ >

∑

c. update x = x+ρ0y, If ρ,ρ0≤eps, accept x and
exit ;otherwise, update

()k k
0 0

r v
r , . , 1

−ξ
= ρ = ρ ρ ρ =

ρ
and return to 1.

AGMRES: This method has been developed by
Ayachour in 2003 [1]. In this method we use the
steps of Algorithm2, but Ayachour for computing z in
step2 uses some differentiable functions. He
introduces two differentiable functions ƒk o r gk for

1 ke H z− depending the situations of h k+1,k .
Finally the combinations of the two optimized

solutions will appear in a theorem for computing the
approximate solution as xk = x0 +d without using the
Given's rotations [1].

The following algorithm is an optimized
implementation of the above mentioned theorem. In this
algorithm if we assume

k
k

w
H

H
 

=  
 

where
()1,1 1,kw h , ,h= 

and
2,1 2,k

k

k 1 , k

h h
H

h +

 
 =  
 
 



 

then we consider T
k k k kH H e e′ = + . In that theorem the

matrix 1
kH −′ uses many times, therefore we consider Rk

as 1
kH −′ which can be computed from Rk-1 and the first

(k-1) components of the last column of kH′ (here it is g).
Now the algorithm for computing xk is:

Algorithm 4: Implementation of Ayachour for GMRES
(AGMRES)
0. Choose x then r = b-Ax and ρ0 ≡ ||r||. If ρ0≤eps then

x is a solving of (1), Stop, else set 1 0
r

v , 1
r

= α =

1. for k = 1,…,m do
a. Evaluate νk+1 = Aνk.
b.Set k k 1 1 k 1 k 1 k 1w v ,v , v v w v+ + += = − .
c. for j = 1,…,k do

j 1 k 1 j k 1 k 1 j 1 jv ,v , v v v− + + + −λ = = −λ .

d. k 1 k 1 k 1v ,v v /+ + +β = = β , set ()T
1 k 1g , , −= λ λ .

e. Evaluate ()k 1 k 1 T
k k k

R R g
R , u R :,k ,w

1
− −− 

= = 
 

.

f. Set
()

k k k 1 0 k22
k 0

1
,sin , sin

u
γ = θ =βγ α =α θ

β + α
.

g. k 0 1r = ρ α , if k kr e ps o r u eps< < go to 2.

h.Update () ()k
k k k 0 1

u 1
u , R :,k R :,k ,= = α = α

β β
.

Middle-East J. Sci. Res., 8 (2): 536-540, 2011

538

2. Let k be the final iteration number from 1.

a. Set ()T2 2 2 1
k 1 k k 1 k k ky sin u , ,sin u , u , z H y−

− ′= θ θ γ = .

b. 2
0 0 kx x V z , r b Ax= + ρ α = − .

c. If ||r||<eps accept x otherwise 0 1
r

r , v
r

ρ = =

and return to 1.

NUMERICAL TESTS FOR
COMPARISON OF THE METHODS

In this section we compare the two methods by
numerical examples using MATLAB software. In the
presented figures the residual norm is in the basis of
log10. In the following tables the Error is the norm of
the residuals of the computed solutions and Time is the
total consuming time. Also note that in this section we
consider x0 = (0,0,…0)T.

Example 1: In this example the matrix A is almost
upper triangular. The results show that both
methods AGMRES and SGMRES converges fast.
The matrix A is

1 0 0.5 0 1
1 0 0.5

1 0
A

0 0.5
1 0

1 1

 
 
 
 

=  
 
 
  
 



 



In this example n = 100 and k = 10 have been
chosen. The vector b has been selected in the way
that x = (1,2,…,100)T be a solution of (1).

As Fig. 1 shows both methods have been reached
to the desired solution after 6 iterations.

It is interesting to note that both methods for an
almost upper triangular matrix converge very fast
(Table 1).

Example 2: In this example the matrix A has the form

1 0 1.1 4.6
2.1 2 0 1.1 4.6
3.5 2.1 3 0

A 0 3.5 4.6
0 1.1

3.5 2.1 n 1 0
3.5 2.1 n

 
 
 
 
 

=  
 
 

− 
 
 



   

  

Table 1:

Iterate Error Time

SGMRES 5 9.4436 e-012 1.2791 e-002

AGMRES 6 9.4156 e-012 1.5028 e-002

Fig. 1: With n = 100, k = 10

Fig. 2: With n = 500, k = 15

Consider n = 500, k = 15 and x = (1,1,…,1)T be the
solution. The results again show that the SGMRES
works faster.
The numerical results are shown in Table 2.

Middle-East J. Sci. Res., 8 (2): 536-540, 2011

539

Table 2:
Iterate Error Time

SGMRES 73 9.7698 e-012 8.2592 e-001

AGMRES 83 9.9305 e-012 9.3438 e-001

Table 3:
Iterate Error Time

SGMRES 14 9.2374 e-012 4.5576 e-001

AGMRES 19 9.6620 e-012 4.4398 e-001

Example 3: In this exa mple we have used a block
matrix, this matrix has been taken from [11]. Let p be
an even integer and denote by I and 0, respectively, the
p p
2 2
× identity and zero matrices. Define also the p p

2 2
×

matrices T1 and T2 as in

1

2 0 0
1 1

T 0
1 0

0 1 1

− 
 − − 
 =
 

− 
 − − 

 

 

   

 

 

, 2

1 0 0
1 1

T 0
1 0

0 0 1 2

− 
 − − 
 =
 

− 
 − − 

 

 

   

 



The matrix A is a nonsymmetric p2×p2 matrix as in
the following

1

2

1

2

1

2

2

1

2

1

2

1

4I 0 0 T -2I 0 0
0 4I -I T -I 0

0 -I T -I 0
0 -I T -I 0

4I 0 0 -I T -I
0 0 4I 0 0 -2I T
T -2I 0 0 4I 0 0
-I T -I 0 0 4I
0 -I T -I

0 -I T -I 0

0 -I T -I 4I 0
0 0 -2I T 0

A =

        

 

   

    

     

     

 

        

        

 

   

    

     

     

 

         0 4I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now suppose p = 30, i.e. n = 900, k = 20,
x = (1,2,…,n)T, x = (1,2,…,n)T be the exact solution.
The results show the behavior of the methods.

As the results show in Table 3 both method works
very fast. Note that if the dimension increases then the
SGMRES does not work as good as before. For
example we have tested for p = 64(n = 4096), k = 40
and x = (1,1,…,1)T.

The results have been plotted in Fig. 4 and show
that AGMRES works faster, i.e. the AGMRES works
better when we increase the dimension. In this case

Table 4:
Iterate Error Time

SGMRES 13 9.8744 e-012 4.5271
AGMRES 11 9.4749 e-012 3.6161

Fig. 3: With n = 900, k = 20

Fig. 4: With n = 4096, k = 40

although SGMRES works a bite slower than AGMRES
but both of them solve a problem with n = 4096, by at
most 13 iterations, when k = 40.

This example emphasizes that the orthogonal
projection method is really useful for solving the sparse
linear system of equations.

The numerical results for this case are in Table 4 as
follows

Middle-East J. Sci. Res., 8 (2): 536-540, 2011

540

Table 5:

Iterate Error Time

SGMRES 70 9.1819 e-012 5.9216 e+001

AGMRES 8 8.3457 e-012 3.2909 e+000

Fig. 5: With n = 1000, k = 25

Example 4: In this example we have tested the
methods for complex matrix, e.g.

4 0 1 0.7
2i 4 0 1

2i 4 0.7
A

0 1
2i 4 0

2i 4

 
 
 
 

=  
 
 
  
 



 

 
.

This matrix has been taken from [1].
We have selected n = 1000, k = 25 and

x = (1,2,…,n)T. The results are plotted in Fig. 5 and
shows that the SGMRES does not work good any more
and even it is not as good as AGMRES.

The numerical results are in Table 5 and show that
the speed of convergence for SGMRES is low.

CONCLUSIONS

s we already described the GMRES is a powerful
method for solving the linear systems of equations.
Two implementations AGMRES and SGMRES for
solving their least square problem do not use Given's

rotations. In SGMRES a solution of an upper triangular
system requires, but in AGMRES the introduced
differentiable functions will be used. Both methods
are powerful for solving the linear systems, but they
show different behavior when we come to numerical
examples. As the numerical examples in the last
sections show when the dimension of the matrix
increases, e.g. greater than 2000.

he AGMRES works better and if the matrix A is a
complex matrix the SGMRES has the low performance
of convergence while AGMRES converges fast. Finally
if A is a real matrix having not very large dimension,
the SGMRES works very fast so we suggest of using
this method in these cases.

REFERENCES

1. Ayachour, E.H., 2003. A fast implementation
for GMRES method. J. Comput App. Math.,
159: 269-283.

2. Walker, W.F. and L. Zhou, 1994. A simpler
GMRES, Linear Algebra Appl., 1: 571- 581.

3. Saad, Y. and M.H. Schultz, 1986. GMRES:
Ageneralized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 7: 856-869.

4. Walker, W.F., 1988, Implementation of the
GMRES method, using Householder
transformation. SIAM J. Sci. Stat. Comput.,
9: 152-163.

5. Saad, Y., 1993, A flexible inner-outer
preconditioned GMRES algorithm. SIAM S. Sci.
Comput., 14: 461-469.

6. Essai, 1998. Weighted FOM and GMRES for
solving nonsymmetric linaer systems. Numer.
Algorithm, 18: 277-299.

7. Nachtigal, N.M. et al., 1992. A hybrid GMRES
algorithm for nonsymmetric linear systems. SIAM
J. Matrix Anal. Appl., 13: 796-825.

8. Turner, K. and H.F. Walker, 1992. Efficient high
accuracy solution with GMRES (m). SIAM J. Sci.
Stat. Comput., 13: 815-825.

9. Brown, P.N., 1991. A theoretical comparison of
the Arnoldi and the GMRES algorithms. SIAM J.
Sci. Stat. Comput., 12: 58-78.

10. Rozloznik, M., 1996. Numerical stability of the
GM RES method. Ph.D. Thesis, Czech Technical
University.

11. Saberi Najafi, H. and H. Zareamoghaddam, 2008.
A new computational GMRES method. Applied
Mathematics and Computation, 199 (2): 527-534.

