
Middle-East Journal of Scientific Research 8 (2): 536-540, 2011
ISSN 1990-9233
© IDOSI Publications, 2011

Corresponding Author: H. Zareamoghaddam, Islamic Azad University, Kashmar Branch, Kashmar, Iran 
536

A Numerical Comparison of Two Different Implementations of GMRES Method
1H. Saberi Najafi and 2H. Zareamoghaddam

1Lahijan Branch, Islamic Azad University, Lahijan, Iran
2Kashmar Branch, Islamic Azad University, Kashmar, Iran

Abstract:  In this article, we compare two different implementations of GMRES, namely [1, 2]. These 
methods do not use Given's rotations. Some numerical examples are presented to show the difference of the 
processes.
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INTRODUCTION

One of the important computational method for
solving a linear system of equations

                                      Ax = b (1)

where A is a nonsymmetric, n×n, matrix, is the GMRES 
method. This method has been developed in 1986 by 
Saad and Schultz [3]. In this method by using the
Arnoldi process an orthogonal basis V = {ν1, ν2,…. νk}
is made for krylov subspace 

{ }k 1
k 0 0 0 0K (r ,A) span r ,Ar , .A r−≡ 

where x0 is an initial vector and r0 = b-Ax0. The
approximation solution in kth step is xk = x0+Vky where 
y minimizes the least square problem.

For the rest of article we use the two following 
algorithms:

Algorithm 1: Arnoldi-modified Algorithm
0. Choose a vector ν1 such that ||ν1|| = 1.
1. for l = 1,…,m do

νk+1 = Aνk,
for i = 1,…,k do

hi,k = 〈νk+1, νi〉,
νk+1 = νk+1 - hi,kνi ,

End.
hk+1,k = ||νk+1||,
νk+1 = νk+1/hk+1,k ,

End.

In this algorithm by using a unit vector ν1, the k 
orthonormal vectors generates for Kk(r0,A) and
therefore  we  have k k 1 kAV V H+=   which  is the base of 

GMRES method. kH is the (k+1)×k upper Hessenberg 
matrix  obtained  by  h i,k  and  in  GMRES  method  we 
try to minimize 1 ke H z−  where z∈Rk and e1 =

(1,0,…,0)T∈Rk+1.
Now the algorithm is:

Algorithm 2: Restarted GMRES method (GMRES(k))
0. Choose a starting point x0 and compute 

0
0 0 1

0

r
r b Ax and v

r
= − =

1. Construct the orthonormal vectors ν1, ν2,…, νk, by 
Algorithm 1.

2. Find kz R∈ which minimizes 1 ke H z− .

3. k 0 0 kx x r V z= + , if xk salves (1) exit, otherwise set 

x0 = xk, r0 = rk, ν1 = r0/||r0|| and go to 1.

IMPLEMENTATIONS
OF SGMRES AND AGMRES

After developing the GMRES method in [3],
different implementations have been introduced such as 
[1, 2, 4] and more research works have been done [5-8].
Brown [9] considers the GMRES as an analytical
method and compares with FOM by some examples. 
Rozloznik [10] shows that GMRES is a stable
numerical method and is a powerful method for parallel
computing. The other ideas in [6, 11] describe that how 
we can increase the speed of convergence of GMRES. 
As we already described this method by using the
Arnoldi projection process instead of solving a linear 
system with dimension n, uses Given's rotations for
solving a least square problem (k+1)×k. Since using 
Given's rotations has a high cost, so we are interested in 
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not using those rotations, therefore we present two 
different implementations of GMRES method without 
using Given's rotations, they are called SGMRES and 
AGMRES.

SGMRES: The SGMRES is known as simpler
GMRES  and  developed  by  Walker  and  Zhou in 
1994  [2]. They  suggested  that  if  the vector Ar0
instead  of  r0 uses  for  generating  the  orthonormal 
basis Vk we have an upper triangular system to solve 
which is much easier  then  upper  Hessenberg  problem.
In  this method the orthonormal vectors ν1, ν2,…, νk
generates by  Algorithm  1  and r0  make  an
orthogonal set with ν1, ν2,…, νk-1 by using Gram-
Schmidt  process.  Finally  the  approximate  solutions 
xk = x0+d obtain. 

Algorithm 3 shows how vector d produces. For 
more information [2].

Algorithm 3: Simpler GMRES (SGMRES) 
0. Given x, set r = b-Ax and ρ0 ≡ ||r||. If ρ0<eps,

accept x and exit; otherwise,  update 
0

r
r =

ρ
 and 

Set ρ = 1. 

1. For k = 1,2,…,m do 
a. Evaluate νk ≡ Aνk-1 (ν1 ≡ Ar).
b. If k>1, then for j = 1,…, k-1 do 

i. Set hj,k = 〈νj, νk〉.
ii. update νk = νk- hjk νj.

 c. Set hkk = ||νk||2 update k
k

kk

v
v

h
= .

d.Set ( )( )
k 1 1k

k 1 11

kk

H h
H H h

0 0 h

− 
 = = 
 
 

.

e. Set ξk = 〈r, νk〉; update 1 ksin cos−
  ξ

ρ=ρ   ρ  
; If 

ρ,ρ0≤eps, go to 2.
f. update r = r-ξkνk.

2. Let k be the final iteration number from 1.
a. Solve ( )T

k 1 kH z , ,= ξ ξ  for ( )T
1 kz , ,= η η .

b.Form
( )

1
k 1

1 i 1 1 i i
i 1

r , i fk 1
y

r v , i fk 1
−

+
=

η =
= η + η +η ξ >

∑

c. update x = x+ρ0y, If ρ,ρ0≤eps, accept x and 
exit ;otherwise, update 

( )k k
0 0

r v
r , . , 1

−ξ
= ρ = ρ ρ ρ =

ρ
and return to 1. 

AGMRES: This method has been developed by
Ayachour  in  2003  [1].  In  this  method we use the 
steps of Algorithm2, but Ayachour for computing z  in 
step2  uses  some  differentiable  functions.  He
introduces two differentiable functions ƒk o r  gk for 

1 ke H z−  depending the situations of h k+1,k .
Finally the combinations of the two optimized 

solutions will appear in a theorem for computing the 
approximate solution as xk =  x0 +d without using the 
Given's rotations [1].

The following algorithm is an optimized
implementation of the above mentioned theorem. In this 
algorithm if we assume 

k
k

w
H

H
 

=  
 

where
( )1,1 1,kw h , ,h= 

and
2,1 2,k

k

k 1 , k

h h
H

h +

 
 =  
 
 



 

then we consider T
k k k kH H e e′ = + . In that theorem the 

matrix 1
kH −′ uses many times, therefore we consider Rk

as 1
kH −′  which can be computed from Rk-1 and the first 

(k-1) components of the last column of kH′ (here it is g). 
Now the algorithm for computing xk is:

Algorithm 4: Implementation of Ayachour for GMRES 
(AGMRES)
0. Choose x then r = b-Ax and ρ0 ≡ ||r||. If ρ0≤eps then 

x is a solving of (1), Stop, else set 1 0
r

v , 1
r

= α =

1. for k = 1,…,m do
a. Evaluate νk+1 = Aνk.
b.Set k k 1 1 k 1 k 1 k 1w v ,v , v v w v+ + += = − .
c. for j = 1,…,k do

j 1 k 1 j k 1 k 1 j 1 jv ,v , v v v− + + + −λ = = −λ .

d. k 1 k 1 k 1v ,v v /+ + +β = = β , set ( )T
1 k 1g , , −= λ λ .

e. Evaluate ( )k 1 k 1 T
k k k

R R g
R , u R :,k ,w

1
− −− 

= = 
 

.

f. Set
( )

k k k 1 0 k22
k 0

1
,sin , sin

u
γ = θ =βγ α =α θ

β + α
.

g. k 0 1r = ρ α , if k kr e ps o r u eps< <  go to 2.

h.Update ( ) ( )k
k k k 0 1

u 1
u , R :,k R :,k ,= = α = α

β β
.
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2. Let k be the final iteration number from 1.

a. Set ( )T2 2 2 1
k 1 k k 1 k k ky sin u , ,sin u , u , z H y−

− ′= θ θ γ = .

b. 2
0 0 kx x V z , r b Ax= + ρ α = − .

c. If ||r||<eps accept x otherwise 0 1
r

r , v
r

ρ = =

and return to 1. 

NUMERICAL TESTS FOR 
COMPARISON OF THE METHODS

In this section we compare the two methods by 
numerical examples using MATLAB software. In the 
presented figures the residual norm is in the basis of 
log10. In the following tables the Error is the norm of 
the residuals of the computed solutions and Time is the 
total consuming time. Also note that in this section we 
consider x0 = (0,0,…0)T.

Example 1: In this example the matrix A is almost 
upper  triangular.  The  results  show  that  both
methods  AGMRES  and  SGMRES  converges  fast. 
The matrix A is

1 0 0.5 0 1
1 0 0.5

1 0
A

0 0.5
1 0

1 1

 
 
 
 

=  
 
 
  
 



 



In this example n = 100 and k = 10 have been 
chosen. The  vector  b  has  been  selected  in  the way 
that x = (1,2,…,100)T be a solution of (1).

As Fig. 1 shows both methods have been reached 
to the desired solution after 6 iterations.

It is interesting to note that both methods for an 
almost upper triangular matrix converge very fast
(Table 1).

Example 2: In this example the matrix A has the form

1 0 1.1 4.6
2.1 2 0 1.1 4.6
3.5 2.1 3 0

A 0 3.5 4.6
0 1.1

3.5 2.1 n 1 0
3.5 2.1 n

 
 
 
 
 

=  
 
 

− 
 
 



   

  

Table 1:

Iterate Error Time

SGMRES 5 9.4436 e-012 1.2791 e-002

AGMRES 6 9.4156 e-012 1.5028 e-002

Fig. 1: With n = 100, k = 10

Fig. 2: With n = 500, k = 15

Consider n = 500, k = 15 and x = (1,1,…,1)T be the 
solution. The results again show that the SGMRES 
works faster.
The numerical results are shown in Table 2.
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Table 2:
Iterate Error Time

SGMRES 73 9.7698 e-012 8.2592 e-001

AGMRES 83 9.9305 e-012 9.3438 e-001

Table 3:
Iterate Error Time

SGMRES 14 9.2374 e-012 4.5576 e-001

AGMRES 19 9.6620 e-012 4.4398 e-001

Example 3: In this exa mple we have used a block 
matrix, this matrix has been taken from [11]. Let p be 
an even integer and denote by I and 0, respectively, the 
p p
2 2
×  identity and zero matrices. Define also the p p

2 2
×

matrices T1 and T2 as in

1

2 0 0
1 1

T 0
1 0

0 1 1

− 
 − − 
 =
 

− 
 − − 

 

 

   

 

 

, 2

1 0 0
1 1

T 0
1 0

0 0 1 2

− 
 − − 
 =
 

− 
 − − 

 

 

   

 



The matrix A is a nonsymmetric p2×p2 matrix as in 
the following

1

2

1

2

1

2

2

1

2

1

2

1

4I 0 0 T -2I 0 0
0 4I -I T -I 0

0 -I T -I 0
0 -I T -I 0

4I 0 0 -I T -I
0 0 4I 0 0 -2I T
T -2I 0 0 4I 0 0
-I T -I 0 0 4I
0 -I T -I

0 -I T -I 0

0 -I T -I 4I 0
0 0 -2I T 0

A =

        

 

   

    

     

     

 

        

        

 

   

    

     

     

 

         0 4I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Now    suppose    p = 30,    i.e.   n = 900,    k = 20, 
x = (1,2,…,n)T, x = (1,2,…,n)T be the exact solution. 
The results show the behavior of the methods. 

As the results show in Table 3 both method works 
very fast. Note that if the dimension increases then the 
SGMRES does not work as good as before. For
example we have tested for p = 64(n = 4096), k = 40 
and x = (1,1,…,1)T.

The results have been plotted in Fig. 4 and show 
that AGMRES works faster, i.e. the AGMRES works 
better  when  we  increase  the  dimension.  In  this case

Table 4:
Iterate Error Time

SGMRES 13 9.8744 e-012 4.5271
AGMRES 11 9.4749 e-012 3.6161

Fig. 3: With n = 900, k = 20

Fig. 4: With n = 4096, k = 40

although SGMRES works a bite slower than AGMRES 
but both of them solve a problem with n = 4096, by at 
most 13 iterations, when k = 40. 

This example emphasizes that the orthogonal
projection method is really useful for solving the sparse 
linear system of equations.

The numerical results for this case are in Table 4 as 
follows
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Table 5:

Iterate Error Time

SGMRES 70 9.1819 e-012 5.9216 e+001

AGMRES 8 8.3457 e-012 3.2909 e+000

Fig. 5: With n = 1000, k = 25

Example 4: In this example we have tested the
methods for complex matrix, e.g.

4 0 1 0.7
2i 4 0 1

2i 4 0.7
A

0 1
2i 4 0

2i 4

 
 
 
 

=  
 
 
  
 



 

 
.

This matrix has been taken from [1]. 
We     have     selected     n = 1000,     k = 25   and 

x = (1,2,…,n)T. The results are plotted in Fig. 5 and 
shows that the SGMRES does not work good any more 
and even it is not as good as AGMRES. 

The numerical results are in Table 5 and show that 
the speed of convergence for SGMRES is low.

CONCLUSIONS

s we already described the GMRES is a powerful 
method for solving the linear systems of equations.
Two implementations AGMRES and SGMRES for
solving  their  least  square  problem  do not use Given's

rotations. In SGMRES a solution of an upper triangular 
system requires, but in AGMRES the introduced
differentiable  functions  will  be  used. Both methods 
are powerful for solving the linear systems, but they 
show different behavior when we come to numerical 
examples. As the numerical examples in the last
sections show when the dimension of the matrix
increases, e.g. greater than 2000.

he AGMRES works better and if the matrix A is a 
complex matrix the SGMRES has the low performance 
of convergence while AGMRES converges fast. Finally 
if A is a real matrix having not very large dimension, 
the SGMRES works very fast so we suggest of using 
this method in these cases.
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