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Abstract: The aim of this paper is to introduce and study new classes of analytic functions by using a well-
known convolution operator L(a, ¢) which was introduced by Carlson and Shaffer [1]. Sharp coefficient bound
and some inclusion results are discussed. Invariance of these classes under convolution with convex functions
has also been examined.
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INTRODUCTION

Let 4 be the class of functions fanalytic in the open unit disk £ = {z: |7 <1} and

f(z):z+2bnzn. (1.1)

Let the incomplete beta function ¢(a, ¢) be defined as

blorcls) = 3 (0 02

Where ;c5 4ec0,cc007. 05 = f0,-1-2,..} and (v), 1s the Pochhammer symbol (or the shifted factorial) defined (in
terms of Gamma function) by

(v), =

1—‘(1)+n)7 1, #HZO,UED\{O},
[(v) - v(v+1)(v+2)...(v+a-1), iFfnel,vel. (1.3)

The conwoelution (or Hadamard product) of two analytic functions 4 (;)- Z bz And gy ()= Z o,z 18 defined as

n=1 n=1
(hl*hZ)(z):mecnzn- (1.4)
n=1

By using the function ¢{a, ¢) and convolution, Carlson and Shaffer [1] introduced a linear operator L(a, ¢): 4 ~ 4. Itis
defined as

Lia, o)fiz) = Pla, o)(2)*fz) (1.5)
- Z+ZEZ;’11 b,z". (1.6)
n=2 n-1
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Where £ is defined by (1.1). Tt can easily be seen from (1.3) and (1.6) that L(2, 1) fiz) = z f(z) and
ALa, eY(z)) = ala+ 1, )A2) — (a— 1) Lia, Ofz). a7

Furthermore, we note that
LB+ 1D fin) =D Az, (8>—1), (1.8)

Where the symbol I’ denotes the well-known Ruscheweyh derivative for § € N, = Nu {0}, which was intreduced by
Ruscheweyh [19]. Noor [10] and Noor and Noor [14] defined and studied an integral operator I, : 4 ~ A analogous to Df
fas follows:

Let 7 (Z)=ﬁ,neﬂ o and let f(_l) be defined such that
1-z i
* (-1) -
Py )= (1.9
Then
Li=f"s
{1.10)

If ;epny, thenL(a, c) has a continuous inverse L.(¢, a) Clearly, L{a, a) is the unit (identity) operator and
Lia, ¢)=L{a, B)L(b,c)=L(b, c)l.(a, b). (111)
This convolution operator L{a, ¢) provides a convenient representation of differentiation and integration, that is,
if g(z) =z f(z), then g(z) = L(2, 1) fiz) and fz) = L(1, 2) g(z). For more details of this operator, see [7, 9, 16]. Using these
facts, Noor mtegral operator can be expressed m term of L{a, ¢) as

LAD =L, n+ 1Az, neN, (1.12)

For applications of Noor mtegral operator, see [2, 5,8, 11, 12, 15].
Let P[4, B] be the class of functions /4, analytic m F with A(0) = 1 and

Wz)< 24 1<Boas<,
1+ Bz (1.13)

Where the symbol =< stands for subordination. This class was introduced by JTanowski [4]. Polatoglu [17] defined the
class P[4, B, «] as:
Let P[4, B, a] be the class of functions p analytic in £ with p(0) = 1 and

1+[(1-e)d+aB]|:z
p(z)-< 5 ,—1ZB<d4<10=a<l, zekE. 1.14)

From this, one can easily write p € P[4, B, ] as
pzy=(1—a)h+a,he P[4, B], O<e<1. (1.15)
It 18 noted that P[1,-1,0]=F, the well-known class of analytic functions m F with positive real part.

Using the concept of convolution operator L(a, <) and the class P[4, B, «] we define the followings, which is the
main motivation of this paper.
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Definition 1.1: A function € 4 is in the class S;,c [4.B.c] if and only if,
€ P[4,B.a], z<E. (1.16)

Definition 1.2: A function f€ 4 1s n the class C, [4, B, ¢] if and only 1if]
guene
(L(a,c)f(z))r

€P|4.B.ax], zeH. .17

. . .
Now we discuss some special cases of the class Sne[4B.a]

Spc[L-10]= S;,c =5 (ac), The well-known class, introduced by Noor [13].
L] SQ

*
a,
", [1-10]= g*. The well-known class of starlike univalent functions in £,
2,

¢ ShalABal- S”‘[ ABa) The class of janowski starlike functions of order 4, introduced by Polatogu [17].

In a sumilar way, one can obtain several special cases of C, [4, B, @] One can also show that

feC, |4Ba| o :f eS8, [4.B.a]

(1.18)
Preliminary Lemmas: We need the following lemmas which will be used in our main results.
Lemma 2.1: Let P(Z):Hipnzn € 2[4,5.a] Then, foralln > 1,
n=1
|pl<(1-a)(A = B). (2.1)

This inequality 1s sharp.
The proof is immediate when we use the coefficient result for the class P[4, B], (see [13]) and (1.15).

Lemma 2.2 [18]: Leta, > a,> 0. Ifa, > > 2 or ¢, + @, > 3, then the function ¢¥a,, a,) defined by (1.2) is convex univalent.

Lemma 2.4 [6]: Let fe C and g € S'. Then for any analytic function F with F{0) = 1in E,

7(f*Fg)(E)C5F(E),

(f*g)

Where @ 7(E) denotes the convex hull of F(F) (the smallest convex set which contains F(E)).

(2.2)

Main Results w
Theorem 3.1: Let F2)=z+ mezn e SZ,.: [4.2,0] Then, for all # > 2,

n=2

T (-a)(4-5)- i

H E+1 ' 3.1

n—l‘ =0

(),

(a

6] <
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This result is sharp and equality holds for the extremal function f; for which

(I-or)(4-B)
L(a,c)fo(z): Z(1+BZ) B . B0,
ze(l_fx)Az, B=0. (3.2)
Proof: Since ;). ibnzn sy Az, there exists a function p € P[4, B, ¢] such that
n=2
e @) ) 63
L{ae)f(z) D7 '
If
p(z): 1+ anz”
n=1
then
z+ Zn @)y b, z" = [z + Z (@), 4 bnzn}[l+ anz”}.
n=2 (c)fifl n=2 (C)nfl r=1
Equating coefficients of z* on both sides, we have
(@), (o), f(a), (a);
n " bn: * anr . bn 1At +762pn 2+ Pu
(¢)ys G (¢) s (e)y
That 1s,
(a) n— 1 a N
(n-1) ‘ NI = 1‘\% loel B=1. (3.4
‘(C nfl kil‘cnkl
Using Lemma 2.1, we have
c )
e ey (35)
T, PG,
Now we prove that
(o (et =B ]| 0N 2) s3] 5
‘(a)n—l n-l kzl‘(c)k—l‘ ‘(“);H =0 k+l
For this, we use induction method,
Forn=2;
From (3.5), we have ‘ |
6 < ﬂ (1-a){4-B). 3.7)
From (3.1), we have
EE | | 1-a)(4-B) (3.8)
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Forn=73;
From (3.5), we have ¢ a

5 sg‘gai‘u—@m—m{wl+';||bz}

S;‘E:i‘(1—a)(A—B){1+(l—oc)(A—B)}.

From (3.1), we have

5] \(c)z\(17(1)(A78)|(1—a)(,4—3)—3|

’ ‘(“)2‘ 2

S%EZ))J(1—0{)(A—B){1+(1—05)(A—B)}.

Let the hypothesis be true for # = m. From (3.5), we have

by < (a1 -2y, |

| =

|6 .
a mfl‘ m—1 Iczl‘(" kfl‘

From (3.1), we have

Multiplying both sides by ‘|C (=D (1= o) (A-B) +{m- 1), we have

a—(m—1)| m

(4-B)+k

m-1 (17(1)
g k+1
lien (1—05)(A—B){(1—a)(A—B)+(m—1)}”§ Dy

()]
),

(

(a),] =1 o Sl
o il
O
LR o e
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That is,

(), a-ara-m) @), | ),
@ ey ™ &,

|| - {(3.15)

Which shows that the inequality (3.6) is true for # = m + 1. Hence the required result. =

Special Case: As a special case, we note that, when 4 =1 B=-1, B=-1, ¢ = 0 and a = ¢, we obtamn the well known
coefficient bound for starlike functions.

Theorem 3.2: If feszgc [4,5.a], then for |z] = r < 1,
(-)(A-5) (1-)(4-3)

r(l—Br) B . B#0, S|L(a,c)f(z)|£ r(l+Br) B . B#0, (3.16)
ref(lfa)Ar, B=0 re(lfa)Ar, B=0.

This result is sharp.

The proof 13 immediate and we omit the details.

Theorem 3.3: Let 4y » gy 50, cepvng-1f @, > 20ora +a, > 3, then

* S [4Bd] S [480]

. C,.[4Be]cc, [ABal

Proof:

+  Let s. S;g, Jlana]- Then it follows that

= F(z) e P[4,B.a]. (317)

Now, from (1.5) and (1.11), we have

[4.B,a). (3.18)

774



Middle-East J. Sci. Res., 7 (5): 769-777, 2011
This implies that s s* [4,5,,] and the proof if (i) is complete.
.,
+  Using the relation given in (1.18),
FeC, |4Ba| & z2f(z)eS, .[4.B.a]

= zf'(z)eS; .[4.B.a]
< f(z)eC, |4B.al,

and this proves (ii). =

Theorem 3.4: LetaeR, &* 2 ¢, > 0.If ¢, = 2 or ¢, + ¢; = 3, then

*

* g [[A,B,(x]] c 8 o [A,B,cx]].

a, 0 ,
© C . |4Ba|cC,, [4.Bal

, 0

Proof:

o Let 5o SZ [4B.a]- Then it follows that

o

Now, from (1.5) and (1.11), we have

Since ¢(c,, ¢,y € C, by Lemma 2.2 and L(a, ¢,) f€ STA4, B, &] = 5, so by using Lemma 2.3, we have

#(L(a )/ (2)] € P|A4,B.cx) (3.20)

L(a, cz)f(z)
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This implies that . ¢* [4,5,0] and this completes the proof.
=

¢ This can be proved in similar way as in Theorem 3.3(ii). =

Corollary 3.5: TLeta, > a, > 0, ¢, > ¢, > 0. If @, > min[2, 3—«,Jand ¢, > min[2, 3—¢,], then

‘S, . |4Bal s, . [4Ba| s, . [4Bal]

3,0

© Gy lABa]cCy  [4Ba] € C, o [4.Ba]

We shall now prove that the classes S;, c[4.B.2] and C, [4, B, @] are mvariant under convolution with convex functions.

Theorem 3.6: Let ;. .cginp and let g be convex inE. Then

* fes)  [A4Ba] = (frg)es, [4.Ba]
s feC, . |4Ba] = (frxg)eC, . [4B.a]
Proof:

¢ Let fesy [ABo]- Then, we have

Now, for g € C, consider

We now use Lemma 2.3 to have (f*g)e Sﬁ,c[A,Bsﬂi]-
¢ Proof of (ii) follows in similar way.
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