Middle-East Journal of Scientific Research 7 (5): 769-777, 2011 ISSN 1990-9233 © IDOSI Publications, 2011

On a Subclass of Starlike Univalent Functions

Khalida Inayat Noor and Sarfraz Nawaz Malik

Department of Mathematics, COMSATS Institute of Information Technology, Islamabad, Pakistan

Abstract: The aim of this paper is to introduce and study new classes of analytic functions by using a well-known convolution operator L(a, c) which was introduced by Carlson and Shaffer [1]. Sharp coefficient bound and some inclusion results are discussed. Invariance of these classes under convolution with convex functions has also been examined.

2000 AMS Subject Classification: 30C45 · 30C50

Key words: Analytic functions • Convolution • Starlike functions • Carlson-Shaffer operator • Noor integral operator

INTRODUCTION

Let A be the class of functions f analytic in the open unit disk $E = \{z: |z| < 1\}$ and

$$f(z) = z + \sum_{n=2}^{\infty} b_n z^n. \tag{1.1}$$

Let the incomplete beta function $\phi(a, c)$ be defined as

$$\phi(a,c)(z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1},$$
(1.2)

Where $z \in E$, $a \in \square$, $c \in \square \setminus \square_0^-$, $\square_0^- = \{0, -1, -2, ...\}$ and $(v)_n$ is the Pochhammer symbol (or the shifted factorial) defined (in terms of Gamma function) by

$$(v)_n = \frac{\Gamma(v+n)}{\Gamma(v)} = \begin{cases} 1, & \text{if } n=0, \ v \in \square \setminus \{0\}, \\ v(v+1)(v+2)...(v+n-1), & \text{if } n \in \square, \ v \in \square. \end{cases}$$
 (1.3)

The convolution (or Hadamard product) of two analytic functions $h_1(z) = \sum_{n=1}^{\infty} b_n z^n$ and $h_2(z) = \sum_{n=1}^{\infty} c_n z^n$ is defined as

$$(h_1 * h_2)(z) = \sum_{n=1}^{\infty} b_n c_n z^n.$$
 (1.4)

By using the function $\phi(a, c)$ and convolution, Carlson and Shaffer [1] introduced a linear operator L(a, c): $A \rightarrow A$. It is defined as

$$L(a, c)f(z) = \phi(a, c)(z) * f(z)$$
(1.5)

$$=z+\sum_{n=2}^{\infty}\frac{(a)_{n-1}}{(c)_{n-1}}b_nz^n. \tag{1.6}$$

Where f is defined by (1.1). It can easily be seen from (1.3) and (1.6) that L(2, 1) f(z) = z f'(z) and

$$z(L(a, c)f(z))' = aL(a+1, c)f(z) - (a-1)L(a, c)f(z).$$
(1.7)

Furthermore, we note that

$$L(\delta + 1, 1) f(z) = D^{\delta} f(z), (\delta > -1),$$
 (1.8)

Where the symbol D^{δ} denotes the well-known Ruscheweyh derivative for $\delta \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, which was introduced by Ruscheweyh [19]. Noor [10] and Noor and Noor [14] defined and studied an integral operator $I_n : A \to A$ analogous to D^{δ} f as follows:

Let $f_n(z) = \frac{z}{(1-z)^{n+1}}$, $n \in \mathbb{D}_0$ and let $f_n(-1)$ be defined such that

$$f_n(z) * f_n^{(-1)}(z) = \frac{z}{1-z}.$$
 (1.9)

Then

$$I_n f = f_n^{(-1)} * f. ag{1.10}$$

If $a \notin \mathbb{D}_0^-$, then L(a, c) has a continuous inverse L(c, a) Clearly, L(a, a) is the unit (identity) operator and

$$L(a, c) = L(a, b)L(b,c) = L(b, c)L(a, b).$$
 (1.11)

This convolution operator L(a, c) provides a convenient representation of differentiation and integration, that is, if g(z) = z f'(z), then g(z) = L(2, 1) f(z) and f(z) = L(1, 2) g(z). For more details of this operator, see [7, 9, 16]. Using these facts, Noor integral operator can be expressed in term of L(a, c) as

$$I_n f(z) = L(1, n+1) f(z), \quad n \in \mathbb{N}_0.$$
 (1.12)

For applications of Noor integral operator, see [2, 5, 8, 11, 12, 15]. Let P[A, B] be the class of functions h, analytic in E with h(0) = 1 and

$$h(z) < \frac{1+Az}{1+Bz}, -1 \le B < A \le 1,$$
 (1.13)

Where the symbol \prec stands for subordination. This class was introduced by Janowski [4]. Polatoğlu [17] defined the class $P[A, B, \alpha]$ as:

Let $P[A, B, \alpha]$ be the class of functions p analytic in E with p(0) = 1 and

$$p(z) \prec \frac{1 + \left[(1 - \alpha)A + \alpha B \right] z}{1 + Bz}, -1 \le B < A \le 1, 0 \le \alpha < 1, z \in E.$$

$$(1.14)$$

From this, one can easily write $p \in P[A, B, \alpha]$ as

$$p(z) = (1 - \alpha)h + \alpha, h \in P[A, B], 0 \le \alpha \le 1.$$
 (1.15)

It is noted that $P[1,-1,0] \equiv P$, the well-known class of analytic functions in E with positive real part.

Using the concept of convolution operator L(a, c) and the class $P[A, B, \alpha]$ we define the followings, which is the main motivation of this paper.

Definition 1.1: A function $f \in A$ is in the class $s_{a,c[A,B,\alpha]}^*$, if and only if,

$$\frac{z(L(a,c)f(z))'}{L(a,c)f(z)} \in P[A,B,\alpha], \quad z \in E.$$

$$(1.16)$$

Definition 1.2: A function $f \in A$ is in the class $C_{ac}[A, B, \alpha]$ if and only if,

$$\frac{\left(z\left(L(a,c)f(z)\right)'\right)'}{\left(L(a,c)f(z)\right)'} \in P[A,B,\alpha], \quad z \in E.$$
(1.17)

Now we discuss some special cases of the class $S_{ac}^*[A,B,\alpha]$.

- \$\sigma_{a,c}^*[1,-1,0] = S_{a,c}^* \in S^*(a,c)\$, The well-known class, introduced by Noor [13].
 \$\sigma_{a,a}^*[1,-1,0] = S^*\$, The well-known class of starlike univalent functions in E.
 \$\sigma_{a,a}^*[A,B,\alpha] = S^*[A,B,\alpha]\$, The class of janowski starlike functions of order \(\alpha\), introduced by Polatoğlu [17].

In a similar way, one can obtain several special cases of $C_{a,c}[A, B, \alpha]$ One can also show that

$$f \in C_{a,c}[A,B,\alpha] \iff z f' \in S_{a,c}^*[A,B,\alpha].$$
 (1.18)

Preliminary Lemmas: We need the following lemmas which will be used in our main results.

Lemma 2.1: Let $p(z)=1+\sum_{n=1}^{\infty}p_nz^n\in P[A,B,\alpha]$. Then, for all $n\geq 1$,

$$|p_n| \le (1-\alpha)(A-B). \tag{2.1}$$

This inequality is sharp.

The proof is immediate when we use the coefficient result for the class P[A, B], (see [13]) and (1.15).

Lemma 2.2 [18]: Let $a_2 \ge a_1 \ge 0$. If $a_2 \ge 2$ or $a_1 + a_2 \ge 3$, then the function $\phi(a_1, a_2)$ defined by (1.2) is convex univalent.

Lemma 2.4 [6]: Let $f \in C$ and $g \in S^*$. Then for any analytic function F with $F(0) = \lim E$,

$$\frac{(f*Fg)}{(f*g)}(E) \subset \overline{co} F(E), \tag{2.2}$$

Where $\overline{co} F(E)$ denotes the convex hull of F(E) (the smallest convex set which contains F(E)).

Theorem 3.1: Let $f(z) = z + \sum_{n=0}^{\infty} b_n z^n \in S_{a,c}^*[A,B,\alpha]$. Then, for all $n \ge 2$,

$$|b_n| \le \frac{|(c)_{n-1}|}{|(a)_{n-1}|} \prod_{k=0}^{n-2} \frac{|(1-\alpha)(A-B)-kB|}{k+1}.$$
(3.1)

This result is sharp and equality holds for the extremal function f_0 for which

$$L(a,c)f_0(z) = \begin{cases} z(1+Bz)\frac{(1-\alpha)(A-B)}{B}, & B \neq 0, \\ ze^{(1-\alpha)Az}, & B = 0. \end{cases}$$

$$(3.2)$$

Proof: Since $f(z) = z + \sum_{n=2}^{\infty} b_n z^n \in S_{a,c}^*[A,B,\alpha]$, there exists a function $p \in P[A,B,\alpha]$ such that

$$\frac{z(L(a,c)f(z))'}{L(a,c)f(z)} = p(z). \tag{3.3}$$

If

$$p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n,$$

then

$$z + \sum_{n=2}^{\infty} n \frac{(a)_{n-1}}{(c)_{n-1}} b_n z^n = \left(z + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} b_n z^n\right) \left(1 + \sum_{n=1}^{\infty} p_n z^n\right).$$

Equating coefficients of z^n on both sides, we have

$$n\frac{(a)_{n-1}}{(c)_{n-1}}b_n = \frac{(a)_{n-1}}{(c)_{n-1}}b_n + \frac{(a)_{n-2}}{(c)_{n-2}}b_{n-1}p_1 + \dots + \frac{(a)_1}{(c)_1}b_2p_{n-2} + p_{n-1}$$

That is,

$$(n-1)\frac{|(a)_{n-1}|}{|(c)_{n-1}|}|b_n| \le \sum_{k=1}^{n-1} \frac{|(a)_{n-k-1}|}{|(c)_{n-k-1}|}|b_{n-k}||p_k|, \qquad b_1 = 1..$$
 (3.4)

Using Lemma 2.1, we have

$$|b_n| \le \frac{1}{n-1} \frac{|(c)_{n-1}|}{|(a)_{n-1}|} (1-\alpha) (A-B) \sum_{k=1}^{n-1} \frac{|(a)_{k-1}|}{|(c)_{k-1}|} |b_k|. \tag{3.5}$$

Now we prove that

$$\frac{\left| (c)_{n-1} \right|}{\left| (a)_{n-1} \right|} \frac{(1-\alpha)(A-B)}{n-1} \sum_{k=1}^{n-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_k \right| \le \frac{\left| (c)_{n-1} \right|}{\left| (a)_{n-1} \right|} \prod_{k=0}^{n-2} \frac{\left| (1-\alpha)(A-B) - kB \right|}{k+1}. \tag{3.6}$$

For this, we use induction method,

For n=2;

From (3.5), we have

$$\left|b_2\right| \le \frac{|c|}{|a|}(1-\alpha)(A-B). \tag{3.7}$$

From (3.1), we have

$$\left|b_2\right| \le \frac{|c|}{|a|} (1 - \alpha) (A - B). \tag{3.8}$$

For n = 3;

From (3.5), we have

$$\begin{aligned}
|b_{3}| &\leq \frac{1}{2} \frac{|(c)_{2}|}{|(a)_{2}|} (1 - \alpha) (A - B) \left\{ |b_{1}| + \frac{|a|}{|c|} |b_{2}| \right\} \\
&\leq \frac{1}{2} \frac{|(c)_{2}|}{|(a)_{2}|} (1 - \alpha) (A - B) \left\{ 1 + (1 - \alpha) (A - B) \right\}.
\end{aligned} (3.9)$$

From (3.1), we have

$$|b_{3}| \leq \frac{|(c)_{2}|}{|(a)_{2}|} (1-\alpha)(A-B) \frac{|(1-\alpha)(A-B)-B|}{2}$$

$$\leq \frac{1}{2} \frac{|(c)_{2}|}{|(a)_{2}|} (1-\alpha)(A-B) \{1+(1-\alpha)(A-B)\}. \tag{3.10}$$

Let the hypothesis be true for n = m. From (3.5), we have

$$\left|b_{m}\right| \leq \frac{\left|(c)_{m-1}\right|}{\left|(a)_{m-1}\right|} \frac{(1-\alpha)(A-B)}{m-1} \sum_{k=1}^{m-1} \frac{\left|(a)_{k-1}\right|}{\left|(c)_{k-1}\right|} \left|b_{k}\right|. \tag{3.11}$$

From (3.1), we have

$$\begin{aligned}
|b_{m}| &\leq \frac{\left| (c)_{m-1} \right|}{\left| (a)_{m-1} \right|} \prod_{k=0}^{m-2} \frac{\left| (1-\alpha)(A-B) - kB \right|}{k+1} \\
&\leq \frac{\left| (c)_{m-1} \right|}{\left| (a)_{m-1} \right|} \prod_{k=0}^{m-2} \frac{(1-\alpha)(A-B) + k}{k+1}.
\end{aligned} \tag{3.12}$$

By induction hypothesis, we have

$$\frac{\left|\binom{c}_{m-1}\right|}{\left|\binom{a}_{m-1}\right|} \frac{(1-\alpha)(A-B)}{m-1} \sum_{k=1}^{m-1} \frac{\left|\binom{a}_{k-1}\right|}{\left|\binom{c}_{k-1}\right|} \left|b_{k}\right| \leq \frac{\left|\binom{c}_{m-1}\right|}{\left|\binom{a}_{m-1}\right|} \prod_{k=0}^{m-2} \frac{(1-\alpha)(A-B)+k}{k+1}. \tag{3.13}$$

Multiplying both sides by $\frac{|c-(m-1)|(1-\alpha)(A-B)+(m-1)}{|a-(m-1)|}$, we have

$$\begin{split} \frac{\left| (c)_{m} \right|}{\left| (a)_{m} \right|} \prod_{k=0}^{m-1} \frac{(1-\alpha)(A-B)+k}{k+1} \\ & \geq \frac{\left| (c)_{m} \right|}{\left| (a)_{m} \right|} \frac{(1-\alpha)(A-B)}{m-1} \left\{ \frac{(1-\alpha)(A-B)+(m-1)}{m} \right\} \sum_{k=1}^{m-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_{k} \right| \\ & = \frac{\left| c-(m-1) \right|}{\left| a-(m-1) \right|} \frac{(1-\alpha)(A-B)}{m} \left\{ \frac{\left| (c)_{m-1} \right|}{\left| (a)_{m-1} \right|} \frac{(1-\alpha)(A-B)}{m-1} \sum_{k=1}^{m-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_{k} \right| \\ & + \frac{\left| (c)_{m} \right|}{\left| (a)_{m} \right|} \frac{(1-\alpha)(A-B)}{m} \sum_{k=1}^{m-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_{k} \right| \\ & \geq \frac{\left| c-(m-1) \right|}{\left| a-(m-1) \right|} \frac{(1-\alpha)(A-B)}{m} \left| b_{m} \right| + \frac{\left| (c)_{m} \right|}{\left| (a)_{m} \right|} \frac{(1-\alpha)(A-B)}{m} \sum_{k=1}^{m-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_{k} \right| \end{split}$$

That is,

$$= \frac{\left| (c)_{m} \right|}{\left| (a)_{m} \right|} \frac{(1-\alpha)(A-B)}{m} \left\{ \frac{\left| (a)_{m-1} \right|}{\left| (c)_{m-1} \right|} \left| b_{m} \right| + \sum_{k=1}^{m-1} \frac{\left| (a)_{k-1} \right|}{\left| (c)_{k-1} \right|} \left| b_{k} \right| \right\}. \tag{3.15}$$

Which shows that the inequality (3.6) is true for n = m + 1. Hence the required result.

Special Case: As a special case, we note that, when A = 1 B = -1, B = -1, $\alpha = 0$ and $\alpha = c$, we obtain the well known coefficient bound for starlike functions.

Theorem 3.2: If $f \in S_{\alpha,c}^*[A,B,\alpha]$, then for |z| = r < 1,

$$r(1-Br)\frac{(1-\alpha)(A-B)}{B}, \qquad B \neq 0, \\ re^{-(1-\alpha)Ar}, \qquad B = 0$$
 $\leq |L(a,c)f(z)| \leq \begin{cases} r(1+Br)\frac{(1-\alpha)(A-B)}{B}, & B \neq 0, \\ re^{(1-\alpha)Ar}, & B = 0. \end{cases}$ (3.16)

This result is sharp.

The proof is immediate and we omit the details.

Theorem 3.3: Let $a_2 \ge a_1 > 0$, $c \in \square \setminus \square = 0$. If $a_2 \ge 2$ or $a_1 + a_2 \ge 3$, then

- $S_{a_2,c}^*[A,B,\alpha] \subset S_{a_1,c}^*[A,B,\alpha]$
- $C_{a_2,c}[A,B,\alpha] \subset C_{a_1,c}[A,B,\alpha]$

Proof:

• Let $f \in \mathcal{S}_{\alpha, c}^*[A, B, \alpha]$. Then it follows that

$$\frac{z(L(a_2,c)f(z))'}{L(a_2,c)f(z)} = F(z) \in P[A,B,\alpha]. \tag{3.17}$$

Now, from (1.5) and (1.11), we have

$$\begin{split} \frac{z\big(L(a_1,c)f(z)\big)'}{L(a_1,c)f(z)} &= \frac{z\big(\phi(a_1,c)(z)*f(z)\big)'}{\phi(a_1,c)(z)*f(z)} \\ &= \frac{z\big[\phi(a_1,a_2)(z)*\phi(a_2,c)(z)*f(z)\big]'}{\phi(a_1,a_2)(z)*\phi(a_2,c)(z)*f(z)} \\ &= \frac{\phi(a_1,a_2)(z)*z\big(L(a_2,c)f(z)\big)'}{\phi(a_1,a_2)(z)*L(a_2,c)f(z)} \\ &= \frac{\phi(a_1,a_2)(z)*F(z)L(a_2,c)f(z)}{\phi(a_1,a_2)(z)*L(a_2,c)f(z)}. \end{split}$$

Since $\phi(a_1, a_2) \in C$, by Lemma 2.2 and $L(a_2, c) f \in S^*[A, B, \alpha] \subset S^*$, so by using Lemma 2.3, we have

$$\frac{z(L(a_1,c)f(z))'}{L(a_1,c)f(z)} \in P[A,B,\alpha]. \tag{3.18}$$

This implies that $f \in S^*_{a_i, c}[A, B, \alpha]$ and the proof if (i) is complete.

• Using the relation given in (1.18),

$$\begin{split} f \in C_{a_2,\,c} \big[A,B,\alpha \big] & \Leftrightarrow \ z \, f'(z) \in S_{a_2,\,c}^* \big[A,B,\alpha \big] \\ & \Rightarrow \ z \, f'(z) \in S_{a_1,\,c}^* \big[A,B,\alpha \big] \\ & \Leftrightarrow \ f(z) \in C_{a_1,c} \big[A,B,\alpha \big], \end{split}$$

and this proves (ii).

Theorem 3.4: Let $a \in \mathbb{R}$, $c^2 \ge c_1 \ge 0$. If $c_2 \ge 2$ or $c_1 + c_2 \ge 3$, then

 $\begin{array}{ll} \bullet & S_{a,\,c_1}^*[A,B,\alpha] \subset S_{a,\,c_2}^*[A,B,\alpha]. \\ \bullet & C_{a,\,c_1}[A,B,\alpha] \subset C_{a,\,c_2}[A,B,\alpha]. \end{array}$

Proof:

• Let $f \in S_{\alpha, C_1}^*[A, B, \alpha]$. Then it follows that

$$\frac{z(L(a,c_1)f(z))'}{L(a,c_1)f(z)} = F(z) \in P[A,B,\alpha].$$

Now, from (1.5) and (1.11), we have

$$\begin{split} \frac{z(L(a,c_2)f(z))'}{L(a,c_2)f(z)} &= \frac{z(\phi(a,c_2)(z)*f(z))'}{\phi(a,c_2)(z)*f(z)} \\ &= \frac{z[\phi(a,c_1)(z)*\phi(c_1,c_2)(z)*f(z)]'}{\phi(a,c_1)(z)*\phi(c_1,c_2)(z)*f(z)} \\ &= \frac{\phi(c_1,c_2)(z)*z(L(a,c_1)f(z))'}{\phi(c_1,c_2)(z)*L(a,c_1)f(z)} \\ &= \frac{\phi(c_1,c_2)(z)*F(z)L(a,c_1)f(z)}{\phi(c_1,c_2)(z)*L(a,c_1)f(z)}. \end{split}$$

Since $\phi(c_1, c_2) \in C$, by Lemma 2.2 and $L(a, c_1) f \in S^*[A, B, \alpha] \subset S^*$, so by using Lemma 2.3, we have

$$\frac{z(L(a,c_2)f(z))'}{L(a,c_2)f(z)} \in P[A,B,\alpha]. \tag{3.20}$$

This implies that $f \in S_{a, c_2}^*[A, B, \alpha]$ and this completes the proof.

• This can be proved in similar way as in Theorem 3.3(ii).

Corollary 3.5: Let $a_2 \ge a_1 > 0$, $c_2 \ge c_1 > 0$. If $a_2 \ge \min[2, 3 - a_1]$ and $c_2 \ge \min[2, 3 - c_1]$, then

- $S_{a_2, c_1}^*[A,B,\alpha] \subset S_{a_2, c_2}^*[A,B,\alpha] \subset S_{a_1, c_2}^*[A,B,\alpha].$
- $C_{a_1,c_1}[A,B,\alpha] \subset C_{a_2,c_2}[A,B,\alpha] \subset C_{a_1,c_2}[A,B,\alpha]$

We shall now prove that the classes $S_{a,c}^*[A,B,\alpha]$ and $C_{a,c}[A,B,\alpha]$ are invariant under convolution with convex functions.

Theorem 3.6: Let a > 0, $c \in \mathbb{D} \setminus \mathbb{D}_0^-$ and let g be convex in E. Then

- $f \in S_{a,c}^*[A,B,\alpha] \Rightarrow (f * g) \in S_{a,c}^*[A,B,\alpha].$
- $\bullet \qquad f \in C_{a,\,c}\big[A,B,\alpha\big] \ \Rightarrow \ \big(f * g\big) \in C_{a,\,c}\big[A,B,\alpha\big].$

Proof:

• Let $f \in S_{a,c}^*[A,B,\alpha]$. Then, we have

$$\frac{z(L(a,c)f(z))'}{L(a,c)f(z)} = F(z) \in P[A,B,\alpha].$$

Now, for $g \in C$, consider

$$\begin{split} \frac{z(L(a,c)(f*g)(z))'}{L(a,c)(f*g)(z)} &= \frac{z(\phi(a,c)*f(z)*g(z))'}{\phi(a,c)*f(z)*g(z)} \\ &= \frac{g(z)*z(L(a,c)f(z))'}{g(z)*L(a,c)f(z)} \\ &= \frac{g(z)*F(z).(L(a,c)f(z))'}{g(z)*L(a,c)f(z)}. \end{split}$$

We now use Lemma 2.3 to have $(f * g) \in S_{a,c}^*[A,B,\alpha]$.

• Proof of (ii) follows in similar way.

ACKNOWLEDGEMENT

The Authors are thankful to Higher Education Commission, Pakistan for financial support and Dr. S. M. Junaid Zaidi, Rector, CIIT, Pakistan for providing excellent research environment.

REFERENCES

 Carlson, B.C. and S.B. Shaffer, 1984. Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 15: 734-745.

- Cho, N.E. and K.I. Noor, 2006. Inclusion relationships of certain classes of meromorphic functions associated with the Cho-Saigo-Srivastava operator, J. Math. Anal. Appl., 320: 779-786.
- Goodman, A.W., 1983. Univalent Functions. Vol. I, II, Mariner Publishing Company, Tempa, Florida, U. S. A.
- Janowski, W., 1973. Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28: 297-326.
- Liu, K. and K.I. Noor, 2002. Some properties of Noor Integral operator, J. Natural. Geometry, 21: 81-90.

- Miller, S.S. and P.T. Mocanu, 2000. Differential Subordinations, Theory and Applications. Marcel Dekker, Inc., New York, Basel.
- Noor, K.I., 1995. Classes of analytic functions defined by Hadamard product, New Zealand J. Math., 24: 53-64.
- Noor, K.I., 2006. Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput., 182: 1872-1881.
- Noor, K.I., 2005. On classes of analytic functions defined by convolution with incomplete beta functions., J. Math. Anal. Appl., 307: 339-349.
- Noor, K.I., 1999. On new classes of integral operators,
 J. Nat. Geometry, 16: 71-80.
- 11. Noor, K.I., 2005. Properties of certain new classes of analytic functions, Nonl. Funct. Anal. Appl., 10: 1-10.
- Noor, K.I., 2004. Some classes of p-valent analytic functions defined by certain integral operator, Appl. Math. Comput., 157(3): 835-840.

- 13. Noor, K.I., 1996. Some classes of starlike functions, Soochow J. Math., 22: 553-566.
- 14. Noor, K.I. and M.A. Noor, 1999. On integral operators, J. Math. Anal. Appl., 238: 341-352.
- Noor, K.I. and M.A. Noor, 2003. On certain classes of analytic functions defined by Noor integral operator, J. Math. Anal. Appl., 281: 244-252.
- Noor, K.I., S. Mustafa and B. Malik, 2009. On some classes of p-valent functions involving Carlson--Shaffer operator, Appl. Math. & Comput., 214: 336-341.
- Polatoğlu, Y., M. Bolcal, A. Şen and E. Yavuz, 2006.
 A study on the generalization of Janowski function in the unit disc, Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, 22: 27-31.
- Ruscheweyh, S., 1982. Convolution in Geometric Function Theory. vol. 83 of Séminaire de Mathématiques Supérieures, Presses de Université de Montréal, Quebec, Canada.
- 19. Ruscheweyh, S., 1975. New criteria for univalent functions, Proc. Amer. Math. Soc., 49: 109-115.