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Abstract: In this paper, we study involute curve of biharmoenic curve in the Heisenberg group Heis®’ We

characterize mvolute curve of biharmonic curve 1n terms of curvature and torsion of biharmonic curve m the
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Involute curve

INTRODUCTION

The 1dea of a string nvolute 15 due to C. Huygens
(1658), who 1s also known for his work in optics. He
discovered involutes while trying to build a more accurate
clock [1]. The involute of a given curve is a well-known
concept in Buclidean-3 space E.

An evolute and its mvelute, are defined m mutual
pairs. The evolute of any curve is defined as the locus of
the centers of curvature of the curve. The original curve
15 then defined as the inveolute of the evolute. The
simplest case 1s that of a circle, which has only one center
of curvature (its center), which is a degenerate evolute.
The circle itself is the involute of this point.

In recent years, the theory of degenerate
submanifolds has been treated by researchers and some
classical differential geometry topics have been extended
to Lorentz manifolds. For instance, in [2], the authors
extended and studied spacelike mvolute-evolute curves
i Minkowski space-tune.

A smooth map ¢ : N -~ M is said to be biharmonic if
it is a critical point of the bienergy functional:

1 2
B(0)= [ 1@ v,
Where T(¢) := trV¥d¢ is the tension field of ¢.

The Euler-Lagrange equation of the bienergy 1s given
by T.(¢) = 0. Here the section T,(¢h) is defined by

T(h) = —A, T($) + tR(T(h).dp)dep, (1.1)

and called the bitension field of ¢. Non-harmonic
biharmonic maps are called proper biharmonic maps.
Therefore many authors [3-16] studied biharmonic curves
and 1ts applications.

In this paper, we study involute curve of biharmonic
curve in the Heisenberg group Heis’. We characterize
involute curve of biharmonic curve in terms of curvature
and torsion of biharmonic curve in the Heisenberg group
Heis’ Finally, we construct parametric equations of
involute curve of biharmonic curve.

Heisenberg Group Heis’: Heisenberg group Heis® can be

seen as the space R’ endowed with the following
multipilcation:

(;c,;,;)(x,y,z):(;c+x,;+ y,?&-z—%&y-&-%x}) (21)

Heis’ is a three-dimensional, connected, simply
comnected and 2-step mlpotent Lie group.

The Riemannian metric g is given by

g=d?+ dy? + (dz+ gdxf gdy)z.

The Lie algebra of Heis” has an orthonormal basis

d ¥ d _ d x d o E (2 2)
for which we have the Lie products

[e.e;] = es[ene;] = [ese]=0
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With
gle,e) = glee,) = glese) = 1.

We obtain

Velel = ngez = VES e; = 0,

1
Velez *Vezel 59
_ 1
VQIQS - V93‘31 - 7522=
Veze3 = VQS e = Eel.
We adopt the following notation and sign

convention for Riemannian curvature operator on Heis’

defined by
RANZ= -V VZ+VNZ+ V2,
While the Riemannian curvature tensor is given by
RX.YZW) = g(RXTZW),
Where X, ¥, Z W are smooth vector fields on Heis®

The components {R,} of K relative to {e,.e,e;} are
defined by

g(R(el:*ej)ekaef = Ryid

The non-vanishing components of the above tensor
fields are
B 1
Ry =——e;. Rz~ Z‘%: FRiaz €
FRoao = L R L R
=—eg,, ——e, e,
132 4% 133 14 233 2
and
3 1
Rygpp = s Ry313 = Rygpz = " (23)

Biharmonic Curves in the Heisenberg Group Heis®: Let
I = R be an open interval and y 7 -Heis’ be a curve
parametrized by arc length on Heisenberg group Heis”.
Putting t = ¥, we can write the tension field of y as

z(pp=v » and the biharmenic map equation (1.1)
Y

reduces to

336

Vit+ RtV =0, (3.1

A successful key to study the geometry of a curve is
to use the Frenet frames along the curve, which is recalled
1n the following.

Let y :I »Heis" be a curve on Heis® parametrized by
arc length. Let {t.n,,n,} be the Frenet frame flelds tangent
to Heis® along y defined as follows: t is the unit vector
field 9’ tangent to y.n,, 15 the umit vector field in the
direction of Vit (normal to ¥) and b is chosen so that
{t.nn,} is a positively oriented orthonormal basis. Then,
we have the following Frenet formulas:

Vi= K,

Vi, = —kt— 1, (3.2)

Vi, =,

Where k= [V,T|is the curvature of yand v is its torsion.
With respect to the orthonormal basis {e .e,.e;}, we can
write

t= tlel + [292 + f393,
m= 1‘21191 + 1‘21292 + 7‘21393,

n, =txmn; = n;el + n%e2 + nge3.

Theorem 3.1: (see [9]) Let y :] »Heis’ be a non-geodesic
curve on Heis’ parametrized by arc length. Then y is a
non-geodesic biharmonic curve if and only if

K = constant # 0,

(3.3)

—..3.3
T T H Hy.

Theorem 3.2: (see [9]) Let y .1 »Heis’ be a nen-geodesic
curve on the Heisenberg group Heis’ parametrized by arc
length. If x is constant and ,113,1?21 +0, then y is not
biharmonic.

Involute Curve of Biharmonic Curve in Heisenberg
Group Heis’: Definition 4.1. Let unit speed curve y :J
- Heis® and the curve 3 :7 ~Heis’ be given. For ¥scl, then
the curve § is called the involute of the curve ¥, if the
tangent at the point ¥(s) to the curve ¥ passes through
the tangent at the point B(s) to the curve 3 and
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g(t*(s),t(s)) = 0. 4.1)

Let the Frenet-Serret frames of the curves y and § be
{t,;n,,n,} and {t*,ni",ni} respectively.

Theorem 4.2: Let y :/ - Heis’ be a unit speed biharmonic

curve and B its involute curve on Heis’. Then, the
parametric equations of [ are

xp(s)=(p —s)sinpcos[As+ p]+ %sin @sin[As + pl+a,

vg(s)=(p —s)singsin[As + p] —%sin(pcos[As +pl+ay,
“4.2)

o (o) = o,
z5(s) (cos<p+2/\sm ©)p + ay,

Where p,a,,a,,a, are constants of integration and

A cosq)i\/S(cosq))2 -4 '

2

Proof: The curve f(s) may be given as

Bls) = y(s) + u(s)t(s). (4.3)

If we take the derivative (4.3), then we have

ﬁ,(s)=(]+u,(s))T(s)+u(s)K‘(s)n](s). 4.4)

Since the curve f is involute of the curve ¥, g(t*(s),t(s)) =
0. Then, we get

1+uw(s)=0oru(s)=p-s, 4.5)
Where p is constant of integration.
Substituting (4.5) into (4.3), we get

Bls) = v(s) + (o — )T(s). (4.6)

The covariant derivative of the vector field t is:

Vit = (1] + 1ot )e; + (15 — 1i13)e5 + 13€3. 4.7

Fig. 1:
Thus using Theorem 3.2, we have

t =sin@cos[As + ple, +sin@sin[As + pJe, +cospe;, (4.8)

Where COS(pJ_r\IS(cosq))2 -4

2
Using (2.2) in (4.8), we obtain

t = (sin@cos[As + p],sin@sin[As + p],
1 . 1 . .
cosQ —Ey(s)sm @cos[As + p]+ Ex(s)sm @sin[As + p]).

From (2.2), we get
t = (sin@cos[As + p].sin@sin[As + p],cos¢ + %sinz(p).

4.9)
We substitute (4.9) into (4.6), we get (4.2). The proof is
completed.
Using Mathematica in Theorem 4.2, yields

Corollary 4.3: Let y : I - Heis® be a unit speed biharmonic
curve and S its involute curve on Heis’. Then,

o= (a3

- (n§)2 sinY.

Here Y is arbitrary angle.

cosY,

A=
—_—
S —

38

&=

Proof: Using second equation of (3.3), we have above
system.
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