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Abstract: We discuss the de Sitter group SO(1,4), i.e. space-time symmetry of de Sitter space and its universal

covering group Sp(2,2). We recall the transformation properties of the spinor fields wxhw(x). The charge

conjugation symmetry of the de Sitter spinor field is presented in ambient space notation. The de Sitter super

algebra discussed in coordinate independent way.
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INTRODUCTION

Recent astrophysical data coming from type Ta
supernovas indicate that our universe might currently
be in a de Sitter (dS) phase. Therefore, 1t i1s important to
find a formulation of de Sitter quantum field theory with
the same level of completeness and rigor as for its
Minkowskian counterpart. But a number of arguments are
usually put forward for the non-existence of
supersymmetry models with a positive cosmological
constant, i.e. supersymmetry in de Sitter space. Such
arguments are often based on the non-existence of
Majorana spinors for O(4,1). Indeed, one can use the
" Noether coupling” approach to super gravity to directly
show that Majorana gravitini are incompatible with a
positive cosmological constant. However, there 13 no
need to msist on the existence of Majorana spinors. We
may simply accept that for every spinor its charge-
conjugate 13 exist and it 13 mdependent [1-4].

In the previous paper, the charge-conjugate spinor
obtained. In this paper, the supersymmetry m de Sitter
space 18 studied m the ambient space notation. In the next
section firstly, we discuss the de Sitter group SO(1,4), i.e.
space-time symmetry of de Sitter space and its universal
covering group Sp(2,2). We recall the transformation
properties of the spinor fields wx.wix). The charge
conjugation symmetry of the de Sitter spinor field in
ambient space notation presented in section 3. The most
general de Sitter superalgebra 1s presented m section 4.
Section 5 is devoted to the the structure of the internal
symmetry. Finally, a brief conclusion and outlook are
given in Section 7.

De Sitter Group: The de Sitter
elementary solution of the positive cosmological Emstein
equation in the vacuum. Tt is conveniently seen as a
hyperboloid embedded in a five-dimensional Minkowski

space i an

space.

Xy = ixe R x? :nqﬁx“xﬁ =-H%,0,5=0.123,4,
(N

Where n,; = diag(lm-1,-1,-1,-1). The de Sitter metrics
reads

ds? =g adx®dxf = g% dx“dXY, 1 =01,2,3,

Where the X* 's are the 4 space-time intrinsic
coordinates 1n dS hyperboloid. Different coordmate
systems can be chosen. The kinematical group of the de
Sitter space is the 10-parameter group SOg(1,4) and its
contraction limit H=0 1s the Poncar'e group. There are two
Casimir operators

1
Q(l) — _ELosﬁLaﬁ (2)
Q¥ =W, W W, = ,é gy LT, (2)
Where €,,, 1s the usual antisymmetrical tensor and
the L,s are the (4.). = CY'y"¥, = CY/(CV'Y'9) = v

infinitesimal generators, which obey the commutation
relations

[LqﬁaLjﬁ] = _i(nay]-‘ﬁﬁ +nﬁ5L oy _UmSLﬁy - nﬁyLﬂfﬁ)- (
3
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The infinitesimal generators L. ,; can be represented as
L,=M,+ S, where

Mg = -i(Xo8p — Xpdy) “)

and

Sup == Yo 7] (%)

are respectively the "orbital" and "spinorial” parts of L,
The five 4=4 matrices y* are the generators of the Clifford
algebra based on the metric 17,5

PP Py = P, T =0y ©)
An  explicit (and convenient for the sequel)

representation 1s provided by [1-4]
(1t ooy (o (o ic) , [0 i), [0 io
YD{U —1}”4_[—1 (J Y‘_[i(f 0}72_[7152 0 }f_[ioj 0}
(7

mn terms of the 2x2 umt 1 and Pauli matrices o'. This
representation will prove to be useful when discussing
the physical relevance of group element decom position.

The spimor wave equation in de Sitter space-time has
been originally deduced by Dirac 1 1935 [7] and can be
obtained starting from the eigenvalue equation for the
second order Casimir operator [6]

(—ixy.0+ 20 +vr(x) =0, (8)

Where y =58 and 8y = 8y + xgx8. Because of the

de Sitter group covariant, the adjomt spmor 15 defined as
follows:

7 =yl 0y ©)

Let us now recall also the transformation properties
of the spinor fields ¥(x)¥(x) . The two-fold and universal
covering group of SOy (1,4) 18 the (pseudo-)symplectic
group Sp(2,2),

Sp(2,2)= {g e Mat(Z;H): detg = l,gTyOg = ’yo} . (10)

Where ,f_T;, "g is the transposed of g and = the

quaternionic  conjugate of g For obtaining the

1somorphism  relation between them defines the

matrices X associated with x € X, by:
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XX P (11)
X=] _ s
P x°
Where
P= (x4,§) =x' 1+ixlet - ix%a? +ix363, (12)

is a quaternion and $-4 _z 1s theirr quaternion
conjugate. By the representation (7) of the y matrices, one
can write X in the following form:

o _p

J. (13)
0

The transformation of X under the action of the
group 3p(2,2) 1s

X
¥=xXy=Xy=
—-X

X =gXg' ¥ =gxg 14
For A € SO, and g € Sp(2,2) we have
o ocﬁrilt o rfl’[l'a -1
XU =nTxp =g (y™y )Xﬁ—z (r gxg )
1 _
= ey e g = AP (g (15)

Therefore, for all g €, it correspond a transformation A€S;,
(1,4,

1 _ _
Af(e) = triy"grpe . AGyP =gyet, (10

which 1s the isomorphism relation between two group

SO, (1,47 Sp(2.2)/2 (17

The transformation laws for the Wi{x) and its adjoint
¥(x), under which the de Sitter-Dirac equation is
covariant, are:

wix) 0 =g w(Acgx), (18)

7x) > 7 (0 = A Jic), as)

Where i(g)=—y*gy, 18 a group involution m Sp(2,2).
Similar to the Minkowskian space, we can define g by

g= exp[—%a)“‘ﬁsaﬁ], 0% = _of", (20)

It is satisfy 40140 — o1 | 1. ge Sp(2,2).
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Charge conjugation

In order to obtain the Minkowskian charge comjugation in
the null curvature limit, the charge conjugation spinor y©
1s defined as [1-4]

v =nCoh @)’ (2D

Where 7, is an arbitrary unobservable phase value,
generally taken as being equal to unity. In the present
framework 15 an antilinear

charge comjugation

transformation. In the ¥ representation (7) we have:

cylcl= 0 cylcl= g
crlct=plopct= oyt =42 (22)
Tn this representation C commute with ¥ and anticommute
with other y-matrix therefore the simple choice may be
taken as C=y°. It satisfies

C=-Cl=—T=_¢cT (23)

This clearly illustrates the non-singularity of C.

The adjoint spinor, which is defined by wix)y=wl(x)y"y*

transforms in a different way from ¥, under de Sitter

2

transformation. On the contrary, it i1s easy to show that
¢ transforms in the same way as ¥,

w'e(x") = S(A ) (x).

The wave equation ¥ of is different from the the
wave equation of ¥ by the sign of the q and v. Thus it
follows that if ¥ describes the motion of a d3-Dirac
particle with the charge g, ¥ represents the motion of a
dS-Dirac anti-particle with the charge (-q). In other words
yoand Y, can describe "particle" and "antiparticle"
functions. ¥ and ¥, are charge conjugation of each other

Wele =Yy =Pty ity =y Y

Super Algebra: Supersymmetry mn spaces of constant
curvature has been considered recently. In this section,
we follow the supersymmetry algebra, which was
constructed by [1-4]. For extension of the de Sitter group,
the generators of supersymmetry transformation
Qir .1=1,2.3.4; r=1,.. N are introduced. Qir are fermionic
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generators which transform as spinors under the de-Sitter

group. The super-algebra, which construct by the

generators L,z and gr, 1s not closed. If we present an
1

internal symmetry with the generator T, that commute
withe de Sitter generator it is possible to fined a closed
super-algebra. Therefore the de Sitter super-algebra in
four-dimensional space-time has the following generators:

The generators L, of the Lie algebra So(1,4), which
obey the commutation relations (3).
The internal group generators are defined by

T a=1.2,...n

@

The 4 -component dS-Dirac spinorial generator are
defined by

Qs 1=1234r=12_.,N

Where 1 18 the spinorial component and r 1s the
supersymmetry index.

It is possible to fined a closed algebra with the
following relation:

[erﬁaLyﬁ] = _i(no:yLﬁS +T.',95L oy _nrxﬁLﬁ'y - nﬁthxﬁ);

(25)

[T,.Ty]=C Ty (26)

(QLQly = GlQ + DIPL,, + BFT,,  (27)
Lo T.]=0 (28)

[QF. Lap]= AlapQy + B Lo, (29
[QF, T, 1= FeQp, (30)

Where AB.C.D.E.F and G are constant. The values of
these constants determine completely the de Sitter
supersymmetry algebra. The constant C defined the
structure of the internal symmetry. In the following by the
use of the different Jacobi 1dentities, these constants can
be defined [1-4].

Since, the direct product of the two spinors is
transform as a tensor, therefore G=0. We can say that in
(29) whenever the direct product of the tensor with a
spinor, the results is the spinor not tensor, therefore B=0.
Consequently, we have:
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(QF.Ql = D‘i"j“"'B Log + ES°T,, (31

[Qf: Log]= AlfopQf ¢2)

Due to the equations (25) and (28), A can be written
in terms of new matric I™:

i 1 it (33)
A{;'o:ﬁ = E(Frxﬁ ): 555
Wherel' =~ ;Bytheant-commute(27)andrelation {Q!;’Q}i} - {Q}QE}

we obtain

1 1 Ir I
D{j“ﬁLaﬁ + EfRT, = Dji“ﬁ Lgg + EXT,,

consequently Dli:ilﬂﬂﬁ - Dz_fiﬂﬂﬁ and Eg_la - Ezfla The Tacobi
identity (1.,Q,Q) is provided us to get

Dli:ilodﬁ — mrl(r(xﬁcfl)ija Eli:i]a — Warl (Cil)ij:

Where C = 915 the charge conjugation and ;= &, and wd

_ a
W i

We observe that in the {Q.Q} anticommutator the internal
symmetry generators appears in the form.

Ty =wnT, Ty =-Ty

and we will use T, rather than T, to determine the

structure of the algebra. For this we multiply the

generators T, 1n (26), (28) and (30) with 2. The (Q,Q.Q)
i}

Tacobi identity,

£QFLQY. QP+ Q. Q1. QY + QL. QRL.Q} =0,

uniquely determines the commutator [Q,T],

[QF.T?]= -2("QP ~ &™Q)), (34)

The (Q,Q,T) Jacob: identity,

[(Q5 Qb Ty 1+ [Ty QUL Q41+ 41Q T L QT = 0.

gives the following commutator

[Tr » Tpm] = _2((01me[' + mrmTlp - mlpTlm - w]mTpr )=
Where we have used the antisymmetry condition of T.

Now we can write the full superalgebra in the form
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[Log-Lys 1= —10ayL g5 + N5l oy —NasL gy —NpyLlos )

(35)

[T Tpn 1 = =200y, Ty + 0 Ty — 0 Ty — 01 T ), (36)
(L La] =0, (37)

(@5 Lo 1= 5 T N (38)
[QLTP]=-2(0"Qf - 0™ Q) (39)

(QL.Q) = o T Ly + (7T (4O)

The only unknown quantity in this set 1s the

symmetric matrix ¢. It is the mternal group, which will be
considered in the next section. whose properties will
determine in following,.

Internal Symmetry Group Structure: It 1s assumed that
the algebra is closed under antilinear involution * [1-4].
This can always be achieved by extending the algebra to
a bigger one which together with every generator G also
contains its conjugate G*. We take the generators L ; to
be anti-self-conjugate (i.e. antihermitian)

(Lwﬁ)* - _erﬁa {41)
The conjugates of gr and T, can be expressed as
1
Q) = AR}, (1,7 = BiT,, (“42)

The involution * dose not mix fermionic with bosonic
generators, nor internal with space-tuine ones. The
involution property (*)* = 1 gives consistency conditions

Afarlk = g1 st (43)

m=-1 »

BbBy© = 8¢

constraints on the constants A and B will be derived from
the closure of the superalgebra in the involution.
Taking the conjugate of (38) and using (42), we find

AT = (T )l VAL (44)
Therefore A can be defined by
Al =ED!, ie(Q) =EDI), (45)

nd the first of the condition (43) becomes
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EE*DD* =1. (46)
If DD* =-1, we see that the consistency condition
(46) mmplies that EE* =—1. By the use of the conjugate of
the anticommutator {Q,Q}, we find the following reality
properties
(Ew)' = - Ew, (ET)' = -ET. (47)
In the the N=2
supersymmetry 1s considered. One can choose a basis for

following, for simplicity,

the gi, such that E is a symplectic metric

o1 (48)
-1 o
By using the reality properties, we can write:
Ea)_[o 1}[0’11 0’12}_[@21 0’22}
-1 0@y op) \—ay —op ) (49
(Eew)' _[wil _a’il]_Em_(_a’zl _wzzj_ (50)
0y —OYy @y By

So, we have the following result 4}, = oy, 0] = o9,
and Why = 01,002 == 2 - Consequently, we define w,, = s,

@, = =s*and w,, = il], w,, = — il therefore

Also from reality properties ((ET)! = — ET), we obtain

iH
*
3

£

it (51)

ET_[O 1}{—[‘11 le}_[TZI TZZ }
-1 00Ty Ty Ty T ) (32)
And
T, T “Ty T
Enf=| 2 =mr —[ ! ”]- (53)
Ty -Thy T T
Therefore, we have 3 --7,7-1,, and
Tss =Ty T2 =Ty consequently, we define T, = —ih, Ty

=—ih* T,=a", T,, = a'. Then we can write
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(54)
Now by using that @, 13 symmetry, we have:
iH T

Ho 7}

Therefore, we can say 3" = S, S is symmetry and H =

iH'
S*T

8

Wy = &y = {—iHT

B

H'. H is real and hermitian. And also by using that T, is
antisymmetry, we have

S al - a i’

1=~y = == - (56
' -ih" al woa ) O
Then we can see a' = —a®, a is complex and

antisymmetry and h i1s real. We take into consideration
that =0 and H=1,

(57)

In this case, the internal symmetry group is O*(2)
which the simplest choice [1-4] 1s.

CONCLUSIONS

The formalism of the quantum field in de Sitter
universe, in ambient space notation, s very similar to the
quantum field formalism 1n Minkowski space. In this paper
we present the N=2 de Sitter supersymmetry algebra in
this notation, which is independent of the choice of the
coordinate system. The importance of this formalism may
be shown further by the consideration of the linear
quantum gravity and supergravity in de Sitter space,
which lays a firm ground for further study of universe.
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