Middle-East Journal of Scientific Research 6 (1): 88-92, 2010

ISSN 1990-9233
© IDOSI Publications, 2010

Two Stage Architecture for Load Balancing and Failover in SIP Networks’

Alireza Karimi, MehdiAgha Sarram and Mohammad Ghasemzadeh

Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran

Abstract: Session Initiation Protocol (SIP) proxy server is the most important component in SIP networks. In
large SIP-based networks overload on this server can cause problems. Also if this server fails, it will be
impossible to make new calls. To prevent overload problem and have failover capability, we proposed and
implemented a two stage architecture. At the first stage there is a cluster of dispatchers and at the second stage
there is a cluster of SIP proxy servers. We implemented our algorithm for load balancing in dispatchers and we
used a probing mechanism for failover. We used Opensips, an open source SIP server as our dispatchers and
our back-end SIP servers. We also used SIPp, an open source SIP traffic generator to test our network with high
rate of calls. In our algorithm we considered both round trip time and number of connections to SIP servers to
do load balancing. We probed back-end SIP servers every 30 seconds to see if they are alive and to measure
round trip times. The comparison of our algorithm with Opensips algorithm for load balancing showed an

improvement about 20% in throughput.

Key words: SIP (Session Initiation Protocol) + Load balancing - Dispatcher - SIP proxy server + Failover

INTRODUCTION

In compare with PSTN  (Public  Switched
Telephone Network), voice over IP availability and
scalability is too low. Some of the problems in this way
come from the nature of IP networks. For example "up
time" in PSTN is about 99.999% that is so difficult for IP
networks to reach this [1]. The Session Initiation Protocol
(SIP) [2] is a distributed signaling protocol for IP
telephony. SIP-based telephony services have been
proposed as an alternative to the classical PSTN and offer
a number of advantages over the PSTN. SIP as the most
important protocol for multimedia and voice over IP has
some components that have important roles in SIP
networks availability and scalability. The most important
component in SIP networks is SIP proxy server. Although
SIP proxy server is only responsible for signaling and
voice traffic doesn't pass through this server, but in large
SIP networks even signaling load can cause overload
problem for this server. While individual servers may be
able to support hundreds or even thousands of users,
large-scale ISPs need to support customers in the millions,
it is text-based and it is similar in many aspects to the well-
known protocols such as HTTP and DNS [1]. For example
it identifiers are similar to email addresses in the form of
user@domain.

What makes SIP easy to understand comparing to
previous multimedia protocols like H.323 and more
powerful is that SIP proxy server of a domain is
responsible for forwarding the incoming requests
destined for the logical address of the form user@domain
to the current transport address of the device used by this
logical entity and forwarding the responses back to the
request sender. SIP is a transaction-based protocol
designed to establish and tear down media sessions,
mostly referred as calls [3]. When two SIP phones want to
communicate, all signaling messages pass through SIP
proxy server as shown in Fig. 1.

If for any reason SIP proxy server fails, it will be
impossible to start new calls and to do billing and
accounting for current calls, because at the end of a
conversation, phones generate some messages to inform

SPproxy server

wice

Fig. 1: SIP proxy server role

Corresponding Author: Mehdi Sarram, Department of Electrical and Computer Engineering, Yazd University, Yazd, Iran.

E-mail: mehdi.sarram@yazduni.ac.ir.

*This research work was partially supported by Iranian Telecommunication Research Center (ITRC).



Middle-East J. Sci. Res., 6 (1): 88-92, 2010

the SIP proxy server of the end of conversation [1]. To
increase service availability and scalability and to do load
balancing and failover we proposed and tested a two
stage architecture. In this architecture there is a cluster of
dispatchers at the first stage and there is a cluster of SIP
proxy servers at the second stage. We implemented our
load balancing algorithm in dispatchers and we used
probing mechanism for health checking of back-end SIP
proxy servers. In a clustered architecture, there are three
issues need to be concerned:

¢ Single point of failure problem
¢ Health monitoring of back-end SIP proxy servers
¢ Load balancing method for SIP proxy servers

In our approach we considered all these issues. In
section 2 we described some of the failover and load
balancing techniques for SIP servers. In section 3 we
described our architecture and our algorithm for load
balancing and failover. Experimental results are shown in
section 4 and conclusion is placed in section 5.

Related Works: Failover and load balancing for web
servers is a well studied problem. TCP connection
migration, IP address takeover and MAC address
takeover have been propos-ed for high availability. Load
sharing via connection dispatchers [4] and HTTP content
or session-based request redirection are available for web
servers [5]. Although SIP is similar to HTTP but there are
basic differences between these two protocols for example
in SIP the call requests and responses are not usually
bandwidth intensive, caching of responses is not useful.
Here we describe some of the existing load balancing
techniques in SIP.

Dns-based Load Balancing: It is possible to use DNS to
do load balancing by means of DNS SRV [6] and NAPTR
[7] records by using the priority and weight fields in these
resource records, as shown in Fig. 2:

Priority 0 indicates that a server is a primary server so
a, b and ¢ in above are primary servers. Priority 1 indicates
that that a server is a backup server. The weight column
indicates that servers a, b and ¢ will receive 60%, 20% and
20% of load respectively. Clients can use weighted
randomization to achieve this distribution.

Dns-based Load Balancing with Probing Mechanism: In
this method client queries a DNS server to resolve SIP
proxy server's FQDN (Fully Qualified Domain Name) to an
[P address. DNS server has a probing mechanism to see

89

Test.com  priority weight
_sip_udp 0 60 a.test.com
0 20 b.test.com
0 20 c.test.com
1 4] backup
Fig. 2: DNS SRV records
_ H{OK] - G{0K)
- PR ]
E{nvite) o ey ol
- ¢ \ Q ) Finvite) — Pt
caller " o ) calle
B )
TONS -
Server .
o B
Proxy Q-
Farm
Fig.3: DNS-based load balancing with probing
mechanism

if SIP proxies in the cluster are fine or not. DNS server
does health checking periodically, if the probed SIP proxy
server is ok so DNS server chooses the IP address of this
server for DNS replies and clients will use this server as
their SIP proxy server until next probing [8].

The problem of this method is that it is changing DNS
server's role and it is wasting resources because it is
possible to have heavy loads in a short period and it is
sending the entire load to one of the SIP proxy servers
and rest of the proxy servers have a small amount of load.

Identifier-based Load Balancing: Foridentifier-based load
balancing (Fig. 4), the user space is divided into multiple
non-overlapping groups. A hash function maps the
destination user identifier to the particular group that
handles the user record, e.g., based on the first letter of
the user identifier [5]. For example, sl is responsible for
the calls for users who their ID begins with a letter from 'a’
to 'm' and s2 handles calls for users who their ID begins
with a letter from 'n' to 'z'. A high speed dispatcher proxy
the call requests to sl and s2 based on the destination
user identifier. There is no guarantee that the load on
servers is equal and single point of failure still exists.

Single Controller for Proxy Servers: F5’s BIG-IP [1]
system is an application traffic management solution and
it tries to provide high availability and reliability for SIP



Middle-East J. Sci. Res., 6 (1): 88-92, 2010

dispatzber

SIP proxy servers

Fig. 4: Identifier-based load balancing

V)

Ilm .

SlPuser agert

S EIG IP

]I [FT]

Pusce agert

s

G 78 7aET 74

SIP proxy servers

Fig. 5: F5’s BIG-IP

networks. Fig. 5 illustrates F5’s BIG-IP component in SIP
network architecture. The BIG-IP does the advanced
health check by sending SIP OPTIONS requests to SIP
proxy servers. F5’s BIG-IP has an important role in this
SIP network architecture because it is responsible for
health checking and also proxies all SIP requests to back-
end SIP proxy servers. It prevents from service
unavailability when a SIP server fails. However there is
still a single point of failure problem in this architecture. If
F5’s BIG-IP itself fails the service will become unavailable.

Network Address Translation: Network Address
Translation (NAT) is a network service that is responsible
for translating internal IP addresses from machines inside
the network to a public address used by the NAT service-
essentially hiding your internal network addresses. For
incoming requests NAT server can choose one of the
internal SIP proxy servers. Eventually, the NAT itself
becomes the bottleneck making the architecture
inefficient.

Hybrid Architecture: In this architecture there are two
sets of proxy servers the first set of proxy servers selected
via DNS NAPTR and SRV records, performs request

90

routing to the particular second-stage cluster based on
the hash of the destination user identifier. In fact it is a
combination of DNS based and identifier based load
balancing. The second-stage server performs the actual
request processing. Adding an additional stage does not
increase the voice delay, since the media path (usually
directly between the SIP phones) is independent of the
signaling path. Use of DNS does not require the servers
to be co-located, thus allowing geographic diversity [5].

System Design Approach: In our architecture we used
two stages of servers, the first stage servers, act as
dispatchers (load balancers) and the second stage servers
are SIP proxy servers. SIP user agents select one of the
dispatchers via DNS SRV records. Each dispatcher makes
a list of SIP proxy servers every 30 seconds by probing
SIP proxy servers and if a SIP proxy server doesn't
respond to the probe, it will be considered dead and the
dispatcher will not route requests to this server. The list
is ordered based on two criteria: round trip time and
number of connections to each SIP proxy server. Based
on these two criteria each SIP proxy server has a grade for
30 seconds. We used number of connections because call
durations aren't the same for all calls. We also used round
trip time to take network status into account. It is
especially useful when SIP proxy servers are in different
networks. Each dispatcher has a counter for every SIP
proxy server to count the number of connections to each
SIP proxy server. When an "invite" message passes
through dispatcher it increases the counter by one and
when final "200 ok" message passes through the
dispatcher -off course in reverse direction- it decreases
the counter by one.

SIP dispatchers also do health checking in constant
intervals, for example every 5 seconds. If any of the SIP
proxy servers doesn't respond to health checking
messages, dispatcher will delete that server from the list.
The architecture is illustrated in Fig. 6.

For load balancing dispatcher uses ordered list and
forwards a percentage of load to each SIP proxy server.
The percentage of load that is forwarded to each SIP
proxy server is proportional to each SIP server's grade. If
number of connections to ith SIP proxy server is N;, round
trip time is RTT,, SIP proxy server grade is G, a and b are
two constant numbers, each SIP proxy server grade will be
as follow:

G,=a*(I/N,) + b * (1/RTT,) 1)

If ith SIP proxy server share is S; and n is number of
SIP proxy servers we have:



Middle-East J. Sci. Res., 6 (1): 88-92, 2010

server grade

X
b
s1
9
)
Sguser agent 52
N A ' y
S
0| S8
X

4
ﬂ :
SIF use agent

test.com priority  weight Dispatchers
_sip._udp 0 50 atestcom
SIP proxy servers
0 50 btestcom

Fig. 6: System design approach

S,=(100*G) / X (G) i=1,2,...,n 2)

We can adjust a and b in (1) to emphasis on N; or
RTT, if one of them is more important for us or it is more
suitable for current network condition.

Test Bed and Experimental Results

Traffic Generator: To make huge amount of calls we had
to use a traffic generator. SIPp [9] was used as a SIP traffic
generator in the performance evaluation. SIPp is a
configurable packet generator, extensible via a simple
XML configuration language. It uses an efficient event-
driven architecture but is not fully RFC compliant. It
includes some SIP user agent test scenarios, which were
provided by SIPStone and it is a benchmark tool for
evaluating SIP proxy server performance. We used
version 3 of SIPp. We used one of the default UAC (user
agent client) and UAS (user agent server) scenarios-"200
ok"- which have already been implemented in SIPp to test
the proposed design approach. "200 ok" scenario is
illustrated in Fig. 7. We also turned off the retransmission
mechanism in SIPp.

Servers: For the dispatchers and back-end SIP proxy
servers we used Openssips-an open source SIP proxy
server. We installed Opensips on linux Debian 5. To
evaluate the performance we set up a test bed like Fig. 6
but with one dispatcher and two SIP proxy servers.

Hardware: We used five computers for our test bed, two
of them for SIPp traffic generator (one as UAS and one as
UAC), with two virtual machines on each of them, another
computer as dispatcher and two other computers as SIP
proxy servers. They were connected via a fast Ethernet
switch. All five computers are the same and their
specifications are shown in Table 1.

91

UAC SIP Py UAS
KVITE F *|
[——————100 Ty F2———————
NV IE F3 -

[ —————— 160 % g A ———————

[ ———— 180 gy P ————————

i 200K Fe)

R 2000K F7}
ACK FE| -
ACK [F9) =
BYE (F10 -
BYE F11}
d 2000K F12}
-+ 000K F13}

Fig. 7: Proxy 200 scenario
120

100 A —
Fi e e
» 80 3
3
H )
T 60 T
3
£ 4
E}
3 40 il
= 4
= 41

20 Jif

.
0
0 50 100 150 200

Load (Inivie/sec)

—4—withoutload balancing == Opensips method our method

Fig. 8 Throughput of three configurations

Table 1: Computer hardware

CPU Intel Pentium Dual 2.00 GHZ
RAM 1.00 GB
oS Debian 5

We increased the load in SIPp UACs every 10
seconds by 10. We did our test for three different
configur-ations: without load balancing (with one SIP
proxy server), with Opensips load balancing method and
with our method. We used "200 ok" scenario to know the
throughput of network in each configuration. We
configured SIPp UACs to make calls with different call



Middle-East J. Sci. Res., 6 (1): §8-92, 2010

durations. One of them made calls with 5 seconds as call
duration and another made calls with 60 seconds as call
duration. The results are shown in Fig. 8.

CONCLUSION

Voice over IP 1s becoming more and more popular
every day. SIP as the most important protocol in voice
over IP should provide scalability and reliability. One of
the most important STP network's components is STP proxy
server. To mcrease the amount of traffic that a SIP
network can handle, one way is to do clustering for STP
proxy servers. We proposed a two stage architecture for
SIP networks to increase scalability and reliability of SIP
networks. We implemented our load balancing scheme in
Opensips SIP server acting as dispatcher. Our scheme 1s
based on response time of SIP proxy servers and number
of connections to each SIP proxy server. We used mumber
of connections because call durations aren't the same for
all calls. We also used round trip time to take network
status nto account. The experimental results have shown
that our method can handle more traffic load than
Opensips method for load balancing.

REFERENCES

1. Wu, WM., K. Wang, RH. Jan and C.Y. Huang, 2007.
“A Fast Failure Detection and Failover Scheme for
SIP High Availability Networks,” in 13th TEEE
International Symposium on Pacific Rim Dependable
Computing.

2. Rosenberg, I, H. Schulzrinnme, G Camarillo,
AR. Johnston, I. Peterson, R. Sparks, M. Handley
and E. Schooler, 2002. “SIP:
protocol, 7 RFC 3261, Intermnet Engineering Task
Force, JTune 2002.

session initiation

92

3.

Tiang, H., A. TIyengar, E. Nahum, W. Segmuller,
A, Tantawi and C.P. Wright, 2009. “Load Balancing
for SIP Server Clusters” In Proceedings of
IEEE INFOCOM.

Hunt, G., G. Goldszmidt, R P. King and R. Mukherjee,
1998. Network dispatcher: a connection router for
scalable Internet services," Computer Networks,
30: 347-357, Apr. 1998,

Singh, K. And H. Schulzrimne, 2005. “Failover and
load sharing in SIP telephony,” In Proceedings of the
2005 International Symposium on Performance
Evaluation of Computer and Telecommunication
Systems SPECTS’05), July 2005.

Gulbrandsen, A., P. Vixie and L. Esibov, 2000. A
DNS RR for specifying the location of services
(DNS SRV)," RFC 2782, Internet Engmeering Task
Force, Feb. 2000.

Mealling, M. and R.W. Damel, 2000. The naming
authority pointer (NAPTR) DNS resource record,”
RFC 2915, Internet Engineering Task Force, Sept.
2000.

Leu, I.S., H.C. Hsieh, Y.C. Chen and Y .P. Chi, 2008.
“Design and Implementation of a Low Cost DNS-
based Load Balancing Solution for the SIP-based
VoIP Service, ” in IEEE Asia-Pacific Services
Computing Conference, 2008.

“SIPp - Test Tool/Traffic Generator for the SIP
” March 2006, [Online]. Available:
http: //sipp.sourceforge.net.

Protocol



