
Middle-East Journal of Scientific Research 3 (1): 36-48, 2008
ISSN 1990-9233
© IDOSI Publications, 2008

Corresponding Author: Dr. Pouria Amirian, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of
Technology, Vali-e-Asr St., Post Code: 1996715433, Mirdamad Cross, Tehran, Iran

36

Implementation of a Geospatial Web service Using Web Services Technologies
and Native XML Databases

Pouria Amirian and Ali A. Alesheikh

Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology,
Vali-e-Asr St., Post Code: 1996715433, Mirdamad Cross, Tehran, Iran

            
              
              
            
           
      With this in mind, this paper suggests that making use
of Web services technologies as enabling infrastructure for implementing geospatial Web services can
significantly facilitate sharing geospatial data as well as access to processing services from multiple
resources in and out of GIS community. More accurately, geospatial Web services which are developed
using Web services technologies can provide access interoperability among various geospatial and
non-geospatial processing systems. In addition to access interoperability, making use GML (Geography
Markup Language) as an open and widely used data standard, data interoperability can be achieved.
Meanwhile, proper management of geospatial data necessitates use of efficient and optimized data
management systems. In this respect, based on practical performance test, the paper also describes that
using native XML database systems, management and publishing geospatial data (in feature level) can be
facilitated and improved significantly.

Key words: Spatial interoperability • geospatial web service • web services technologies • native XML
database

INTRODUCTION

Based on OGC Reference Model [1], spatial
interoperability refers to capability to communicate,
execute programs, or transfer spatial data among
various functional units in a manner that requires the
user to have little or no knowledge of the unique
characteristics of those units. As the mentioned
definition suggests non-interoperability of geospatial
processing systems hamper share of geospatial data and
services among software applications. From technical
point of view two kinds of non-interoperability can be
identified in geospatial processing systems: Data and
Access non-Interoperability [2].

Data non-interoperability implies different vendors’
geospatial processing systems use internal data formats
and produce data in formats that are different and in
most cases proprietary. In order to share geospatial
data, use of proprietary data formats obliges use of data
converters and/or exchange formats. But using data
converters and/or exchange formats involves resource

and time consuming conversion process. In addition,
there are so many different standards for geospatial data
that converting various data formats can itself become a
barrier to interoperability [3].

Access non-Interoperability means different
vendors’ geospatial processing systems use proprietary
software access methods with proprietary software
interfaces which restrict inter-process communication
among various geospatial processing systems. In other
words, interface definition languages, communication
protocols, communication ports and even object
transfer mechanisms, vary in each software
development platform, so the software platform which
has been used to develop the geospatial processing
system imposes the use of specific and proprietary
communication methods among various parts of the
system. For this reason, different geospatial processing
systems which have been developed by different
software development platforms can't communicate and
share services automatically and in an interoperable
manner.

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

37

In GIS community specific kinds of online
services, which are called geospatial Web services,
have been recently introduced to overcome spatial
non-interoperability problem. Geospatial Web services
have been developed with the goal of sharing geospatial
data and services among heterogeneous geospatial
processing systems. Web Feature Service (WFS), Web
Map Service (WMS) and Web Coverage Service
(WCS) are the most fundamental geospatial Web
services which are introduced by Open Geospatial
Consortium (OGC). At the same time, in IT world, the
best solution for providing interoperability among
heterogeneous systems in distributed and decentralized
environments are Web services technologies [4].

Geospatial Web services and Web services
technologies are different with each other. Web services
are composed of particular set of technologies and
protocols but Geospatial Web services are comprised of
defined set of interface implementation specifications
which can be implemented with diverse technologies.

With respect to above description, it is suggested
that making use of Web services technologies as
enabling infrastructure for implementing geospatial
Web services would significantly facilitate sharing
geospatial data as well as access to processing services
from multiple resources in and out of GIS community.
In other words, geospatial Web services which are
developed using Web services technologies can provide
access interoperability among various geospatial and
non-geospatial processing systems. Furthermore, using
open and platform independent data standards like
Geography Markup Language (GML), data
interoperability can also be achieved. Meanwhile,
proper management of geospatial data (such as multiple
user access and versioning mechanisms), necessitate
use of efficient and optimized data management
systems. In this context, considering the nature of GML
(as an XML-based language), using native XML
database systems is suggested for facilitating and
improving geospatial data management. This paper
describes development of a Geospatial Web service
using Web Services Technologies and a Native XML
database system to achieve spatial interoperability,
while having a proper management on spatial data over
the web. Based on practical tests of this research,
developed system proved to be an efficient solution for
developing geospatial Web services. The paper first
depicts Web services technologies, Geospatial Web
services and XML database systems and then explains
and discusses the developed system.

WEB SERVICES TECHNOLOGIES

The Web as it exists today is intended for human
consumption. Consequently, data is presented in a form

that is human-readable, but this form of representation
is error prone and difficult for applications to examine,
extract and use both, automatically and
programmatically. So there is a need for application to
application communication and this is the idea of
application-centric Web rather than human-centric Web
(The Web as it works today).

The core idea of the application centric Web is to
provide software applications the ability of cross
platform communication without the intervention of
human beings. In other words, automatic and direct
communications among functional units which are
running on heterogeneous platforms are the unique
characteristics of the Application centric Web (as the
next generation of Web). The promising technologies
for this kind of communications are Web services
technologies [5].

Web services are self-contained, self-describing,
modular applications that can be published, located and
invoked across the Web and perform functions that can
be anything from simple requests to complicated
business processes [7]. Web Services are the basic
components of distributed service-oriented systems.
The World Wide Web Consortium (W3C) defines Web
Services as a software system designed to support
machine-to-machine interaction over the Internet [7-9].

Any Web service has an interface described in a
machine-processable format. Other systems and
services interact with the Web service in a manner
described by its description using messages. Messages
are conveyed typically using Hyper Text Transfer
Protocol (HTTP) with an XML serialization, in
conjunction with other Web-related standards, but any
other communication protocol can be used as well [7].

Web services are implemented by using a
collection of standards and technologies. These
standards and technologies when considered together,
establish what is widely referred to as the Web services
protocol stack. Figure 1 illustrates the eight distinct
layers of the Web services protocol stack [10].

These eight layers are grouped into three distinct
levels (Fig. 1); each level indicates a level of maturity
for the layers it contains.

The enabling standards level contains two layers:
the network transport protocols and meta-language. The
layers within the enabling standards level contain well-
defined and accepted standards and protocols that are
widely used in internet and Web such as HTTP and
XML.

The evolving standards level contains layers for
Simple Object Access Protocol (SOAP) and Web
Services Description Language (WSDL) and Universal
Description, Discovery and Integration (UDDI).
Collectively, these layers form the core technologies for
implementing Web services.

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

38

Fig. 1: Web services protocol stack

SOAP is a lightweight, XML-based protocol for
exchanging information in decentralized, distributed
environments. SOAP is used for messaging among Web
service provider and Web service requesters. SOAP is
platform independent and also it can be used with
virtually any Network Transport protocols such as
File Transfer Protocol (FTP), HTTP, Secure HTTP
(HTTP-S) and Reliable HTTP (HTTP-R).

WSDL is XML-based specification for describing
the capabilities of a service in a standard and extensible
manner. Technically WSDL defines the software
interface of Web service in platform independent
approach.

UDDI is a set of specifications and Application
Programming Interfaces (APIs) for registering, finding
and discovering Web services.

The last level of standards or emerging standards
level represents proposed standards that are promo ted
by individual vendors (such as Microsoft, IBM and Sun
Microsystems). This level consists of specifications
which have not yet gained broader endorsement or
acceptance in the wider Web services community and
have not been adopted as open standards for
development by key standards bodies such as the
World Wide Web Consortium (W3C) and the
Organization for the Advancement of Structured
Information Standards (OASIS).

Web services are based on open standards, so they
provide interoperability in decentralized and distributed
environments like Web. These new technologies can be
developed by using any software platform, operating
system, programming language and object model.

GEOSPATIAL WEB SERVICES

Nowadays, geospatial Web services have been
considered as the promising technology to overcome

the non-interoperability problem associated with
current geospatial processing systems. They are
particular kind of online services which deal with
geospatial information and can provide access to
geospatial information stored in a database, perform
simple and complex geospatial analysis and return
messages that contain geospatial information [11].

In this context, OGC has defined a comprehensive
framework of geospatial Web services which is known
as OGC Web services framework (OWS). OWS allows
distributed spatial processing systems to interact with
the HTTP technique and provides a framework of
interoperability for the many web-based services, such
as accessing spatial data services, spatial processing
services and data locating services [12]. OWS
framework consists of interface implementation
specification and encodings which are openly available
to be implemented by developers. The interface
implementation specifications are software technology
neutral details about various operations of each
geospatial Web service [3]. The encodings provide the
standard glue among different parts of geospatial Web
services. Each service of this framework can be
implemented using various software technologies and
systems. Among all Web services which are defined in
the OWS, Web Feature Service (WFS) plays a major
role. WFS is the only OGC Web service which provides
feature level access to geospatial data. This means
using WFS, any geometry and non-geometry property
of geospatial features can be retrieved. When a client
sends a request to an OGC WFS instance, the service
sends a response message that provides geospatial
feature data in GML. In this case, requests for
geospatial data contain Filter Encoding (FE)
expressions. Using FE, spatial and non-spatial query
expressions can be created to be sent to WFS. GML
and FE are two main encodings of the OWS which are

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

39

<City gml:id="C30">
<Name>Tehran</Name>
<gml:position>

<gml:Point srsName="WGS84">
<gml:coordinates>3950000,530000</gml:coordinates>

</gml:Point>
</gml:position>
<IsCapitalOf xlink:href="#T1" />

</City>
<Country gml:id="T1">

<Name>IRAN</Name>
<Continent>Asia</Continent>
<Region>Southern Asia</Region>
<Capital xlink:href="#C30"/>

</Country>

heavily used in requesting and retrieving geospatial
data when WFS is used. WFS and other geospatial Web
services supply standard access to geospatial data thus
provide access interoperability in GIS community. Next
sections briefly introduce GML, WFS and FE.

Geography Markup Language (GML): GML is an
XML-based markup language that is used to encode
information about real world objects. In GML these real
world objects are called features and they have
geometry and non-geometry properties.

GML has three main roles with respect to
geospatial information. First as an encoding for the
transport of geospatial information from one system to
another; second as a modeling language for describing
geospatial information types; and third as storage
format for geospatial information [13].

Typically in any management related tasks (like
environmental management, natural resource and so on)
one needs to examine and explore data from several
sources, use simulation models, develop scenarios,
assess impacts and provide support for decision makers
[14]. In this case, use of XML-based languages for data
exchange is an improvement on non XML data formats
because the XML format is partially self-documenting
and provides common methods for parsing files,
obtaining their structure and transforming them to
alternative formats [15]. GML (as an XML-based
language) is well suited for encoding the geospatial
information sent to and from geospatial Web services.
GML is used in both the request and response messages
of the WFS, which is a standard service for accessing
geospatial feature data.

As a modeling language, GML provides a rich
variety of objects for describing geospatial information,
including geospatial features, coordinate reference
systems, topology, time, units of measure and
generalized values [16]. In addition, using GML spatial
and non-spatial relationships among real world objects
can be modeled efficiently.

As storage format GML is a plain textual file
format which can be managed using any database
management system. Since GML is based on XML, the
same technology for managing XML data can be used
to manage geospatial data stored in GML. In general
XML databases are used to manage XML data. XML
databases are described later in this paper.

GML has been a turning point in geomatics to the
extent that many national and private organizations
have already adopted this format as their main
geospatial storage and exchange format [17].

Figure 2, illustrates a simple GML document
fragment which consist of two features. City feature has
three properties; Name, Position and IsCapitalOf. Name
of the city is declared using Name element and Position
of the city is expressed using gml:Point element which
is defined in GML standard. The gml:Point has a
srsName attribute for denoting Spatial Reference
System (SRS) in which the coordinates are represented.
As the name implies IsCapitalOf property states
relationship between city and country features. In this
case Tehran is the capital of country feature which has
"T1" as its gml:id attribute. At the other hand, country
feature has four non-geometry properties which state its
name, continent, region and its capital city. The Capital
property of country feature is used to indicate its capital

Fig. 2: A simple GML document fragment which describes some properties of Tehran as City feature and Iran as
Country feature. Position of City is indicated using gml:Point element which is defined in GML standard.
Association between Tehran and Iran is expressed using xlink:href attribute

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

40

<wfs:Query typeName="City">
 <ogc:Filter>
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName> Name</ogc:PropertyName>
 <ogc:Literal>Tehran</ogc:Literal>

</ogc:PropertyIsEqualTo>
 </ogc:Filter>
</wfs:Query>

Fig. 3: Three classes of WFS and their operations

Fig. 4: Filter encoding for retrieving city feature whose name is Tehran

city. In both features Xlink:href attribute is used to
express association between country and city features.
Xlink:href is defined in XLink standard. XLink is a
W3C standard that specifies the syntax and behavior for
hyperlink traversal in a set of XML documents [11].
These links are used in GML to express associations
between geospatial features.

Web Feature Service (WFS) and Filter Encoding
(FE): Web Feature Service is the main geospatial Web
service for publishing and requesting vector geospatial
data in GML format. When a client sends a request to
an OGC WFS, the service sends a response message
that provides geospatial feature data in GML. As
illustrated in Fig. 3, three classes of Web Feature
Services are defined in the WFS implementation
specification: Basic WFS, XLink WFS and Transaction
WFS [18].

A Basic WFS service implements three operations:
GetCapabilities, DescribeFeatureType and GetFeature.

A client can request an XML-encoded capabilities
document (containing the names of feature types that
can be accessed via WFS service, the spatial reference
system(s), the spatial extent of the data and information
about the operations that are supported) by sending the
GetCapabilities request to the WFS instance.

The purpose of the DescribeFeatureType operation
is to retrieve an XML Schema document with a
description of the data structure (or schema) of the
feature types served by that WFS instance.

The GetFeature operation allows for the retrieval of
feature instances (with all or part of their properties) as
GML document.

An XLink WFS supports all the operations of a
basic web feature service and in addition it would
implement the GetGmlObject operation for local and/or
remote XLinks. The GetGmlObject operation allows
retrieval of features and elements by gml:id from a web
feature service [18].

A Transaction web feature service supports all the
operations of a basic web feature service and in
addition it implements the transaction operation. A
transaction request is composed of operations that
modify features; that is create, update and delete
operations on geospatial features.

FE is an XML encoding which is used as a system
neutral representation of a query predicate. Query
predicate which is generated as FE, can be easily
validated, parsed and then transformed into whatever
target language is required to retrieve or modify object
instances stored in some a persistent object store [19].
Using FE, spatial and non-spatial query expressions can

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

41

be created to be sent to WFS. Figure 4, illustrates an EF
expression which is used to retrieve a feature from City
layer whose name is Tehran.

Geospatial web services vs. web services
technologies: Geospatial web services can be
considered as technology independent services.
Geospatial Web service differs from the Web service
technologies. The most important distinction between
these two kinds of services is the fact that Web services
are particular set of technologies and protocols but
geospatial Web services are composed of defined
set of interface implementation specifications which
can be implemented with diverse technologies.
Following items explain the most important differences
between geospatial Web services and Web services
technologies [3]:

• In the OGC Web service framework HTTP is
defined as the sole distributed computing
environment. In contrast, as Fig. 1 shows, Web
services can be implemented virtually with any
standard protocols such as HTTP, FTP and TCP to
name a few. Also by considering the huge volume
of geospatial data and the textual nature of HTTP
protocol, it is good idea to use other binary
protocols when the time is the most important
factor in the exchange and share of geospatial data.

• OGC Web services do not necessarily use the usual
Web services core standards, including SOAP and
WSDL. In other words, in Web services
technology, the main messaging protocol is SOAP
and this protocol can be considered as the main
cause of achieving interoperability among various
applications which are running on heterogeneous
platforms. In OGC Web service framework SOAP
is not the main messaging protocol. In addition
in most geospatial Web services, creation and
publication of WSDL document has not
defined yet.

• OGC Web services have particular interface for
binding that might leads to interface coupling
problem. In accordance with OGC Web service
framework specifications, each geospatial Web
services have to publish its own capabilities
through a so called capabilities document. This
document (which is an XML document) provides
human and machine-readable information about the
geospatial data and operation supported by a
specific instance of a geospatial Web service. But
this document is not comprehensive enough to play
a same role as WSDL document. In other words,
capabilities document cannot offer enough
information to enable developers and thus software

applications to consume a geospatial Web
service programmatically and automatically,
while according to Newcomer and lomow [5],
ideally the service requester should be able to
use a service exclusively based on the published
service contract.

As mentioned before, geospatial Web services can
be implemented using any existing software
development technologies. It is suggested that using
Web services technologies as enabling infrastructure for
implementing geospatial Web services can significantly
facilitate sharing geospatial data as well as access to
processing services from multiple resources in and out
of geospatial community. In other words, geospatial
Web services which are developed using Web services
technologies can provide data and access
interoperability among various geospatial and non-
geospatial processing systems.

XML DATABASE SYSTEMS

XML, as a rich set of technologies, is playing an
important and increasing role in share and exchange of
data over the Web. The more XML has been used in
share and exchange of data, the more XML data
management issues have to be considered. So, database
researchers have actively participated in developing
technologies centered on XML data management, in
particular data models and query languages for XML.
As a result of these researches, many XML data
management systems have been implemented. In
general, XML data management systems can be
categorized as XML enabled databases and native XML
databases [20].

Typically, an XML enabled database is a relational
database which provides storage of hierarchical XML
documents in relational model and provides proprietary
methods for relational to XML data mapping (or
conversion) for retrieving stored data as XML. The
mentioned proprietary methods vary in each software
package from extension to standard Structured Query
Language (SQL) language to implementation of a full
featured XML query language.

On the other hand, a native XML database has an
XML document as its fundamental unit of logical
storage, just as a relational database has a row in a
relation as its fundamental unit of logical storage. A
native XML database defines a logical model for its
fundamental unit of storage and stores and retrieves
XML documents according to that model (such as
Document Object Model) [20]. The advantage of this
native approach is that XML data can be stored and
retrieved in their original formats and no additional

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

42

mappings or translations are needed. Furthermore, most
native-XML databases have the ability to perform
sophisticated full-text searches including full thesaurus
support, word stubbing (to match all forms of a word:
run, ran, running) and proximity searches [21].

Since there are two technologies for XML data
management, some performance analysis and
benchmarking have been performed by database
practitioners and researchers. in this case most of the
analysis and benchmarks consists of evaluation of
using various methods for extracting XML data from
relational databases [21-23] and evaluation of XML
query languages [24, 25]. In some rare cases, two (or
more) database products from both technologies were
evaluated using a defined set of queries to indicate
which technology provides better support for XML data
management [20, 26]. Although, there is no conclusion
yet as to which technology suits better for XML data
management, most of the analysis and tests concluded
that it is much easier to use native XML databases to
manipulate XML documents than to use XML enabled
databases [20]. In addition, with proper design native
XML database has better performance and scalability
than a XML-enabled database for handling XML
documents with larger data sizes. In other words, a
XML-enabled database has better performance for
small document sizes (number of records less than
1,000) but it cannot handle large-sized documents as
efficiently due to conversion overhead. (The native
XML database engine directly accesses XML data
without conversion [26]).

As mentioned earlier, GML is an XML-based
technology for modeling, transporting and storing
geospatial information. Since GML is based on XML,
the same technology for managing XML data can be
used to manage geospatial data stored in GML.
Considering the fact that geospatial data are huge in
volume, using native XML databases for storing
geospatial data (as GML), provides an efficient solution
for storing and accessing high volume geospatial data in
multi-user enterprise environments. In addition, as more
and more geospatial data is stored and exchanged in
GML format, using XML technologies which are easy
to integrate with native XML databases more spatial
capabilities can be added to native XML databases.
Adding spatial capabilities to native XML databases
allow them to manipulate spatial data thus make them
more efficient in handling geospatial data.

Considering the above descriptions, this paper
suggests that coupling native XML database system, as
efficient means for storing and managing geospatial
data (in GML format), with geospatial Web services
which are developed using Web services technologies,
provides an open, interoperable and efficient geospatial
information sharing environment.

IMPLEMENTATION AND EVALUATION
OF A BASIC WFS

In order to evaluate the feasibility of using XML
database systems as back end geospatial data store and
Web services technologies as platform independent
connecting technologies for implementing Geospatial
Web services, a Basic WFS instance was designed and
developed. This section describes the architecture and
capabilities of the implemented system. As mentioned
before, three operations have been defined for a Basic
WFS; GetCapabilities, DescribeFeatureType and
GetFeature.

These operations provide the software interface
of the WFS system. In other words, internal details of
the functional units and software components as
well as communications are transparent to consumer
applications; the consumer application just can
communicate with the WFS system through the
operations and defined set of parameters which are
specified in WFS implementation specification.
Software components, communication among them and
physical location of each component are specified in
logical and physical architecture of the WFS system.

Physical architecture is quite different from a
logical architecture. The physical architecture is about
the number of machines or network hops involved in
running the application. Rather, a logical architecture is
all about separating different types of functionality in
software components [27].

Traditionally logical architecture of software
applications consists of three tiers; presentation and
user interface tier, business logic tier and data
management tier. With the advent of new technologies
and software design patterns the traditional logical
architecture is rarely efficient for the modern software
applications. Today, the business logic tier is often
physically splits among a client, Web server and
application server. In addition, with new software
design patterns (such as façade, flyweight, adapter and
composite) the business logic breaks up into multiple
parts and components.

In this research the WFS designed in four logical
tiers; presentation and user interface tier, business logic
tier, data access tier and data management tier.

As the name implies, the presentation and user
interface tier provides the end user a friendly tools
which hides details of local and remote computational
tasks from user. This tier is responsible for gathering
the user inputs, validating the user inputs, composing
FE statements based on the user inputs to make
requests, validating requests against proper schemas,
sending validated requests to WFS server and
displaying the returned geospatial data.

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

43

The business logic tier includes all business rules
for the WFS system. For the implemented WFS theses
rules consist of translate requests to DBMS specific
query language statements and dispatch them to the
next tier.

Data access tier interacts with the data management
tier to retrieve geospatial information. The data access
tier doesn't actually manage or store the data; it merely
provides an interface between the business logic and the
database. Logically, defining data access as a separate
tier enforces a separation between the business logic
and how application interacts with a database. This
separation provides the flexibility to choose later
whether to run the data access code on the same
machine as the business logic, or on a separate
machine. It also makes it much easier to change data
sources or data access technologies without affecting
the application. It also makes it much easier to change
data sources technologies without affecting the
application. In addition by isolating the data access
code into a specific layer, the impact of changes in data
access technologies is limited to a smaller part of the
application.

The last tier handles the physical retrieval, update
and deletion of data. This is different from the data
access tier, which requests the retrieval, update and
deletion of data.

The mentioned four tier logical architecture have
been developed using Microsoft.NET 2.0 framework
and SQL Server 2005 DBMS..NET windows forms (as
set of Class hierarchies for developing desktop
applications using.NET framework) were used to
implement the client side application (user interface and
presentation tier). Windows forms provide much more
flexibility and capability to use the client machine
resources when compared with browser based
applications. Web services infrastructure was utilized in
all interactions between client side application and
WFS server. In other words, WSDL was used to create
software interfaces to enable remote communication
between client side application and business objects of
WFS server. SOAP was used to transport every
interaction (request and response) between interfaces in
client side and business logic over the Web.

In client side application, response to
DescribeFeatureType operation specifies which feature
types and properties can be requested using GetFeature
operation. Then FE statements can be created using
various logical and comparison operators which are
provided as a part of user interface. The created FE then
is sent to the WFS server and the requested geospatial
data is sent back to client side application.

In addition to developed client side application, any
Web browser or application can consume the
implemented WFS using WFS specifications.

Two famous software patterns were used for
implementing business logic and data access
components respectively; façade and flyweight patterns.

Façade pattern provides a unified interface to a set
of interfaces in a subsystem. A Façade pattern
encapsulates a design feature where there is a simple
interface that acts as a central point of reference for
many interfaces [28]. In general, façade pattern forces
interfaces to communicate with use of chunk of data as
method parameters. This way of communication
ensures the minimal network roundtrips and thus
increases the performance of the application drastically.

Flyweight pattern is a pattern that allows client
programmers to think that they are using a factory
method to create their own object, when ‘their’ object is
actually being shared by multiple clients. Normally, this
is done to save memory and improve performance, by
avoiding the creation of many equivalent objects [29].
In other words, the overhead required to continuously
release and create any server-side resource that is
frequently used and expensive to create for each client,
limits the performance and reduces the maximum
number of clients that can be served simultaneously;
Flyweight pattern Manage the reuse of objects when it
is either expensive to create an object or there is a limit
on the number objects of a particular type that can be
created and thus resolves the mentioned problem [30].

In the developed system, objects and components
in business logic and data access tiers work together to
prepare an appropriate response message. More
accurately, user supplied parameters are parsed by
business objects to determine which methods have to be
executed. In the case of GetFeature operation, user
supplied FE statements are translated to appropriate
XQuery statements. Then XQuery statements are
delivered to objects and components in data access tier
to be sent to DBMS.

In the last tier of the architecture, geospatial data
were stored as GML 3.1 in the back end native XML
database. For retrieving geospatial data, XQuery
statements which were sent by data access components
are executed and result are sent back to the data access
component. Data access components dispatch retrieved
geospatial data to business logic components.
Afterwards geospatial data are prepared to be valid
against WFS specifications. Finally, prepared GML
data are sent back to the client using Web services
infrastructure (using SOAP).

For implementation of the data management tier
Microsoft SQL Server 2005 DBMS were used.
Microsoft SQL Server provides the best performance
and compatibility when.NET framework is used to
develop the data driven applications. This DBMS is by
far considered as one of the most powerful commercial
relational databases. In contrast with earlier versions

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

44

Fig. 5: Physical architecture of the implemented WFS

(such as SQL Server 2000), SQL Server 2005 defines a
model based on SQL/XML (standard extensions to the
SQL language specification) for an XML document and
stores and retrieves documents according to that model
[31]. As a result, SQL Server 2005 can be considered as
a native XML database.

In implemented physical architecture of WFS, two
server machines were employed. Data access and
business logic components resided on the Web server
machine (which utilized Microsoft Internet Information
Services as Web server application) and native XML
database installed on data server machine. Web server
and data server machines connected through a high
speed Local Area Network (LAN). As a result,
Communication between data access components and
DBMS were performed using well defined and DBMS
specific binary protocols to optimize the performance.
Figure 5, illustrates the implementation of the WFS
physical architecture.

The four tier logical architecture of the
implemented WFS ensures that the logical model has
enough tiers to provide flexibility and extensibility. So,
the WFS can be configured into an appropriate physical
architecture that will depend on our performance,
scalability, fault-tolerance and security requirements.
The more physical tiers included, the worse the
performance will be but the potential to increase
scalability, security and/or fault tolerance will be
improved.

In addition, making use of modern software
patterns and appropriate software platforms as well as
flexible physical architecture, the scalability of the
implemented WFS is improved significantly when
compared with the standard Web and Client-Server
applications.

On account of using Web services technologies,
interoperability among heterogeneous platforms is
achieved. Since Web services are the foundation of new
type of application-to-application communication, they

provide an unprecedented opportunity to connect
heterogeneous platforms and applications. With the
help of Web services technologies, it is an easy task for
a developer to utilize WFS functionality into almost any
type of geospatial or non-geospatial processing system.

Besides, spatial data and access interoperability is
achieved through the use of standard interfaces and data
format of OGC Web service framework. Since native
XML databases outperform other types of databases for
storing and retrieving XML data, storing geospatial data
as GML in native XML database, retrieving geospatial
data from WFS no longer needs time and resource
consuming process of data conversion. It is worth
noting that data conversion causes problems for real-
time geospatial data access. Furthermore, use of
XQuery and other native XML manipulation and
processing technologies inside native XML databases,
geoprocessing functions can be developed more
efficiently and resourcefully. If other kinds of databases
or methods (rather than native XML database), are used
for storing and retrieval of geospatial data, GML data
have to be mapped to database specific internal data
models (for example relational model). In this case
geospatial data retrieval as GML (for WFS service), can
be accomplished using one of the following methods:

• Utilizing DBMS engine to map stored data to GML
format (XML enabled approach). In this approach
there are one or more tables for each feature class.
Using proprietary methods of DBMS, relational
data should be converted to GML data. In SQL
Server 2005 extension to standard SQL can
provide such functionality. More accurately, in
SQL Server 2005, FOR XML clause which is an
add-on to the end of a SELECT statement returns
normal relational data as XML data [32]. Various
modes of FOR XML clause enable the DBMS to
dictate how the relational data should be
transformed into GML.

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

45

Fig. 6: ProvinceType schema

Fig. 7: Province and ProvinceNative tables to store geospatial data in relational and native (GML) forms
respectively

50

200

350

500

650

800

Number of Province Features

NativeXML XMLEnabled GML Translator

NativeXML 103 189 243

XMLEnabled 163 260 450

GML Translator 310 430 721

5000 10000 50000

Fig. 8: Performance test for retrieving single province feature (Q1)

• Making use of dedicated component outside DBMS
to retrieve data from database and turn it to GML
data (GML translator approach). In this case, in
business logic tier, there should be a dedicated
component which is in charge of reformatting the
retrieved data. Reformatting the data generates a
GML document which conforms to the schema of
feature class.

In both approaches, additional overhead required
to map data to hierarchical structure of GML data,
which consume some expensive computational

resources (mostly memory of the data server) thus
limits the overall performance of the system. If the high
volume geospatial data are required, the mentioned
issue can introduce a significant performance
bottleneck. For ensuring that using native XML
database is the most efficient approach, a simple
performance test was performed. Next section briefly
describes the test.

Performance test: In order to carry out the
performance test, three GML document created using
the ProvinceType schema (Fig. 6). The ProvinceType

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

46

50
200
350

500
650
800
950

1100
1250
1400
1550

Number of Province Features

NativeXML XMLEnabled GML Translator

NativeXML 178 231 343

XMLEnabled 284 412 711

GML Translator 569 890 1352

5000 10000 50000

Fig. 9: Performance test for retrieving whole province features (Q2)

schema defines the structure of non-geometry and
geometry properties of province features. Each
province feature should have Name, Center,
Shape_Length and Shape_Area properties. Geometry of
each province feature (as polygonal features) is denoted
using gml:extentOf element. The ProvinceType schema
was used to create the Province table (Fig. 7). The
Province table is used to store geospatial data in
relational model in SQL Server 2005. For storing
geospatial data as GML in their native form,
NativeProvince table is created (Fig. 7). The
ProvinceNative table just contains one field (of type
xml) to store GML data.

For realistic testing of performance 5000, 10000
and 50000 randomly generated province features are
inserted into Province and ProvinceNative tables. Since
Basic WFS can only retrieve geospatial data from
geospatial data store, two queries were designed to
evaluate the performance of all approaches. First query
(Q1) is designed to retrieving a single province feature
and second one (Q2) evaluates the retrieval of whole
GML documents. Running time of each query was
used as performance metrics. Each query executed
1000 times and average running time was calculated
(Fig. 8 and. 9).

As results of the test illustrated, native-XML
database outperforms the XML-enabled and GML
translator approaches in both queries. Since there is a
direct mapping between the original GML document
and its physical representation within the native XML
database, native storage strategy is more efficient
solution for retrieving geospatial data as GML. Also the

results are more serious as the number of province
features increases.

CONCLUSION

In this paper implementation of a geospatial Web
service (Basic WFS) using native XML database
system and Web Services technologies was described.

Structure and data model of XML (and hence
GML) documents does not correspond to any schema
model of the widely used database technologies. This
issue has led to the implementation of so-called native
XML databases. Since GML is based on XML, the
native XML databases can be used to manage
geospatial data. Based on practical tests of this research
it is concluded that using native-XML databases
provides an efficient solution for storing and accessing
high volume geospatial data in multi-user enterprise
environments.

Developing WFS with the use of cutting edge Web
services technologies as well as make use of native
XML database to store geospatial data as GML,
provides spatial data and access interoperability among
various geospatial processing systems. Since Web
services technologies are foundation of cross-platform
application-to-application communication, functionality
of the implemented geospatial Web service can be
simply added to any geospatial or non-geospatial
processing systems which are running on heterogeneous
platforms. Using Web services technologies for
implementing geospatial Web services and utilizing
native XML databases to manage geospatial data as

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

47

GML are new topics in GIS world. Hence more tests
and evaluations are needed to prove their efficiency.

REFERENCES

1. The Open GIS Reference Model, 2003. Available
at: http://portal.opengeospatial.org/files .

2. Peng, Z., 2004. GML, WFS, SVG and the future of
Internet GIS. GIS Development Magazine July
2004. Available at: http://www.gisdevelopment.net/
magazine/years/2004/july/38.shtml

3. Amirian, P. and A.A. Aleshiekh, 2008. A Hybrid
Architecture for Implementing Efficient Geospatial
Web Services: Integrating.NET Remoting and Web
Services Technologies. World Applied Sciences
Journal 3 (1): 140-153.

4. Volter, M., M. Kricher and U. Zdun, 2005.
Remoting Patterns: Fundamental of Enterprise,
Internet and Realtime Distributed Object
Middleware, New Jersey, USA, John Wiley and
Sons, Inc.

5. Newcomer, E. and G. Lomow, 2005.
Understanding SOA with Web Services, Maryland,
USA, Addison Wesley, Inc.

6. Nance, K.L., B. and Hay, 2005. Automatic
transformations between geoscience standards
using XML, Computers and Geosciences, 31 (9):
1165-1174.

7. Stal, M., 2002. Web Services: Beyond Component-
based Computing. Journal of Communications of
the ACM, 45 (10): 71–76.

8. Booth, D., H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris and D. Orchard, 2004. Web
Services Architecture. W3C Working Group.
Available at: http://www.w3.org/TR/ws-arch

9. W3C, 2006. The World Wide Web Consortium.
Web Services Activity Statement. Available at:
http://www.w3.org/2002/ws/Activity.

10. Gailey, J.H., 2004. Understanding Web Services
Specifications and the WSE. Washington, USA,
Microsoft Press.

11. Lake, R., D. Burggraf, M. Trinic and L. Rae, 2004.
Geography Markup Language, Chichester,
England, John Wiley and Sons.

12. Zhang, J., J. Go ng, H. Lin, G. Wang, J. Huang, J.
Zhu, B. Xu and J. Teng, 2007. Design and
development of Distributed Virtual Geographic
Environment system based on web services.
Information Sciences, 177 (19): 3968-3980.

13. Lake, R., 2005. The application of Geography
Markup Language (GML) to the geological
sciences. Computers and Geosciences, 31 (9):
1081-1094.

14. Kokkonen, T., A. Jolma and H. Koivusalo, 2003.
Interfacing environmental simulation models and
databases using XML. Environmental Modelling
and Software, 18 (5): 463-471.

15. Sen, M. and T. Duffy, 2005. GeoSciML:
Development of a generic GeoScience Markup
Language. Computers and Geosciences, 31 (9):
1095-1103.

16. Nativi, S., J. Caron, E. Davis and B. Domenico,
2005. Design and implementation of netCDF
markup language (NcML) and its GML-based
extension (NcML-GML) Computers and
Geosciences, 31 (9): 1104-1118.

17. Antoniou, B. and L. Tsoulos, 2006. The potential
of XML encoding in geomatics converting raster
images to XML and SVG Computers and
Geosciences, 32 (2): 184-194.

18. Open GIS Consortium Web Feature Service
implementation specification 1.1.0., 2005.
Available at: https://portal.opengeospatial.org/files.

19. Open GIS Consortium Filter Encoding
Implementation specification, 2005. Available at:
https://portal.opengeospatial.org/files.

20. Lu, E.J., B.C. Wu and P.Y. Chuang, 2006. An
empirical study of XML data management in
business information systems. Journal of Systems
and Software, 79 (7): 984-1000.

21. Atay, M., A. Chebotkoa, D. Liua, S. Lua and F.
Fotouhi, 2007. Efficient schema-based XML-to-
Relational data mapping. Information Systems,
32 (3): 458-476.

22. Liu, J. and M. Vincent, 2004. Querying relational
databases through XSLT. Data & Knowledge
Engineering, 48 (1): 103-128.

23. Fong, J., H.K. Wong and Z. Cheng, 2003.
Converting relational database into XML
documents with DOM. Information and Software
Technology, 45 (6): 335-355.

24. Hausteina, M. and T. Harder, 2007. An efficient
infrastructure for native transactional XML
processing. Data and Knowledge Engineering,
61 (3): 500-523.

25. Jea, K.F. and S.Y. Chen, 2006. A high concurrency
XPath-based locking protocol for XML
databases. Information and Software Technology,
48 (8): 708-716.

26. Chaudhri, A., A. Rashid and R. Ziecari, 2003.
XML Data Management: Native XML and XML-
Enabled Database Systems. Wokingham, England,
Addison Wesley, Inc.

27. Lhotka, R., 2006. Expert VB 2005 Business
Objects. 2nd Edn. California, USA, APress
Publishing.

Middle-East J. Sci. Res., 3 (1): 36-48, 2008

48

28. Horner, M., 2006. Pro.NET 2.0 Code and Design
Standards in C#. California, USA, APress
Publishing.

29. O’Docherty, M., 2005. Object-oriented analysis
and design: Understanding system development
with UML 2.0., New Jersey, USA, John Wiley and
Sons, Inc.

30. Shalloway, A. and J. Trott, 2004. Design Patterns
Explained A New Perspective on Object-Oriented
Design Second Edition. Maryland, USA, Addison
Wesley, Inc.

31. Amirian, P., 2006. Design and Development of a
Distributed Geospatial Web services using XML
and.NET technologies. Geospatial Information
Systems (GIS). MS Thesis, K.N. Toosi University
of technology, Tehran, Iran.

32. Klein, S., 2006. Professional SQL Server 2005
XML. Indianapolis, Indiana, Wiley Publishing, Inc.

