
Middle-East Journal of Scientific Research
24 (Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016
ISSN 1990-9233; © IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.IIECS.23132

Corresponding Author: B. Arthi, Department of IT, Easwari Engineering College, Chennai, India.
6

Software Complexity Measure from Software Requirements
Document and Cost Driver Factors

B. Arthi, A. Grace Selvarani and A. Sathya1 2 1

Department of IT, Easwari Engineering College, Chennai, India1

Department of CSE(PG), Sri Ramakrishna Engineering College, Coimbatore, India2

Abstract: One of major criteria for the evaluation of the software quality is the software complexity. Hence, as
the complexity of the software increases the accomplishment of quality of the software becomes challenging.
The best option should be to predict the software complexity before the software development reaches the
coding phase. When this issue is addressed the cost and time which is imposed by recoding in software
development is reduced. Hence the main objective of this paper is to evaluate the complexity of the software
to be developed in the early stage and to make a realistic estimate. Many factors included in COCOMO model
contributes to the complexity of the software which has not been included in the existing metrics. A complexity
metric, Complexity based on Requirements and Cost Drivers (CRCD) is proposed for the estimation of the
software complexity from the Software Requirements Document and the COCOMO cost factors that influence
the complexity of the software. CRCD evaluates the software complexity before the actual implementation phase
and thus it saves cost and manpower.

Key words: COCOMO Cost drivers Software Complexity Measure Software Requirements Document

INTRODUCTION Literature Survey: This section gives an overview and

The term software development refers to the process complexity measures.
of creating a quality software system based on
requirements stated by the customers within the McCabe's Cyclomatic Metric: The initial study on the
stipulated time. It is well known fact that the quality software complexity was started by Thomas J. Mc Cabe in
of the software is directly related to the complexity of the the year 1976. He described a graph-theoretic complexity
software. According to IEEE [1] the measure of the measure and illustrated how it can be used to manage and
software or component design or implementation control program complexity [4]. The cyclomatic number
that is intricate to understand and evaluate can be V(G) of a graph G metric can be defined as:
defined as the software complexity. Complexity can also
be defined as how difficult it is to develop, understand V(G) = e - n + 2p where,
maintain and change software.Barry Boehm proposed n = Number of vertices
COCOMO basic model for cost estimation [2, 3]. This e = Number of edges
model considers the size of the software to be developed. p = Connected components
COCOMO model does not provide complexity measure
for the software; it provides an estimate for the cost The difficulty with this complexity measure is that,
and development effort. Further COCOMO-II considers for conditional statement the complexity of the
Cost Driver Attributes for precise estimation of cost expression is never considered. Another difficulty is that
compared to other estimates. Most of the cost driver this metric does not differentiate embedded loops and
attributes are derived based on the complexity of the single loops, both the types of loops have the same
software code. complexity.

the calculation methodology of various existing software

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

7

Halstead's Complexity Measure: Most of the existing With Cognitive knowledge as a base Kushwaha and
complexity measures are based on the code of software Misra proposed a Cognitive Information Complexity
being developed. This section details about few existing Measure. Here to estimate the software complexity two
metrics which uses the code to evaluate the software main parameters were used (i) the information count with
complexity. Maurice Howard Halstead in the year 1977 weights (ii) the Basic Control Structure with weights.
introduced a suite of metrics [5]. His measure was based
on the count of operator and operands [6]. CICM = WICS * SBCS

Program Vocabulary, n = n1+n2 All of the above mentioned measures are code based
Program Length, N = N1+ N2 or they are dependent on the code of the software.
Volume, V= N * log 2 n
Estimated Program Length N^ = n1 log 2 n1 + n2 log 2 n2 Requirement Based Complexity (RBC): Another
Potential Volume, V* = (2+n2*) log2 (2+n2*) important research on the complexity measure was
Program Level, L = V*/V done by Ashish Sharma and Dharmender Singh
Effort, E =D*V Kushwaha in the year 2010. They proposed a
Reasonable Time, T = E/B min Requirements Based Complexity measure [11] based on
Difficulty = (n1/2) * (N2/n2) the generic attributes derived from SRS Document

The drawback of this method is that it is not suited software complexity in early phases of software life cycle.
for fast and easy computation since it is difficult to This work mainly includes the attributes extracted from
compute and count distinct operator and operands. the requirements document only. It does not concentrate
Hence this metric is not suited for large programs [7]. on the other external factors that contribute to the

Cognitive Complexity Measures: Cognitive theory was
also one of the prominent areas which were used for Complexity Based on Requirements and Cost Drivers:
evaluation of complexity measure. One of the cognitive As stated above, the following section elaborates on the
approaches was KLCID that was developed by Klemola complexity measure CRCD, which estimates the
and Rilling in the year 2004. This measure defines complexity of the yet to be developed software from the
identifiers as a variable defined by the programmer and it factors derived from requirements document and the
is based on the identifier density (ID). COCOMO cost factors [2].

ID = Total no. of identifiers/ LOC Requirement Document Factors (RDF): The following are

KLCID is calculated with the number of unique lines Requirements Specification document.
of code, lines that have same type and kind of operands
with same arrangements of operators would be considered Basic Factor (BF): Basic Factor refers to the basic input
equal. – output information about the software. The attributes

KLCID = attributes included in function point technique [13] [14].

A functional size metric was proposed by Wang [8]
and Shao to measure the cognitive complexity. This Input: Count of information that enters the system.
measure defines the cognitive weights [9] for the Basic Output: Count of information that leaves the system.
Control Structures (BCS). Cognitive functional size [10] of External Files: Count of master files included in the
software is defined as: software.

CFS = (Ni + No) * Wc Where, transmit information to another system is counted.
Ni = No. of Inputs, Hence, Basic factor is calculated as;
No = No. of Outputs and BF = Count of Input + Count of Output + Count of
Wc = Total Cognitive weight of software External files + Count of Interface files

[12]. The advantage of this approach is that it calculates

complexity of the software.

the factors (Figure 1) that are derived from the Software

that evolve from this factor are similar to that of the

Following four attributes are considered:

Interface Files: Count of interface files that are used to

1
No. of Fn * No. of Sub Fn

n
i

FR
=

=∑

3
1 1

 (*)
n

i j
NFR Type i Count j

= =
= ∑ ∑

3

1i
PEDF CDAi

=
=∑

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

8

Fig. 1: Attributes of Requirement Document Factors

Requirements Factor (RF): Requirements of software can
be defined as the services that the customer requires. It
can also be considered as the limitations that are posed
on the system during operation and development.
Requirements can be broadly classified as functional and
non functional requirements.

Functional Requirement: Functional Requirement states
the basic functions that a software system must perform
in accepting and processing the inputs and in processing
and generating outputs. Functions tell what a system has
to do. It is common to divide the system into number of
modules or smaller units called sub functions are sub
processes to ease the development process. Functional
requirements are counted as:

Non Functional Requirement: Non functional
requirements define the quality related requirements for
the software system. These non functional requirements
can be broadly classified into three types. Each type has
its own weight value. Table 1 defines the types of non
functional requirements and its weight value.

Non Functional requirements are counted as:

From the above Functional Requirement (FR) and
Non-Functional Requirement (NFR) count the
requirements factor is calculated as follows:

RF = FR + NFR

Table 1: NFR types and weights

TYPE WEIGHT

Mandatory 3
Desirable 2
Optional 1

Fig. 2: Attributes of Cost Driver Factors

Users - Terminal Factor (UTF): The user- terminal factor
defines the number of users accessing the system and the
locations from which the users are accessing the system.

UTF= No. of User * No. of Terminal

Thus, Requirements Document Factors can be
calculated by considering all the above factors. It can be
mathematically defined as:

RDF = BF * RF * UTF

Cost Driver Factors: Cost drivers are features of software
development that influence the complexity of the
software. The cost drivers used here are taken from that of
the COCOMO model. Figure 2 depicts the cost drivers
used in CRCD for the calculation of the complexity of the
software. Each of the cost driver attribute has ratings as
Very low, Low, Nominal, High and Very High. Weights are
assigned to each rating.

Product Factors (PRDF): The attributes that are
considered as the product cost driver factors are:

Required software reliability (RELY)
Size of application database (DATA)
Complexity of the product (CPLX)

The rating for each of the product factor attributes
are described in Table 2. The value of PRDF can be
calculated as the sum of rating of attributes,

3

1i
PERF CDAi

=
=∑

3

1i
PRJF CDAi

=
=∑

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

9

Table 2: Cost Driver Attributes & their values Table 4: Cost Driver Attributes & their values

Rating

Attribute Very Low Low Nominal High Very High

RELY 0.75 0.88 1.00 1.15 1.40
DATA - 0.94 1.00 1.08 1.16
CPLX 0.70 0.85 1.00 1.15 1.30

Table 3: Cost Driver Attributes & their values

Rating

Attribute Very Low Low Nominal High Very High

ACAP 1.46 1.19 1.00 0.86 0.71
PCAP 1.42 1.17 1.00 0.86 0.70
AEXP 1.29 1.13 1.00 0.91 0.82
VEXP 1.21 1.10 1.00 0.90 -
LEXP 1.14 1.07 1.00 0.95 -

Personnel Factors (PERF): The attributes that are
considered as the Personnel cost driver factors are:

Analyst capability (ACAP)
Programmer Capability (PCAP)
Applications experience (AEXP)
Virtual machine experience (VEXP)
Programming language experience (LEXP)

The rating for each of the personnel factor attributes
are described in Table 3. The value of PERF can be
calculated as the sum of rating of attributes,

Project Factors (PJTF): The attributes that are
considered as the project cost driver factors are:

Use of software tools (TOOL)
Multi site development (SITE)
Required development schedule (SCED)

The rating for each of the project factor attributes are
described in Table 4. The value of PRJF can be calculated
as the sum of rating of attributes,

The product of all the cost driver attribute values
gives the estimate of the cost driver factor.

CDF = PRDF * PERF * PRJF

Rating

Attribute Very Low Low Nominal High Very High
TOOL 1.24 1.10 1.00 0.91 0.83
SITE 1.22 1.09 1.00 0.93 0.86
SCED 1.23 1.08 1.00 1.04 1.10

Fig. 3: Software Complexity

Finally, the Software Complexity CRCD can be
represented as the product of Requirement Document
factors and Cost driver Factors (Figure 3).

Mathematically, Software Complexity can be defined
as follows,

Software Complexity (SC) = RDF * CDF

The complexity measure of the software can be
estimated based on the SRS document and the cost driver
factor from the COCOMO model.

RESULTS

This section validates the estimation of software
complexity obtained from requirements document and
cost drivers with the other existing measures. The
following section describes with a sample program the
comparison of the complexity estimated from the
proposed methodology along with the existing measures.

Sample Program:

Dim Username As String
Dim Password As String
Private Sub cmdLogin_Click()
Username = "TestUser1"
Password = "TestUser1"
If Username = txtUsername
And Password = txtPassword
Then

frmLoginSuccess.Show
frmLoginScreen.Hide

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

10

Else Personnel Factors (PERF)
MsgBox("wrong username/password") PCAP = 1.42
End If LEXP = 1.14
End Sub PERF = 2.56

MC CABE COMPLEXITY Project Factors (PJTF)
Number of nodes (n): 4 SCED = 1.23
Number of edges (e): 4 PJTF = 1.23
Number of connected Component (p): 1 CDF = 2.20
V (G) = e-n+2p Software Complexity (SC) = RDF * CDF
V (G) = 2 = 4 *2.20

HALSTEAD METRICS
n1 = 8 The proposed complexity estimation model was
n2 = 9 validated with 10 sample projects. For validation purpose
N1 = 12 the SRS document of the projects were used. The
N2 = 16 following table (Table 5) provides the validation results.
Program Vocabulary, n = n1+n2 = 17 The Complexity values were validated against the
Program Length, N = N1+ N2 = 28 traditional code based measures. From the values
Volume, V= N*log2n = 114.24 obtained it can be concluded that the CRCD measure
Difficulty = (n1/2) * (N2/n2) = 7.11 derives the similar values as that of all the code based
Effort, E =D*V = 812.24 measures.

KLCID MEASURE values derived from the proposed measure versus the
Total no. of identifiers = 13 existing methodologies from the above table.
LOC = 12
ID = Total no. of identifiers/ LOC = 1.08
No. Of identifiers in asset of unique lines = 8
No of unique lines containing identifiers = 5
KLCID = 1.6

CRCD
Requirement Document Factors (RDF)
Basic Input Output Factor (BF)
Input Count = 2 8 6 23.2 2 14.5

Output Count = 2
Count of Interfaces files = 0
Count. of external files = 0
BF = 4

Requirements Factor (RF)
Functional Requirements (FR) = 1
Non Functional Requirements (NFR) = 0

RF = 1
RDF = 4*1 = 4
Cost Driver Factors (CDF)
Product Factors (PRDF)

CPLX = 0.70
PRDF = 0.70

=8.80

The following graphs gives a plot of the complexity

Table 5: Complexity values

Prog # Mc Cabe Halstead KLCID CRCD

1 1 15.5 1.2 6
2 4 28.2 1.7 11
3 3 26.2 1.4 8.8
4 2 21.7 1.1 6.2
5 8 32.6 3.2 13
6 5 27.3 1.5 10.2
7 1.8 16.5 1 4.8

9 9 27.8 3.9 19.8
10 4 15 1.5 11.6

Fig. 4: Graph for CRCD versus Mc Cabes Complexity
Measures

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

11

Fig. 5: Graph for CRCD versus Halstead Complexity development time and cost, (ii) this technique includes all
Measures the major attributes that affect or influence the complexity

Fig. 6: Graph for CRCD versus KLCID Complexity 3. Elaine J Weyuker, 1988. "Evaluating Software
Measures Complexity Measure", IEEE Transaction on Software

Fig. 7: Comparison Graph A Necessary Scientific Basis, IEEE Transactions on

The above graphs indicate that the proposed CRCD 9. Thomas J. Mc Cabe, 1976. "A Complexity Measure",
measure has the same inclination as that of the existing IEEE Transactions on Software Engineering,
code based measures. SE-2(4).

CONCLUSION

Thus this paper proposes a new estimation
technique, CRCD to measure the complexity of the yet to
be developed software. This method is reliable since it
includes all the main attributes and factors that are
required for the calculation of software complexity. Finally
the results of this estimation method are compared with
few of the existing method and the results are validated.
The main advantages of this method are: (i) Using this
metric software complexity is calculated in the early stages
of the software development phase and hence it saves the

of the software, (iii) many attributes used in COCOMO
model are included in this measure and hence this
measure is comparatively more reliable than other
measure.

REFERENCES

1. IEEE Computer Society: IEEE Standard Glossary of
Software Engineering Terminology.” IEEE std., 1990.

2. Barry Boehm, Bradford Clark, Ellis Horowitz, Chris
Westland, 1995. “Cost model for future software life
cycle processes: COCOMO 2.0” Annuals of Software
Engineering Special Volume on Software Process and
Product Measurement, pp: 1.

Engineering, 14(9).
4. Sheng Yu, Shijie Zhou, 2010. "A Survey On Metric

Of Software Complexity", Proceeding of 2 IEEEnd

International conference on Information Management
and Engineering (ICIME), pp: 352-356.

5. Halstead, M.H., 1977. Elements of Software Science,
Elsevier North, New York.

6. Sanjay Misra, 2007. Cognitive Program Complexity
Measure, Proceedings 6 IEEE Internationalth

Conference on Cognitive Informatics (ICCI'07).
7. Joseph L.F. De Kerf, 1981. APL and

Halstead's theory of software metrics, In the
Proceedings of the international conference on APL,
12(1).

8. Norman Fenton, 1994. Software Measurement:

Software Engineering, 20(3).

Middle-East J. Sci. Res., 24(Special Issue on Innovations in Information, Embedded and Communication Systems): 06-12, 2016

12

10. Tom Klemola, 2000. "A Cognitive model for 13. Allan J. Albrecht and John E. Gaffney, 1983. Software
complexity metrics", Proceedings of 4 International Function, Source Lines Of Code and Developmentth

workshop on Quantitative Approaches in Object Effort Prediction: A Software Science Validation,
Oriented Software Engineering ECOOP 00. IEEE Transactions On Software Engineering, Se-9(6).

11. Ashish Sharma and Dharmender Singh Kushwaha, 14. Charles R. Symons, 1988. Function Point Analysis:
2010. Early Estimation of Software Complexity using Difficulties and Improvements, IEEE Transactions on
Requirement Engineering Document, ACM SIGSOFT Software Engineering, 14(1).
Software Engineering Notes, 35(5).

12. IEEE Computer Society: IEEE Recommended Practice
for Software Requirement Specifications, New York,
1998.

