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Abstract: A variant of fixed point theorem is proved in the setting of S-metric spaces.'
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INTRODUCTION

There are different type of generalization of metric
spaces in several ways. For example, concepts of 2-metric
spaces and D-metric spaces introduced by [1] and [2],
respectively. The idea of partial metric space was
introduced by [3] or the notion of G-metric spaces
announced by [4]. Some authors have proved fixed point
type theorems in these spaces [5, 6]. Impression of
D’-metric space and also S-metric spaces was initiated by
Sedghi, [7, 8].

In this paper,we find some new results on S-metric
spaces and prove fixed point type theorem for
k-contraction condition on S-metric space and offer some
examples.

Basic Concepts of S-metric Spaces: In this section we
offer some concepts introduced S. Sedghi, ez al. [8] and
results [9, 8]. We modify them for our purposes and
present some new considerations.

Definition 2.1: Let X be a nonempty set. We call
S-metric on X is a function S: X° - [0, <]
which satisfies the following conditions for each
X, V,z,a,€X

»HSx»,22=20
(1) S(x, y,z)=0ifand only if x =y =z,
(iii) S(x, y, 2) < S(x, x, @) + S(v, , @) + 8(z, z, a)

The set X in which S-metric is defined is called S-
metric space.

The standard examples of such S-metric spaces are:

« Let X be any normed space, then

S.»,2) = y+z-2x||+]|y-z|| is @ S-metric on X.

e Let (X d) Dbe a space, then
S(x,y,2) =d(x,2) +d(y,z) 15 aS-metric on X. This S-metric

metric

is called the usual S-metric on X.
*  Another S-metric on X d) is
S(v,y,2)=d(x,y) +d(x,2) + d(y,z) Which is symmetric with

respect to the argument.

In the paper we will often use a following important
relation.

Lemma 2.1: (See[8]). In a S-metric space s(x, x,y)=5(,»,x)

forx, ye X.

Lemma 2.2: Let (X, S) be a S-metric space. If there exists
sequences {x,} and {y,} such that ., . . -, and

limp—soavn =¥ > €N fim S . vp) = S(x,x,9) -

There exists a natural topology on a S-metric spaces.
At first let us remind a notion of (open) ball.

Definition 2.2: Let (X, S) be a S-metric space. For » > 0 and
x € X we define a ball with the center x and radius r as
follows:

B,(x,r)={ye X:S(y,y,x) <r}.

This is quite different concept of ball in a usual metric
space which shows the following example:
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Example 2.1: Let X = R. Let S(x, y, z) be a usual S-metric on R for all x, y, z € . Therefore
B (x),2)={ye X :8(y,y,x)) <2} ={ye R:2d(y,x,) <2} ={ye R:d(y,x,) <1} = B, (x,,1).
By using the notion of ball we can introduce the standard topology on S-metric space.
Remark 2.1: Any ball is open set in this topology and x, — x means that S(x,, x,, x) - 0 and {x,} is cauchy sequence
if for every £ > 0 there exsits a positive integer N, if n,m > N then x, € B,(x,, €)(which is the same as x,, € B(x,, €)).

We prove the following very important result:

Lemma 2.3: Any S-metric space is a Hausdorff spaceProof: Let (X, S) be a S-metric space. Suppose x#y and put
rzé S(x,x,y) - Letus show that pe(y )~ Bg(y.n =2, forx, y € S. Suppose this is not true then there exists z € X such that

z€ Bg(x.r) N Bg(y,r) » therefor by definition of ball we have S(z, z, x) <r and S(z, z, y) <r. By Lemma 2.1 and (iii), we get
3r=8(x,x,)<28(z,z,x)+ 8(z,2z,) =28 (x,x,z) + S(y,y,2) <3r

which is a contradiction.
The following concepts which will be used in our consideration was introduced in [9, 10].

Definition 2.3: (See[10]). An element (x, y) € X x X is called a coupled fixed point(c.f.p) of a mapping F: X x X - Xif
F(x, y)=xand F(y, x) = y.

Remark 2.2: An element (x, y) is a coupled coincidence point of F: X x X - X if and only if it is usual fixed point for

mapping .y, y_, yxx SVENDY F(e ) (F(x).F(yx) -

Definition 2.4: (See[9]). An element (x, y) € X x X is called a coupled coincidence point(c.c.p) of the mappings F: X x
X-Xandg: X~ Xif F(x, y) =gx and F(y, x) = gy.

Definition 2.5: Let X be a nonempty set. We say the mappings F: X x X - X and g : X - X satisfy the L-condition if
gF(x, y) = F(gx, gy), forall x, y € X.

The next notion is modification of usual contraction condition.

Definition 2.6: Let (X, S) be a S-metric space. We say the mappings F: X x X - X and g : X - X satisfy the L-contraction
if

S(F(x,),F(x,y),F(z,w)) < k(S(gx,gx,gz) + S(gy,gv,gw)), (1)

forallx, y, z, w, u, ve Z
As in classical case this condition is quite important for our results.

Main Result: The following crucial lemma help us to prove c.c.p theorem on S-metric space . The results such kind can
be found e.g. in [6].

Lemma 3.1: Let (X, S) be a S-metric space and F: X x X - X and g : X = X be two mappings satisfying k-contraction for
ke (0%) .If (x, y) is a c.c.p of the mappings F and g, then F(x, y) = gx = gy = F(y, x).

Proof: Since (x, y) is a c.c.p of the mappings F and g, we have gx = F(x, y) and gy = F(y, x). Suppose gx = gy. Then by
(1) and Lemma 2.1, we get
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S(gx,gx,gy) = S(F(x,»),F(x,y),F(y,x)
<k(S(gx,gx,gv)+S(gy,gy,8x)
=2kS(gx, gx,gy).

Since gx # gy by (ii) we have S(gx, gx, gv) # 0. Hence 2k > 1 which is a contradiction. So gx = gy and therefore F(x, y)

=gx =gy =F(@, x).

Theorem 3.1: Let (X, S) be a S-metric space and F: X X X~ Xand g : X - X be two mappings satisfying k-contraction
for te (1) and L-condition. If g(X) is continuous with closed range such that F(X x X) c g(X), then there is a unique
2

x in X such that gx = F(x, x) = x.

Proof: Let x,, y, € X. Since F(X x X) = g(X), we can choose x , y,€ X such that gx = F(x oy ) and gy = F(y ,ox }, Then
starting from the pair (x,, y,), we can choose x,, y, € X such that gx, = F(x,, y,) and gy, = F(x,, y;). Then there exists
sequences {x,} and {y,} in X such that gx,., = F(x,, y,) and gy,., = F(x,, ,). For n € N, from k-contraction condition, we

have

S(8% 8% 8 +1) < K(S(X,-18%-18%) + S(&V -1 Vn-1,8Vn)-

From

S(&X-1,8%p-1,8%,) S k(S(g%,-2,8%,-258%,-1) +S(&V-2>&Vn-2>&n-1))>

since the similar inequality is correct for (g, | ev,_1.gv,)> W€ have

S(8%)-1,8%-1,8%n) + S(8V—1>8Vn—1>8Vn) < 2k(S(8%)—2,8Xy—2,8%,-1) +
S(&Vn-2:8Vn-2:&n-1))

holds for all n € N. By repeating this procedure enough time,we obtain for each n € N

1
S(8%,,8%>&%n+1) S 5(2/{)" (S(gxp,8%,24) +S(&0,20-21))-

Let m ,n € N with m > n + 2. By (iii)and Lemma (2.1), we have

S(gxnagxn sgxm) < 2S(gxnsgxnagxn+l) + S(gxm sgxm7gxn+1) =

2S(gxn 7gxn sgxn+l) + S(gxn+l 7gxn+1 5 gxm)

< ZS(gxmgxn’gan) + ZS(gan ’gxn+l’gxn+2) + S(gxm agxm’gxn+2)
m=2

<2 (25285, 8%41) + S(LXpn 1> &K1 8%).

i=n

By (2) we will have,
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m—2
S(gxnagxn7gxm) <2 Zs(gxisgxi7gxi+l) + S(gxm—lsgxm—lsgxm) <
i=n
m=2 1 )
23R (S0, 210, 25) + (20, 20, 21)) +

1o ome
5(2k) 1(S(ng,ng,gxl)+ S(2v0,80-81)) <
(k)" (S(g¥0» 20> 2%1) + S(2V0 20> @)1+ 2k +(2k)* +(2k)* +...]<

@h)"
1-2k

(S(gx0,8%,29) +S(gv0,20,-&1))-

Letting n, m — =, we have

lim S(gxn »8&Xp sgxm) =0.

n,m—»oo

Thus, {gx,} is a Cauchy sequence in g(X). Similarly, {gy,} is a Cauchy sequence. Since g(X) is closed, {gx,} and
{gy,} are convergent to some x € X and y € X. Since g is continuous, {g(gx,)} is convergent to gx and {g(gy,)} is
convergent to gy. Moreover, since F and g satisfy L-condition, we have oo 1)= o(F(x,.0m) = F(grp.av,) and

&(@Vn11) = 8F(, %) = F(gvpgry) - 1DUS
S(8(8%y+1)8(8%y11), F(x,¥)) < k(S(g(gx, ), g(gx,),8x) + S(g(gy,) 8(&Vn)> &))-
Letting n ~ = and by Lemma (2.2), we get that S(gx.gx, F(x,»)) <k(S(gx, gx,gx) + S(gv,20,20)) =0 |

Hence gx = F(x, y) and similarly, gy = F(y, x). By Lemma (3.1), (x, y) is a c.c.p of the mappings F and g. So gx = F(x, y)
= F(y, x) = gy. We have

S(gxn+1’gxn+15gx)=S(F(xn’yn)’F(xn’yn)’F(xs.V))S
k(S(g%,>8%,,8%) +8(8Y,:8Vn»8V))-

Letting n — =, by Lemma 2.2, we get S,X, &%) <k(S(x,x,g) +S(,y,8) ,
Similarly, $0¥.8)<k(S(x.x,g¥)+S(v..2") . Thus,

S(x,x,gx) + S(y,v,8y) < 2k(S(x, x,8x) + S(y,,8y))- (3)

Since 2k > 1, inequality (3) occur only if S(x, x, gx) = 0 and S(y, y, gv) = 0. Hence x = gx and y = gy. Thus, we get gx
= F(x, x) =x. To prove the uniqueness, let z € X with z # x such that z = gz = F(z, z). Then

S(x,x,2z) < 2kS(gx, gx,gz) = 2kS(x,x,z).

Since 2k > 1 we get a contradiction.
The following result is immediate corollary from the previous theorem g being the identical mapping.

Theorem 3.2: Let (X, S) be a complete S-metric space and F: X x X - X be a mapping satisfying following contraction
condition

S(F(x,),Fu,v),F(z,w)) <k(S(x,u,z)+ S(y,v,w))
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forallx, y, u, ve Xand ¢ L) . Then there is a unique x € X such that F(x, x) = x.
2

Now we present some examples.

Example 3.1: Let X'=[0,1]. Suppose S(x, y, z) be usual S-metric on X, for all x, y, z € X. Then (X, S) is a complete S-metric
space. Now we define a map F: X X X = Xby p(y =1, forx, y € X. Also, define g: X - X'by g(x) = x for x € X. Since
6

|y —uv|s[x—ul+[y-v]

holds for all x, y, u, v € X, we have

S(F(ray). F(x, ), F(z, ) = 2 %xy —%zw <
1

<@lx=z]42|y-w) =

1

g(S (gx,gu,gz)+S(gy,gv,gw))

holds for all x, y, u, v, z, w € X. It’s clear that F and g satisfy all the hypothesis of Theorem 3.1. Therefore F and g have
a unique common fixed point. Here F(0,0) = g(0) = 0.

Example 3.2: Let X =[0,1]. Suppose S(x, y, z) be usual S-metric on X, for all x, y € X. Then (X, S) is a complete S-metric
space. Define a map F: X x X - X by F(x’y)zl_l(ﬂy) for x, y € X. Also,
6

S(F (). F (V). F(z.w)) =| F(x,y) = F(z,w) | +| F.v) ~ F(z.w) |-
1 1

—lz=x+w—yl+—lz—u+v—wl<

- yl+l |
Lx=zl4lu-zp+2qy-wi+lv-w)=

6 6 Y

%(S(x,u,z) +S(y,v,w)).

Then by Theorem 3.2, F has a unique fixed point. Here ,_3 is the unique fixed point of F, that is F(x, x) = x.
4
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