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Fixed Point Type Theorem in S-Metric Spaces
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Abstract: A variant of fixed point theorem is proved in the setting of S-metric spaces.1
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INTRODUCTION The standard examples of such S-metric spaces are:

There are different type of generalization of metric Let X be any normed space, then
spaces in several ways. For example, concepts of 2-metric  is a S-metric on X.
spaces and D-metric spaces introduced by [1] and [2],
respectively. The idea of partial metric space was
introduced by [3] or the notion of G-metric spaces
announced by [4]. Some authors have proved fixed point
type  theorems  in  these  spaces  [5,  6].   Impression  of
D -metric space and also S-metric spaces was initiated by*

Sedghi, [7, 8].
In this paper,we find some new results on S-metric

spaces   and    prove    fixed    point    type theorem  for
k-contraction condition on S-metric space and offer some
examples.

Basic Concepts of S-metric Spaces: In this section we
offer some concepts introduced S. Sedghi, et al. [8] and
results [9, 8]. We modify them for our purposes and
present some new considerations.

Definition 2.1:  Let   X   be   a   nonempty    set.   We call
S-metric    on      X      is      a      function S:    X   [0, ]3

which   satisfies    the   following    conditions    for each
x, y, z, a, X

(i) S (x, y, z)  0

(ii) S(x, y, z) = 0 if and only if x = y = z,

(iii) S(x, y, z) S(x, x, a) + S(y, y, a) + S(z, z, a)

The set X in which S-metric is defined is called S-
metric space. 

Let (X, d) be a metric space, then
 is a S-metric on X. This S-metric

is called the usual S-metric on X.
Another S-metric on (X, d) is

 which is symmetric with

respect to the argument.

In the paper we will often use a following important
relation.

Lemma 2.1: (See[8]). In a S-metric space 

for x, y X.

Lemma 2.2: Let (X, S) be a S-metric space. If there exists
sequences {x } and {y } such that  andn n

, then .

There exists a natural topology on a S-metric spaces.
At first let us remind a notion of (open) ball.

Definition 2.2: Let (X, S) be a S-metric space. For r > 0 and
x X we define a ball with the center x and radius r as
follows:

This is quite different concept of ball in a usual metric
space which shows the following example:



2}<),(2:{=2}<),,(:{=,2)( 000 xydyxyySXyxBs ∈∈ ,1).(=1}<),(:{= 00 xBxydy d∈

1= ( , , )
3

r S x x y ( , ) ( , ) =B x r B y rS S∩ ∅

( , ) ( , )z B x r B y rS S∈ ∩

3 = ( , , ) 2 ( , , ) ( , , ) = 2 ( , , ) ( , , ) < 3r S x x y S z z x S z z y S x x z S y y z r≤ + +

:F X X X X× → × ( , ) = ( ( , ), ( , ))F x y F x y F y x

( ( , ), ( , ), ( , )) ( ( , , ) ( , , )),S F x y F x y F z w k S gx gx gz S gy gy gw≤ +

1(0, )
2

k∈
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Example 2.1: Let X = . Let S(x, y, z) be a usual S-metric on  for all x, y, z . Therefore

By using the notion of ball we can introduce the standard topology on S-metric space.

Remark 2.1: Any ball is open set in  this  topology  and x x means that S(x , x , x)  0 and {x } is cauchy sequencen n n n

if for every  >  0  there  exsits  a  positive integer N, if n,m > N then x B (x , )(which is the same as x B (x , )).n d m m d n

We prove the following very important result:

Lemma 2.3: Any S-metric space is a Hausdorff spaceProof: Let (X, S) be a S-metric space. Suppose x y and put
 . Let us show that , for x, y S. Suppose this is not true then there exists z X such that

, therefor by definition of ball we have S(z, z, x) < r and S(z, z, y) < r. By Lemma 2.1 and (iii), we get

which is a contradiction.
The following concepts which will be used in our consideration was introduced in [9, 10].

Definition  2.3:  (See[10]).  An element (x, y) X × X is called a coupled fixed point(c.f.p) of a mapping F: X × X X if
F(x, y) = x and F(y, x) = y.

Remark 2.2: An element (x, y) is a coupled coincidence point of F: X × X X if and only if it is usual fixed point for
mapping  given by .

Definition 2.4: (See[9]). An element (x, y) X × X is called a coupled coincidence point(c.c.p) of the mappings F: X ×
X X and g : X X if F(x, y) = gx and F(y, x) = gy.

Definition  2.5:  Let  X be a nonempty set. We say the mappings F: X × X X and g : X X satisfy the L-condition if
gF(x, y) = F(gx, gy), for all x, y X.
The next notion is modification of usual contraction condition.

Definition 2.6: Let (X, S) be a S-metric space. We say the mappings F: X × X X and g : X X satisfy the L-contraction
if

(1)

for all x, y, z, w, u, v  Z.
As in classical case this condition is quite important for our results.

Main Result: The following crucial lemma help us to prove c.c.p theorem on S-metric space . The results such kind can
be found e.g. in [6].

Lemma 3.1: Let (X, S) be a S-metric space and F: X × X X and g : X X be two mappings satisfying k-contraction for
. If (x, y) is a c.c.p of the mappings F and g, then F(x, y) = gx = gy = F(y, x).

Proof: Since (x, y) is a c.c.p of the mappings F and g, we have gx = F(x, y) and gy = F(y, x). Suppose gx gy. Then by
(1) and Lemma 2.1, we get



( , , ) = ( ( , ), ( , ), ( , ))
( ( , , ) ( , , ))

= 2 ( , , ).

S gx gx gy S F x y F x y F y x
k S gx gx gy S gy gy gx

kS gx gx gy
≤ +

1(0, )
2

k∈

1 1 1 1 1( , , ) ( ( , , ) ( , , )).n n n n n n n n nS gx gx gx k S gx gx gx S gy gy gy+ − − − −≤ +

1 1 2 2 1 2 2 1( , , ) ( ( , , ) ( , , )),n n n n n n n n nS gx gx gx k S gx gx gx S gy gy gy− − − − − − − −≤ +

( , , )1 1S gy gy gyn n n− −

1 1 1 1 2 2 1

2 2 1

( , , ) ( , , ) 2 ( ( , , )
( , , ))

n n n n n n n n n

n n n

S gx gx gx S gy gy gy k S gx gx gx
S gy gy gy

− − − − − − −

− − −

+ ≤ +

1 0 0 1 0 0 1
1( , , ) (2 ) ( ( , , ) ( , , )).
2

n
n n nS gx gx gx k S gx gx gx S gy gy gy+ ≤ +

1 1

1 1 1

1 1 1 2 2

2

1 1 1
=

( , , ) 2 ( , , ) ( , , )
2 ( , , ) ( , , )

2 ( , , ) 2 ( , , ) ( , , )
...

2 ( , , ) ( , , ).

n n m n n n m m n

n n n n n m

n n n n n n m m n

m

i i i m m m
i n

S gx gx gx S gx gx gx S gx gx gx
S gx gx gx S gx gx gx

S gx gx gx S gx gx gx S gx gx gx

S gx gx gx S gx gx gx

+ +

+ + +

+ + + + +

−

+ − −

≤ + =
+

≤ + +

≤ +∑
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Since gx  gy by (ii) we have S(gx, gx, gy)  0. Hence 2k  1 which is a contradiction. So gx = gy and therefore F(x, y)
= gx = gy = F(y, x).

Theorem 3.1: Let (X, S) be a S-metric space and F: X × X X and g : X X be two mappings satisfying k-contraction
for  and L-condition. If g(X) is continuous with closed range such that F(X × X) g(X), then there is a unique

x in X such that gx = F(x, x) = x.

Proof: Let x , y X. Since F(X × X) g(X), we can choose x , y X such that gx  = F(x , y ) and gy  = F(y , x ). Then0 0 1 1 1 0 0 1 0 0

starting from the pair (x , y ), we can choose x , y X such that gx  = F(x , y ) and gy  = F(x , y ). Then there exists1 1 2 2 2 1 1 2 1 1

sequences {x } and {y } in X such that gx  = F(x , y ) and gy  = F(x , y ). For n , from k-contraction condition, wen n n+1 n n n+1 n n

have

From

since the similar inequality is correct for , we have 

holds for all n . By repeating this procedure enough time,we obtain for each n

(2)

Let m ,n  with m > n + 2. By (iii)and Lemma (2.1), we have 

By (2) we will have,



2

1 1 1
=

2

0 0 1 0 0 1
=

1
0 0 1 0 0 1

2 3
0 0 1 0 0 1

( , , ) 2 ( , , ) ( , , )

12 (2 ) ( ( , , ) ( , , ))
2

1 (2 ) ( ( , , ) ( , , ))
2
(2 ) ( ( , , ) ( , , ))[1 2 (2 ) (2 )

m

n n m i i i m m m
i n

m
i

i n

m

n

S gx gx gx S gx gx gx S gx gx gx

k S gx gx gx S gy gy gy

k S gx gx gx S gy gy gy

k S gx gx gx S gy gy gy k k k

−

+ − −

−

−

≤ + ≤

+ +

+ ≤

+ + + +

∑

∑

0 0 1 0 0 1

...]

(2 ) ( ( , , ) ( , , )).
1 2

nk S gx gx gx S gy gy gy
k

+ ≤

+
−

,
( , , ) = 0.lim n n m

n m
S gx gx gx

→∞

( ) = ( ( , )) = ( , )1g gx g F x y F gx gyn n n n n+

( ) = ( ( , )) = ( , )1g gy g F y x F gy gxn n n n n+

1 1( ( ), ( ), ( , )) ( ( ( ), ( ), ) ( ( ), ( ), )).n n n n n nS g gx g gx F x y k S g gx g gx gx S g gy g gy gy+ + ≤ +

( , , ( , )) ( ( , , ) ( , , )) = 0S gx gx F x y k S gx gx gx S gy gy gy≤ +

1 1( , , ) = ( ( , ), ( , ), ( , ))
( ( , , ) ( , , )).

n n n n n n

n n n n

S gx gx gx S F x y F x y F x y
k S gx gx gx S gy gy gy

+ + ≤
+

( , , ) ( ( , , ) ( , , ))S x x gx k S x x gx S y y gy≤ +
( , , ) ( ( , , ) ( , , ))S y y gy k S x x gx S y y gy≤ +

( , , ) ( , , ) 2 ( ( , , ) ( , , )).S x x gx S y y gy k S x x gx S y y gy+ ≤ +

( , , ) 2 ( , , ) = 2 ( , , ).S x x z kS gx gx gz kS x x z≤

( ( , ), ( , ), ( , )) ( ( , , ) ( , , ))S F x y F u v F z w k S x u z S y v w≤ +
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Letting n, m , we have

Thus, {gx } is a Cauchy sequence in g(X). Similarly, {gy } is a Cauchy sequence. Since g(X) is closed, {gx } andn n n

{gy } are convergent to some x X and y X. Since g is continuous, {g(gx )} is convergent to gx and {g(gy )} isn n n

convergent to gy. Moreover, since F and g satisfy L-condition, we have  and

. Thus

Letting n  and by Lemma (2.2), we get that .

Hence gx = F(x, y) and similarly, gy = F(y, x). By Lemma (3.1), (x, y) is a c.c.p of the mappings F and g. So gx = F(x, y)
= F(y, x) = gy. We have

Letting n , by Lemma 2.2, we get .
Similarly, . Thus,

(3)

Since 2k > 1, inequality (3) occur only if S(x, x, gx) = 0 and S(y, y, gy) = 0. Hence x = gx and y = gy. Thus, we get gx
= F(x, x) = x. To prove the uniqueness, let z X with z x such that z = gz = F(z, z). Then

Since 2k > 1 we get a contradiction.
The following result is immediate corollary from the previous theorem g being the identical mapping.

Theorem 3.2: Let (X, S) be a complete S-metric space and F: X × X X be a mapping satisfying following contraction
condition



1(0, )
2

k∈

1( , ) =
6

F x y xy

| | | | | |xy uv x u y v− ≤ − + −

1 1( ( , ), ( , ), ( , )) = 2 | |
6 6

1 (2 | | 2 | |) =
6
1 ( ( , , ) ( , , ))
6

S F x y F x y F z w xy zw

x z y w

S gx gu gz S gy gv gw

− ≤

− + −

+

1( , ) = 1 ( )
6

F x y x y− +

( ( , ), ( , ), ( , )) =| ( , ) ( , ) | | ( , ) ( , ) |=
1 1| | | |
6 6
1 1(| | | |) (| | | |) =
6 6
1 ( ( , , ) ( , , )).
6

S F x y F u v F z w F x y F z w F u v F z w

z x w y z u v w

x z u z y w v w

S x u z S y v w

− + −

− + − + − + − ≤

− + − + − + −

+

3=
4

x
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for all x, y, u, v X and . Then there is a unique x X such that F(x, x) = x.

Now we present some examples.

Example 3.1: Let X = [0,1]. Suppose S(x, y, z) be usual S-metric on X, for all x, y, z X. Then (X, S) is a complete S-metric
space. Now we define a map F: X × X X by  for x, y X. Also, define g: X X by g(x) = x for x X. Since

holds for all x, y, u, v X, we have

holds for all x, y, u, v, z, w X. It’s clear that F and g satisfy all the hypothesis of Theorem 3.1. Therefore F and g have
a unique common fixed point. Here F(0,0) = g(0) = 0.

Example 3.2: Let X = [0,1]. Suppose S(x, y, z) be usual S-metric on X, for all x, y X. Then (X, S) is a complete S-metric
space. Define a map F: X × X X by  for x, y X. Also, 

Then by Theorem 3.2, F has a unique fixed point. Here  is the unique fixed point of F, that is F(x, x) = x.
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