Fixed Point Type Theorem in \boldsymbol{S}-Metric Spaces

Javad Mojaradi Afra
Institute of Mathematics, National Academy of Sciences of RA

Abstract

A variant of fixed point theorem is proved in the setting of S-metric spaces. ${ }^{1}$

$\underline{\text { Key words: S-metric spaces • Coupled coincidence fixed point • K-contraction condition }}$

INTRODUCTION

There are different type of generalization of metric spaces in several ways. For example, concepts of 2-metric spaces and D-metric spaces introduced by [1] and [2], respectively. The idea of partial metric space was introduced by [3] or the notion of G-metric spaces announced by [4]. Some authors have proved fixed point type theorems in these spaces [5, 6]. Impression of D^{*}-metric space and also S-metric spaces was initiated by Sedghi, [7, 8].

In this paper,we find some new results on S-metric spaces and prove fixed point type theorem for k-contraction condition on S-metric space and offer some examples.

Basic Concepts of \boldsymbol{S}-metric Spaces: In this section we offer some concepts introduced S. Sedghi, et al. [8] and results $[9,8]$. We modify them for our purposes and present some new considerations.

Definition 2.1: Let X be a nonempty set. We call S-metric on X is a function $S: X^{3} \rightarrow[0, \infty]$ which satisfies the following conditions for each $x, y, z, a, \in X$
(i) $S(x, y, z) \geq 0$
(ii) $S(x, y, z)=0$ if and only if $x=y=z$,
(iii) $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$

The set X in which S-metric is defined is called S metric space.

The standard examples of such S-metric spaces are:

- Let X be any normed space, then $S(x, y, z)=\|y+z-2 x\|+\|y-z\|$ is a S-metric on X.
- Let $\left(\begin{array}{ll}X, & d\end{array}\right)$ be a metric space, then $S(x, y, z)=d(x, z)+d(y, z)$ is a S-metric on X. This S-metric is called the usual S-metric on X.
- Another S-metric on (X, d) is $S(x, y, z)=d(x, y)+d(x, z)+d(y, z)$ which is symmetric with respect to the argument.

In the paper we will often use a following important relation.

Lemma 2.1: (See[8]). In a S-metric space $S(x, x, y)=S(y, y, x)$ for $x, y \in X$.

Lemma 2.2: Let (X, S) be a S-metric space. If there exists sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then $\lim _{n \rightarrow \infty} S\left(x_{n}, x_{n}, y_{n}\right)=S(x, x, y)$.

There exists a natural topology on a S-metric spaces. At first let us remind a notion of (open) ball.

Definition 2.2: Let (X, S) be a S-metric space. For $r>0$ and $x \in X$ we define a ball with the center x and radius r as follows:
$B_{S}(x, r)=\{y \in X: S(y, y, x)<r\}$.
This is quite different concept of ball in a usual metric space which shows the following example:

Example 2.1: Let $X=\mathbb{R}$. Let $S(x, y, z)$ be a usual S-metric on \mathbb{R} for all $x, y, z \in \mathbb{R}$. Therefore

$$
B_{s}\left(x_{0}, 2\right)=\left\{y \in X: S\left(y, y, x_{0}\right)<2\right\}=\left\{y \in \mathbb{R}: 2 d\left(y, x_{0}\right)<2\right\}=\left\{y \in \mathbb{R}: d\left(y, x_{0}\right)<1\right\}=B_{d}\left(x_{0}, 1\right)
$$

By using the notion of ball we can introduce the standard topology on S-metric space.
Remark 2.1: Any ball is open set in this topology and $x_{n} \rightarrow x$ means that $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ and $\left\{x_{n}\right\}$ is cauchy sequence if for every $\varepsilon>0$ there exsits a positive integer N, if $n, m>N$ then $x_{n} \in B_{d}\left(x_{m}, \mathcal{E}\right)$ (which is the same as $x_{m} \in B_{d}\left(x_{n}, \varepsilon\right)$).

We prove the following very important result:
Lemma 2.3: Any S-metric space is a Hausdorff spaceProof: Let (X, S) be a S-metric space. Suppose $x \neq y$ and put
 $z \in B_{S}(x, r) \cap B_{S}(y, r)$, therefor by definition of ball we have $S(z, z, x)<r$ and $S(z, z, y)<r$. By Lemma 2.1 and (iii), we get
$3 r=S(x, x, y) \leq 2 S(z, z, x)+S(z, z, y)=2 S(x, x, z)+S(y, y, z)<3 r$
which is a contradiction.
The following concepts which will be used in our consideration was introduced in $[9,10]$.

Definition 2.3: (See[10]). An element $(x, y) \in X \times X$ is called a coupled fixed point(c.f.p) of a mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.

Remark 2.2: An element (x, y) is a coupled coincidence point of $F: X \times X \rightarrow X$ if and only if it is usual fixed point for mapping $\tilde{F}: X \times X \rightarrow X \times X$ given by $\tilde{F}(x, y)=(F(x, y), F(y, x))$.

Definition 2.4: (See[9]). An element $(x, y) \in X \times X$ is called a coupled coincidence point(c.c.p) of the mappings $F: X \times$ $X \rightarrow X$ and $g: X \rightarrow X$ if $F(x, y)=g x$ and $F(y, x)=g y$.

Definition 2.5: Let X be a nonempty set. We say the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ satisfy the L-condition if $g F(x, y)=F(g x, g y)$, for all $x, y \in X$.
The next notion is modification of usual contraction condition.

Definition 2.6: Let (X, S) be a S-metric space. We say the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ satisfy the L-contraction if
$S(F(x, y), F(x, y), F(z, w)) \leq k(S(g x, g x, g z)+S(g y, g y, g w))$,
for all $x, y, z, w, u, v \in Z$.
As in classical case this condition is quite important for our results.
Main Result: The following crucial lemma help us to prove c.c.p theorem on S-metric space. The results such kind can be found e.g. in [6].

Lemma 3.1: Let (X, S) be a S-metric space and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings satisfying k-contraction for $k \in\left(0, \frac{1}{2}\right)$. If (x, y) is a c.c.p of the mappings F and g, then $F(x, y)=g x=g y=F(y, x)$.

Proof: Since (x, y) is a c.c.p of the mappings F and g, we have $g x=F(x, y)$ and $g y=F(y, x)$. Suppose $g x \neq g y$. Then by (1) and Lemma 2.1, we get
$S(g x, g x, g y)=S(F(x, y), F(x, y), F(y, x))$
$\leq k(S(g x, g x, g y)+S(g y, g y, g x))$
$=2 k S(g x, g x, g y)$.
Since $g x \neq g y$ by (ii) we have $S(g x, g x, g y) \neq 0$. Hence $2 k \geq 1$ which is a contradiction. So $g x=g y$ and therefore $F(x, y)$ $=g x=g y=F(y, x)$.

Theorem 3.1: Let (X, S) be a S-metric space and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings satisfying k-contraction for $k \in\left(0, \frac{1}{2}\right)$ and L-condition. If $g(X)$ is continuous with closed range such that $F(X \times X) \subseteq g(X)$, then there is a unique x in X such that $g x=F(x, x)=x$.

Proof: Let $x_{0}, y_{0} \in X$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{\mathrm{b}} y_{1} \in X$ such that $g x_{1}=F\left(x_{0} y\right)_{b}$ and $g y=F\left(y_{, 0} x\right)_{0}$ Then starting from the pair $\left(x_{1}, y_{1}\right)$, we can choose $x_{2}, y_{2} \in X$ such that $g x_{2}=F\left(x_{1}, y_{1}\right)$ and $g y_{2}=F\left(x_{1}, y_{1}\right)$. Then there exists sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that $g x_{n+1}=F\left(x_{n}, y_{n}\right)$ and $g y_{n+1}=F\left(x_{n}, y_{n}\right)$. For $n \in \mathbb{N}$, from k-contraction condition, we have
$S\left(g x_{n}, g x_{n}, g x_{n+1}\right) \leq k\left(S\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)+S\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)\right)$.
From

$$
S\left(g x_{n-1}, g x_{n-1}, g x_{n}\right) \leq k\left(S\left(g x_{n-2}, g x_{n-2}, g x_{n-1}\right)+S\left(g y_{n-2}, g y_{n-2}, g y_{n-1}\right)\right)
$$

since the similar inequality is correct for $S\left(g y_{n-1}, g y_{n-1}, g y_{n}\right)$, we have

$$
\begin{aligned}
& S\left(g x_{n-1}, g x_{n-1}, g x_{n}\right)+S\left(g y_{n-1}, g y_{n-1}, g y_{n}\right) \leq 2 k\left(S\left(g x_{n-2}, g x_{n-2}, g x_{n-1}\right)+\right. \\
& \left.S\left(g y_{n-2}, g y_{n-2}, g y_{n-1}\right)\right)
\end{aligned}
$$

holds for all $n \in \mathbb{N}$. By repeating this procedure enough time, we obtain for each $n \in \mathbb{N}$
$S\left(g x_{n}, g x_{n}, g x_{n+1}\right) \leq \frac{1}{2}(2 k)^{n}\left(S\left(g x_{0}, g x_{0}, g x_{1}\right)+S\left(g y_{0}, g y_{0}, g y_{1}\right)\right)$.

Let $m, n \in \mathbb{N}$ with $m>n+2$. By (iii)and Lemma (2.1), we have

$$
\begin{aligned}
& S\left(g x_{n}, g x_{n}, g x_{m}\right) \leq 2 S\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S\left(g x_{m}, g x_{m}, g x_{n+1}\right)= \\
& 2 S\left(g x_{n}, g x_{n}, g x_{n+1}\right)+S\left(g x_{n+1}, g x_{n+1}, g x_{m}\right) \\
& \leq 2 S\left(g x_{n}, g x_{n}, g x_{n+1}\right)+2 S\left(g x_{n+1}, g x_{n+1}, g x_{n+2}\right)+S\left(g x_{m}, g x_{m}, g x_{n+2}\right) \\
& \ldots \\
& \leq 2 \sum_{i=n}^{m-2} S\left(g x_{i}, g x_{i}, g x_{i+1}\right)+S\left(g x_{m-1}, g x_{m-1}, g x_{m}\right) .
\end{aligned}
$$

By (2) we will have,

$$
\begin{aligned}
& S\left(g x_{n}, g x_{n}, g x_{m}\right) \leq 2 \sum_{i=n}^{m-2} S\left(g x_{i}, g x_{i}, g x_{i+1}\right)+S\left(g x_{m-1}, g x_{m-1}, g x_{m}\right) \leq \\
& 2 \sum_{i=n}^{m-2} \frac{1}{2}(2 k)^{i}\left(S\left(g x_{0}, g x_{0}, g x_{1}\right)+S\left(g y_{0}, g y_{0}, g y_{1}\right)\right)+ \\
& \frac{1}{2}(2 k)^{m-1}\left(S\left(g x_{0}, g x_{0}, g x_{1}\right)+S\left(g y_{0}, g y_{0}, g y_{1}\right)\right) \leq \\
& (2 k)^{n}\left(S\left(g x_{0}, g x_{0}, g x_{1}\right)+S\left(g y_{0}, g y_{0}, g y_{1}\right)\right)\left[1+2 k+(2 k)^{2}+(2 k)^{3}+\ldots\right] \leq \\
& \frac{(2 k)^{n}}{1-2 k}\left(S\left(g x_{0}, g x_{0}, g x_{1}\right)+S\left(g y_{0}, g y_{0}, g y_{1}\right)\right) .
\end{aligned}
$$

Letting $n, m \rightarrow \infty$, we have
$\lim _{n, m \rightarrow \infty} S\left(g x_{n}, g x_{n}, g x_{m}\right)=0$.

Thus, $\left\{g x_{n}\right\}$ is a Cauchy sequence in $g(X)$. Similarly, $\left\{g y_{n}\right\}$ is a Cauchy sequence. Since $g(X)$ is closed, $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are convergent to some $x \in X$ and $y \in X$. Since g is continuous, $\left\{g\left(g x_{n}\right)\right\}$ is convergent to $g x$ and $\left\{g\left(g y_{n}\right)\right\}$ is convergent to $g y$. Moreover, since F and g satisfy L-condition, we have $g\left(g x_{n+1}\right)=g\left(F\left(x_{n}, y_{n}\right)\right)=F\left(g x_{n}, g y_{n}\right)$ and $g\left(g y_{n+1}\right)=g\left(F\left(y_{n}, x_{n}\right)\right)=F\left(g y_{n}, g x_{n}\right)$. Thus
$S\left(g\left(g x_{n+1}\right), g\left(g x_{n+1}\right), F(x, y)\right) \leq k\left(S\left(g\left(g x_{n}\right), g\left(g x_{n}\right), g x\right)+S\left(g\left(g y_{n}\right), g\left(g y_{n}\right), g y\right)\right)$.
Letting $n \rightarrow \infty$ and by Lemma (2.2), we get that $S(g x, g x, F(x, y)) \leq k(S(g x, g x, g x)+S(g y, g y, g y))=0$.
Hence $g x=F(x, y)$ and similarly, $g y=F(y, x)$. By Lemma (3.1), (x, y) is a c.c.p of the mappings F and g. So $g x=F(x, y)$ $=F(y, x)=g y$. We have
$S\left(g x_{n+1}, g x_{n+1}, g x\right)=S\left(F\left(x_{n}, y_{n}\right), F\left(x_{n}, y_{n}\right), F(x, y)\right) \leq$
$k\left(S\left(g x_{n}, g x_{n}, g x\right)+S\left(g y_{n}, g y_{n}, g y\right)\right)$.
Letting $n \rightarrow \infty$, by Lemma 2.2, we get $S(x, x, g x) \leq k(S(x, x, g x)+S(y, y, g y))$.
Similarly, $S(y, y, g y) \leq k(S(x, x, g x)+S(y, y, g y))$. Thus,
$S(x, x, g x)+S(y, y, g y) \leq 2 k(S(x, x, g x)+S(y, y, g y))$.

Since $2 k>1$, inequality (3) occur only if $S(x, x, g x)=0$ and $S(y, y, g y)=0$. Hence $x=g x$ and $y=g y$. Thus, we get $g x$ $=F(x, x)=x$. To prove the uniqueness, let $z \in X$ with $z \neq x$ such that $z=g z=F(z, z)$. Then
$S(x, x, z) \leq 2 k S(g x, g x, g z)=2 k S(x, x, z)$.

Since $2 k>1$ we get a contradiction.
The following result is immediate corollary from the previous theorem g being the identical mapping.
Theorem 3.2: Let (X, S) be a complete S-metric space and $F: X \times X \rightarrow X$ be a mapping satisfying following contraction condition
$S(F(x, y), F(u, v), F(z, w)) \leq k(S(x, u, z)+S(y, v, w))$
for all $x, y, u, v \in X$ and $k \in\left(0, \frac{1}{2}\right)$. Then there is a unique $x \in X$ such that $F(x, x)=x$.
Now we present some examples.

Example 3.1: Let $X=[0,1]$. Suppose $S(x, y, z)$ be usual S-metric on X, for all $x, y, z \in X$. Then (X, S) is a complete S-metric space. Now we define a map $F: X \times X \rightarrow X$ by $F(x, y)=\frac{1}{6} x y$ for $x, y \in X$. Also, define $g: X \rightarrow X$ by $g(x)=x$ for $x \in X$. Since
$|x y-u v| \leq|x-u|+|y-v|$
holds for all $x, y, u, v \in X$, we have
$S(F(x, y), F(x, y), F(z, w))=2\left|\frac{1}{6} x y-\frac{1}{6} z w\right| \leq$
$\frac{1}{6}(2|x-z|+2|y-w|)=$
$\frac{1}{6}(S(g x, g u, g z)+S(g y, g v, g w))$
holds for all $x, y, u, v, z, w \in X$. It's clear that F and g satisfy all the hypothesis of Theorem 3.1. Therefore F and g have a unique common fixed point. Here $F(0,0)=g(0)=0$.

Example 3.2: Let $X=[0,1]$. Suppose $S(x, y, z)$ be usual S-metric on X, for all $x, y \in X$. Then (X, S) is a complete S-metric space. Define a map $F: X \times X \rightarrow X$ by $F(x, y)=1-\frac{1}{6}(x+y)$ for $x, y \in X$. Also,
$S(F(x, y), F(u, v), F(z, w))=|F(x, y)-F(z, w)|+|F(u, v)-F(z, w)|=$
$\frac{1}{6}|z-x+w-y|+\frac{1}{6}|z-u+v-w| \leq$
$\frac{1}{6}(|x-z|+|u-z|)+\frac{1}{6}(|y-w|+|v-w|)=$
$\frac{1}{6}(S(x, u, z)+S(y, v, w))$.
Then by Theorem 3.2, F has a unique fixed point. Here $x=\frac{3}{4}$ is the unique fixed point of F, that is $F(x, x)=x$.

REFERENCES

1. Dhage, B.C., 1992. Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84: 329-336.
2. $\mathrm{G}^{\prime \prime}$ ahler, S., 1963. 2-metrische R"aume und iher topoloische Struktur, Math. Nachr., 26: 115-148.
3. Matthews, S.G., 1994. Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728: 183-197.
4. Mustafa, Z. and B. Sims, 2006. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7: 289-297.
5. Shatanawi, W., 2010. Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 181650.
6. Shatanawi, W., 2011. Coupled fixed point theorems in generalized metric spaces, Hacettepe J. Math. Stat., 40(3): 441-447.
7. Sedghi, S., N. Shobe and H. Zhou, 2007. A common fixed point theorem in D^{*}-metric spaces, Fixed Point Theory Appl. Vol. 2007, Article ID 27906, pp: 13.
8. Sedghi, S., N. Shobe and A. Aliouche, 2012. A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik, 64: 258-266.
9. Lakshmikantham, V. and Lj.B.'Ciri'c, 2009. Coupled fixed point theorems for nonlinear contrac- tions in partially ordered metric spaces, Nonlinear Analysis, 70: 4341-4349.
10. Bhaskar, T.G. and G.V. Lakshmikantham, 2006. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65: 1379-1393.
