Middle-East Journal of Scientific Research 22 (6): 864-869, 2014 ISSN 1990-9233 © IDOSI Publications, 2014 DOI: 10.5829/idosi.mejsr.2014.22.06.1319

Fixed Point Type Theorem in S-Metric Spaces

Javad Mojaradi Afra

Institute of Mathematics, National Academy of Sciences of RA

Abstract: A variant of fixed point theorem is proved in the setting of S-metric spaces.¹

Key words: S-metric spaces • Coupled coincidence fixed point • K-contraction condition

INTRODUCTION

There are different type of generalization of metric spaces in several ways. For example, concepts of 2-metric spaces and *D*-metric spaces introduced by [1] and [2], respectively. The idea of partial metric space was introduced by [3] or the notion of *G*-metric spaces announced by [4]. Some authors have proved fixed point type theorems in these spaces [5, 6]. Impression of D^* -metric space and also *S*-metric spaces was initiated by Sedghi, [7, 8].

In this paper, we find some new results on S-metric spaces and prove fixed point type theorem for *k*-contraction condition on S-metric space and offer some examples.

Basic Concepts of S-metric Spaces: In this section we offer some concepts introduced S. Sedghi, *et al.* [8] and results [9, 8]. We modify them for our purposes and present some new considerations.

Definition 2.1: Let X be a nonempty set. We call S-metric on X is a function S: $X^3 \rightarrow [0, \infty]$ which satisfies the following conditions for each $x, y, z, a, \in X$

(i) $S(x, y, z) \ge 0$

(ii)
$$S(x, y, z) = 0$$
 if and only if $x = y = z$,

(iii)
$$S(x, y, z) \le S(x, x, a) + S(y, y, a) + S(z, z, a)$$

The set X in which S-metric is defined is called S-metric space.

The standard examples of such *S*-metric spaces are:

- Let X be any normed space, then S(x,y,z) = ||y+z-2x|| + ||y-z|| is a S-metric on X.
- Let (X, d) be a metric space, then S(x,y,z) = d(x,z) + d(y,z) is a *S*-metric on *X*. This *S*-metric is called the *usual S*-metric on *X*.
- Another *S*-metric on (X, d) is S(x,y,z) = d(x,y) + d(x,z) + d(y,z) which is symmetric with respect to the argument.

In the paper we will often use a following important relation.

Lemma 2.1: (See[8]). In a *S*-metric space S(x,x,y) = S(y,y,x) for $x, y \in X$.

Lemma 2.2: Let (X, S) be a *S*-metric space. If there exists sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n\to\infty} x_n = x$ and

 $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} S(x_n, x_n, y_n) = S(x, x, y)$.

There exists a natural topology on a *S*-metric spaces. At first let us remind a notion of (open) ball.

Definition 2.2: Let (X, S) be a *S*-metric space. For r > 0 and $x \in X$ we define a ball with the center x and radius r as follows:

$$B_{s}(x,r) = \{y \in X : S(y,y,x) < r\}.$$

This is quite different concept of ball in a usual metric space which shows the following example:

¹2010 Mathematical Subject Classification: 54H25,47H10

Corresponding Author: Javad Mojaradi Afra, Institute of Mathematics, National Academy of Sciences of RA.

Example 2.1: Let $X = \mathbb{R}$. Let S(x, y, z) be a usual S-metric on \mathbb{R} for all $x, y, z \in \mathbb{R}$. Therefore

 $B_{\varepsilon}(x_0,2) = \{y \in X : S(y,y,x_0) < 2\} = \{y \in \mathbb{R} : 2d(y,x_0) < 2\} = \{y \in \mathbb{R} : d(y,x_0) < 1\} = B_{\varepsilon}(x_0,1).$

By using the notion of ball we can introduce the standard topology on S-metric space.

Remark 2.1: Any ball is open set in this topology and $x_n \to x$ means that $S(x_n, x_n, x) \to 0$ and $\{x_n\}$ is cauchy sequence if for every $\varepsilon > 0$ there exsits a positive integer N, if n, m > N then $x_n \in B_d(x_m, \varepsilon)$ (which is the same as $x_m \in B_d(x_m, \varepsilon)$). We prove the following very important result:

Lemma 2.3: Any S-metric space is a Hausdorff space**Proof:** Let (X, S) be a S-metric space. Suppose $x \neq y$ and put $r = \frac{1}{2}S(x, x, y)$. Let us show that $B_S(x, r) \cap B_S(y, r) = \emptyset$, for $x, y \in S$. Suppose this is not true then there exists $z \in X$ such that

 $z \in B_S(x,r) \cap B_S(y,r)$, therefor by definition of ball we have S(z, z, x) < r and S(z, z, y) < r. By Lemma 2.1 and (iii), we get

 $3r = S(x, x, y) \le 2S(z, z, x) + S(z, z, y) = 2S(x, x, z) + S(y, y, z) < 3r$

which is a contradiction.

The following concepts which will be used in our consideration was introduced in [9, 10].

Definition 2.3: (See[10]). An element $(x, y) \in X \times X$ is called a coupled fixed point(c.f.p) of a mapping $F: X \times X \to X$ if F(x, y) = x and F(y, x) = y.

Remark 2.2: An element (x, y) is a coupled coincidence point of $F: X \times X \rightarrow X$ if and only if it is usual fixed point for mapping $\tilde{F}: X \times X \to X \times X$ given by $\tilde{F}(x, y) = (F(x, y), F(y, x))$.

Definition 2.4: (See[9]). An element $(x, y) \in X \times X$ is called a coupled coincidence point(c.c.p) of the mappings $F: X \times X$ $X \rightarrow X$ and $g: X \rightarrow X$ if F(x, y) = gx and F(y, x) = gy.

Definition 2.5: Let X be a nonempty set. We say the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ satisfy the L-condition if gF(x, y) = F(gx, gy), for all $x, y \in X$. The next notion is modification of usual contraction condition.

Definition 2.6: Let (X, S) be a S-metric space. We say the mappings $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ satisfy the L-contraction if

 $S(F(x, y), F(x, y), F(z, w)) \le k(S(gx, gx, gz) + S(gy, gy, gw)),$

for all x, y, z, w, u, $v \in Z$. As in classical case this condition is quite important for our results.

Main Result: The following crucial lemma help us to prove c.c.p theorem on S-metric space. The results such kind can be found e.g. in [6].

Lemma 3.1: Let (X, S) be a S-metric space and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be two mappings satisfying k-contraction for $k \in (0, \frac{1}{2})$. If (x, y) is a c.c.p of the mappings F and g, then F(x, y) = gx = gy = F(y, x).

Proof: Since (x, y) is a c.c.p of the mappings F and g, we have gx = F(x, y) and gy = F(y, x). Suppose $gx \neq gy$. Then by (1) and Lemma 2.1, we get

(1)

S(gx,gx,gy) = S(F(x,y),F(x,y),F(y,x)) $\leq k(S(gx,gx,gy) + S(gy,gy,gx))$ = 2kS(gx,gx,gy).

Since $gx \neq gy$ by (ii) we have $S(gx, gx, gy) \neq 0$. Hence $2k \ge 1$ which is a contradiction. So gx = gy and therefore F(x, y) = gx = gy = F(y, x).

Theorem 3.1: Let (X, S) be a S-metric space and $F: X \times X \to X$ and $g: X \to X$ be two mappings satisfying *k*-contraction for $_{k \in (0, \frac{1}{2})}$ and *L*-condition. If g(X) is continuous with closed range such that $F(X \times X) \subseteq g(X)$, then there is a unique

x in X such that gx = F(x, x) = x.

Proof: Let $x_0, y_0 \in X$. Since $F(X \times X) \subseteq g(X)$, we can choose $x \downarrow y_1 \in X$ such that $gx_1 = F(x_0, y_0)$ and $gy_1 = F(y_0, x_0)$. Then starting from the pair (x_1, y_1) , we can choose $x_2, y_2 \in X$ such that $gx_2 = F(x_1, y_1)$ and $gy_2 = F(x_1, y_1)$. Then there exists sequences $\{x_n\}$ and $\{y_n\}$ in X such that $gx_{n+1} = F(x_n, y_n)$ and $gy_{n+1} = F(x_n, y_n)$. For $n \in \mathbb{N}$, from k-contraction condition, we have

 $S(gx_n, gx_n, gx_{n+1}) \le k(S(gx_{n-1}, gx_{n-1}, gx_n) + S(gy_{n-1}, gy_{n-1}, gy_n)).$

From

$$S(gx_{n-1}, gx_{n-1}, gx_n) \le k(S(gx_{n-2}, gx_{n-2}, gx_{n-1}) + S(gy_{n-2}, gy_{n-2}, gy_{n-1})),$$

since the similar inequality is correct for $S(gy_{n-1}, gy_{n-1}, gy_n)$, we have

$$\begin{split} S(gx_{n-1},gx_{n-1},gx_n) + S(gy_{n-1},gy_{n-1},gy_n) &\leq 2k(S(gx_{n-2},gx_{n-2},gx_{n-1}) + S(gy_{n-2},gy_{n-2},gy_{n-1})) \end{split}$$

holds for all $n \in \mathbb{N}$. By repeating this procedure enough time, we obtain for each $n \in \mathbb{N}$

$$S(gx_n, gx_n, gx_{n+1}) \le \frac{1}{2} (2k)^n (S(gx_0, gx_0, gx_1) + S(gy_0, gy_0, gy_1)).$$
(2)

Let $m, n \in \mathbb{N}$ with m > n + 2. By (iii) and Lemma (2.1), we have

$$\begin{split} S(gx_n, gx_n, gx_m) &\leq 2S(gx_n, gx_n, gx_{n+1}) + S(gx_m, gx_m, gx_{n+1}) = \\ 2S(gx_n, gx_n, gx_{n+1}) + S(gx_{n+1}, gx_{n+1}, gx_m) \\ &\leq 2S(gx_n, gx_n, gx_{n+1}) + 2S(gx_{n+1}, gx_{n+1}, gx_{n+2}) + S(gx_m, gx_m, gx_{n+2}) \\ & \cdots \\ &\leq 2\sum_{i=n}^{m-2} S(gx_i, gx_i, gx_{i+1}) + S(gx_{m-1}, gx_{m-1}, gx_m). \end{split}$$

By (2) we will have,

$$\begin{split} S(gx_n, gx_n, gx_m) &\leq 2 \sum_{i=n}^{m-2} S(gx_i, gx_i, gx_{i+1}) + S(gx_{m-1}, gx_{m-1}, gx_m) \leq \\ 2 \sum_{i=n}^{m-2} \frac{1}{2} (2k)^i (S(gx_0, gx_0, gx_1) + S(gy_0, gy_0, gy_1)) + \\ \frac{1}{2} (2k)^{m-1} (S(gx_0, gx_0, gx_1) + S(gy_0, gy_0, gy_1)) \leq \\ (2k)^n (S(gx_0, gx_0, gx_1) + S(gy_0, gy_0, gy_1)) [1 + 2k + (2k)^2 + (2k)^3 + ...] \leq \\ \frac{(2k)^n}{1-2k} (S(gx_0, gx_0, gx_1) + S(gy_0, gy_0, gy_1)). \end{split}$$

Letting *n*, $m \rightarrow \infty$, we have

 $\lim_{n,m\to\infty}S(gx_n,gx_n,gx_m)=0.$

Thus, $\{gx_n\}$ is a Cauchy sequence in g(X). Similarly, $\{gy_n\}$ is a Cauchy sequence. Since g(X) is closed, $\{gx_n\}$ and $\{gy_n\}$ are convergent to some $x \in X$ and $y \in X$. Since g is continuous, $\{g(gx_n)\}$ is convergent to gx and $\{g(gy_n)\}$ is convergent to gy. Moreover, since F and g satisfy L-condition, we have $g(gx_{n+1})=g(F(x_n,y_n))=F(gx_n,gy_n)$ and

 $g(gy_{n+1}) = g(F(y_n, x_n)) = F(gy_n, gx_n)$. Thus

 $S(g(gx_{n+1}), g(gx_{n+1}), F(x, y)) \le k(S(g(gx_n), g(gx_n), gx) + S(g(gy_n), g(gy_n), gy)).$

Letting $n \to \infty$ and by Lemma (2.2), we get that $S(gx, gx, F(x, y)) \le k(S(gx, gx, gx) + S(gy, gy, gy)) = 0$.

Hence gx = F(x, y) and similarly, gy = F(y, x). By Lemma (3.1), (x, y) is a c.c.p of the mappings F and g. So gx = F(x, y) = F(y, x) = gy. We have

 $S(gx_{n+1}, gx_{n+1}, gx) = S(F(x_n, y_n), F(x_n, y_n), F(x, y)) \le k(S(gx_n, gx_n, gx) + S(gy_n, gy_n, gy)).$

Letting $n \to \infty$, by Lemma 2.2, we get $S(x,x,gx) \le k(S(x,x,gx) + S(y,y,gy))$. Similarly, $S(y,y,gy) \le k(S(x,x,gx) + S(y,y,gy))$. Thus,

 $S(x, x, gx) + S(y, y, gy) \le 2k(S(x, x, gx) + S(y, y, gy)).$

Since 2k > 1, inequality (3) occur only if S(x, x, gx) = 0 and S(y, y, gy) = 0. Hence x = gx and y = gy. Thus, we get gx = F(x, x) = x. To prove the uniqueness, let $z \in X$ with $z \neq x$ such that z = gz = F(z, z). Then

 $S(x, x, z) \le 2kS(gx, gx, gz) = 2kS(x, x, z).$

Since 2k > 1 we get a contradiction.

The following result is immediate corollary from the previous theorem g being the identical mapping.

Theorem 3.2: Let (*X*, *S*) be a complete S-metric space and $F: X \times X \rightarrow X$ be a mapping satisfying following contraction condition

$$S(F(x, y), F(u, v), F(z, w)) \le k(S(x, u, z) + S(y, v, w))$$

(3)

for all *x*, *y*, *u*, $v \in X$ and $_{k \in \{0, \frac{1}{2}\}}$. Then there is a unique $x \in X$ such that F(x, x) = x. Now we present some examples.

Example 3.1: Let X = [0,1]. Suppose S(x, y, z) be usual *S*-metric on *X*, for all *x*, *y*, $z \in X$. Then (*X*, *S*) is a complete S-metric space. Now we define a map $F: X \times X \to X$ by $F(x, y) = \frac{1}{\epsilon}xy$ for *x*, $y \in X$. Also, define $g: X \to X$ by g(x) = x for $x \in X$. Since

 $|xy - uv| \leq |x - u| + |y - v|$

holds for all x, y, u, $v \in X$, we have

$$S(F(x, y), F(x, y), F(z, w)) = 2 \left| \frac{1}{6} xy - \frac{1}{6} zw \right| \le \frac{1}{6} (2 |x - z| + 2 |y - w|) = \frac{1}{6} (S(gx, gu, gz) + S(gy, gv, gw))$$

holds for all x, y, u, v, z, $w \in X$. It's clear that F and g satisfy all the hypothesis of Theorem 3.1. Therefore F and g have a unique common fixed point. Here F(0,0) = g(0) = 0.

Example 3.2: Let X = [0,1]. Suppose S(x, y, z) be usual *S*-metric on *X*, for all $x, y \in X$. Then (*X*, *S*) is a complete S-metric space. Define a map $F: X \times X \rightarrow X$ by $_{F(x,y)=1-\frac{1}{6}(x+y)}$ for $x, y \in X$. Also,

$$\begin{split} S(F(x,y),F(u,v),F(z,w)) &= |F(x,y) - F(z,w)| + |F(u,v) - F(z,w)| = \\ \frac{1}{6}|z - x + w - y| + \frac{1}{6}|z - u + v - w| \leq \\ \frac{1}{6}(|x - z| + |u - z|) + \frac{1}{6}(|y - w| + |v - w|) = \\ \frac{1}{6}(S(x,u,z) + S(y,v,w)). \end{split}$$

Then by Theorem 3.2, F has a unique fixed point. Here $x = \frac{3}{4}$ is the unique fixed point of F, that is F(x, x) = x.

REFERENCES

- Dhage, B.C., 1992. Generalized metric spaces mappings with fixed point, Bull. Calcutta Math. Soc., 84: 329-336.
- 2. G"ahler, S., 1963. 2-metrische R"aume und iher topoloische Struktur, Math. Nachr., 26: 115-148.
- Matthews, S.G., 1994. Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., 728: 183-197.
- Mustafa, Z. and B. Sims, 2006. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7: 289-297.

- Shatanawi, W., 2010. Fixed point theory for contractive mappings satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. Vol. 2010, Article ID 181650.
- Shatanawi, W., 2011. Coupled fixed point theorems in generalized metric spaces, Hacettepe J. Math. Stat., 40(3): 441-447.
- Sedghi, S., N. Shobe and H. Zhou, 2007. A common fixed point theorem in *D**-metric spaces, Fixed Point Theory Appl. Vol. 2007, Article ID 27906, pp: 13.
- Sedghi, S., N. Shobe and A. Aliouche, 2012. A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik, 64: 258-266.

- Lakshmikantham, V. and Lj.B. 'Ciri'c, 2009. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis, 70: 4341-4349.
- 10. Bhaskar, T.G. and G.V. Lakshmikantham, 2006. Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis, 65: 1379-1393.