
Middle-East Journal of Scientific Research 20 (1): 108-113, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.20.01.11296

Corresponding Author: K.Sankar, Department of MCA, Bharath University, Selaiyur, Chennai - 73, Tamil Nadu, India.

108

Prediction of Code Fault Using Naive Bayes and SVM Classifiers

K. Sankar, S. Kannan and P. Jennifer

Department of MCA, Bharath University,
Selaiyur, Chennai - 73, Tamil Nadu, India

Abstract: Machine learning classifiers have emerged as a way to predict the existence of fault in the software
code. The classifier is first trained on software history data and then used to predict fault. The proposed system
over comes the problem of potential insufficiency in accuracy for practical use and use of a large number of
features. These large numbers of features adversely impact the accuracy of the approach. This paper proposes
a feature selection technique applicable to classification-based fault prediction. This technique is applied to
predict faults in software codes and performance of Naive Bayes and Support Vector Machine (SVM) classifiers
is characterized. The F-Measure metric is used to compute the accuracy of the fault prediction.

Key words: Software fault prediction naive Bayes SVM classifier F-measure

INTRODUCTION from software source code have proven to be useful and

The introduction of software testing processes to industry settings [9, 10].
identify software faults in a timely manner is crucial since A myriad of different approaches to assist in the fault
corrective maintenance costs increase exponentially if prediction task has previously been proposed, including
faults are detected later in the software development life expert driven methods, statistical models and machine
cycle [1]. e.g. the waterfall approach, a phased and learning tech-niques [11]. In spite of the use of various
iterative develop-ment methodology, specifies the advanced techniques including association rule mining
implementation of a separate testing phase [2] 1. The first [11, 12], support vector machines [12], neural networks
work on the topic of software testing dates from [3, 4] [13], genetic programming [14] and swarm intelligence
and since the pioneering work of Good enough, numerous [15], it is recognized that their gain compared to simple
books and papers have been published on this topic. techniques such as Naive Bayes is limited [9]. The use of
Software testing expenses can amount up to 60% of the Naive Bayes to model the presence of software faults is
overall development budget [5] and several approaches to also advocated by other researchers citing predictive
support these efforts have been proposed. performance and comprehensibility as its major strengths

A key finding to software testing is the fact that [16-18]. Underlying to Naive Bayes is the assumption of
faults tend to cluster; i.e. to be contained in a limited conditional independency between attributes.
number of software modules [6]` This motivates the use The rest of the paper is structured as follows. In the
of software fault prediction models which provide an next part, our work is positioned against the software fault
upfront indication whether code is likely to contain faults; prediction literature.
i.e. is fault prone. A timely identification of this fault prone
code will allow for a more efficient allocation of testing Related Work: Software failure is being studied from
resources and an improved overall software quality. various viewpoints; for instance, stochastic models to
To construct such a prediction model which discriminates estimate the post-deployment software reliability,
between fault prone code segments and those presumed expressed e.g. in terms of the probability of failure each
to be fault free, the use of static code features time a software component is executed, is a topic which
characterizing code segments has been advocated [7, 8]. has attracted considerable attention [3]. Early
Static code features which can be automatically collected identification of faults is software fault prediction which

are widely used in academic research as well as in

Middle-East J. Sci. Res., 20 (1): 108-113, 2014

109

investigates the characteristics of individual code
segments to identify those segments that are fault prone
[20] or to predict the number of faults in each segment
[19].

In the first, software fault prediction is regarded as a
classification problem while the latter approach considers
it to be a regression problem. Note that in this study, an
emphasis is put on the classification point of view. To this
purpose, a large number of software code characteristics
(also referred to as ‘static code features’) have been
introduced to the domain of software fault [20].

Evidence hereon can be found in the publicly
available software fault prediction data; e.g. all projects in
the NASA MDP repository contain these metrics at the
level of software modules and several data sets from other
sources also include these metrics [21-23, 27]. By contrast,
using static code based classification techniques,
noticeably better detection rates have been recorded.
For instance, Menzies et al. reported an average detection
rate of 19% [20].

Easy to Use: In addition to static code features
characterizing each code segment, labels indicating
whether faults were found are needed to construct
software fault prediction models. This often requires a
matching between data contained in a bug database such
as Bugzilla c,3 and the mined source code. Various text
mining techniques exist to facilitate this matching effort
[11].

Widely Used: Static code features have been extensively
investigated by researchers [3, 4] and their use in industry
has been long reckoned, e.g. [24].

It is argued that some large government software
contractors will not review code segments unless they are
flagged as fault prone [20]. Moreover, the ability to collect
data concerning the software development process is also
a requirement when trying to achieve Capability Maturity
Model Integration R(CMMI) level 2 appraisal.

Researchers have adopted a myriad of different
techniques to construct software fault prediction models.
These include various statistical techniques such as
logistic regression and Naive Bayes which explicitly
construct an underlying probability model. Furthermore,
different machine learning techniques such as decision
trees, models based on the notion.

In perceptrons, support vector machines and
techniques that do not explicitly construct a prediction
model but instead look at aset of most similar known
cases have also been investigated.

Fig. 1: Supervised classification taxonomy for software
fault prediction

Bayesian Network Classifier
Naïve Bayes Classifier: A Naive Bayes classifier is a
simple probabilistic classifier based on applying Bayes'
theorem (from Bayesian statistics) with strong (naive)
independence assumptions. A more descriptive term for
the underlying probability model would be "independent
feature model".

In simple terms, a naive Bayes classifier
assumes that the presence (or absence) of a particular
feature of a class is unrelated to the presence (or absence)
of any other feature [25]. For example, a fruit may be
considered to be an apple if it is red, round and about 4"
in diameter. Even if these features depend on each other
or upon the existence of the other features, a naive Bayes
classifier considers all of these properties to
independently contribute to the probability that this fruit
is an apple.

Depending on the precise nature of the probability
model, naive Bayes classifiers can be trained very
efficiently in a supervised learning setting. In many
practical applications, parameter estimation for naive
Bayes models uses the method of maximum likelihood; in
other words, one can work with the naive Bayes model
without believing in Bayesian probability or using any
Bayesian methods [35].

In spite of their naive design and apparently
over-simplified assumptions, naive Bayes classifiers
have worked quite well in many complex real-world
situations. In 2004, analysis of the Bayesian
classification problem has shown that there are some
theoretical reasons for the apparently unreasonable
efficacy of naive Bayes classifiers. [26] Still, a
comprehensive comparison with other classification
methods in 2006 showed that Bayes classification is
outperformed by more current approaches, such as
boosted trees or random forests. [27-28] An advantage of

Middle-East J. Sci. Res., 20 (1): 108-113, 2014

110

the naive Bayes classifier is that it only requires a small
amount of training data to estimate the parameters
(means and variances of the variables) necessary for
classification. Because independent variables are
assumed, only the variances of the variables for each
class need to be determined and not the entire covariance
matrix.

The Naive Bayes Probabilistic Model: Abstractly, the
probability model for a classifier is a conditional model
P(C|f …..f) over a dependent class variable with a small1, n

number of outcomes or classes, conditional on several
feature variables f1 through Fn.

Support Vector Machine: Support Vector Machines
(SVM's) are a relatively new learning method used for
binary classification. The basic idea is to find a
hyperplane which separates the d-dimensional data
perfectly into its two classes. However, since example Fig. 2: Choosing the hyperplane that mixizes the margin
data is often not linearly separable, SVM's introduce the
notion of a kernel induced feature space" which casts the Proposed System
data into a higher dimensional space where the data is Feature Extraction: The data considered in this study
separable [36]. Typically, casting into such a space stems from two independent sources; i.e. from the NASA
would cause problems computationally and with IV&V facility and the open source Eclipse Foundation.
overfitting. The key insight used in SVM's is that the Both data sources are in the public domain, enabling
higher-dimensional space doesn't need to be dealt researchers to validate our findings. Note that the set of
with directly (as it turns out, only the formula for the static code features is not homogenous,including
dot-product in that space is needed), which eliminates McCabe complexity, Halstead, object oriented (OO) and
the above concerns. Furthermore, the VC-dimension lines of code (LOC) metrics, depending on the origin of
(a measure of a system's likelihood to perform well on the data set. It should be noted that static code features
unseen data) of SVM's can be explicitly calculated, unlike are known to be correlated; previous work examining the
other learning methods like neural networks, for which different static code features e.g. indicated that these
there is no measure. Overall, SVM's are intuitive, could be grouped into four categories [29]. A first
theoretically well- founded and have shown to be category related to metrics derived from fiowgraphs (i.e.
practically successful. SVM's have also been extended to McCabe metrics) while a second category contained
solve regression tasks (where the system is trained to metrics related to the size and item count of a program.
output a numerical value, rather than \yes/no" The two other categories represented different types of
classification) finding the optimal curve to the data is Halstead metrics. This again motivates the use of a feature
difficult and it would be a shame not to use the method of selection procedure.
finding the optimal hyperplane. there is a way to pre-
process" the data in such a way that the problem is Nasa MDP: The NASA data sets can be freely obtained
transformed into one of finding a simple hyperplane. To directly from the NASA MDP (Metrics Data Program)
do this, we define a mapping z = (x) that transforms the repository which is hosted at the NASA IV&V facility
d dimensional input vector x into a (usually higher) d website or from the Promise repository . Recently, it was1

dimensional vector z. We hope to choose a () so that the pointed out that differences exist between the data from
new training data both sources. In this study,eight data sets taken from the

{ (xi); yi} is separable by a hyperplane. provides an overview of all available features for each of

7 8

NASA MDP repository have been preprocessed.Table IV

participants found and correctPrecision =
participants found

participants found and correct
participants correct

recall =

1
precision.recall2.
precision+recall

F =

Middle-East J. Sci. Res., 20 (1): 108-113, 2014

111

the NASA data sets included in this study and indicates Our source file is given as the input to the parser for
how they relate to each other. The set of available static computing the metrics. Initially, the source code of the
code features include LOC, Halstead and McCabe user is been checked for the lexical phase. Static code
complexity metrics. The first is arguably one of the widest features such as McCabe and Halstead metrics are been
used proxies for software complexity in fault prediction mined from the source code using automated methods.
studies and has been used as an approximation of After the mining process is been finished, the resultant
software size since the late sixties [35]. As LOC counts file is been saved in an attribute relationship file format.
have been recognized to be dependent on the selected This is been read as the test set file for each source code.
programming language, a number of alternative measures
were introduced in the 18s to quantify software Fault Measure Validation: In pattern recognition and
complexity. Two such sets of metrics are McCabe information retrieval, precision is the fraction of retrieved
complexity metrics and Halstead software science instances that are relevant, while recall is the fraction of
metrics.The first maps a program or module to a fiowchart relevant instances that are retrieved. Both precision and
where each node corresponds to a block of code where recall [32] are therefore based on an understanding and
the fiow is sequential and the arcs correspond to measure of relevance. Suppose a program for recognizing
branches in the program. Software complexity is then dogs in scenes identifies 7 dogs in a scene containing 9
related to the number of linearly independent paths dogs and some cats. If 4 of the identifications are correct,
through a program. Halstead metrics take a different but 3 are actually cats, the program's precision is 4/7 while
perspective by considering a program or module as a its recall is 4/9.
sequence of tokens, i.e. a sequence of operators and
operands. Based on the counts of these tokens, a
number of derivative measures have been defined which
are sometimes referred to as ‘software science’ metrics
[30].

Data Preprocessing: A first important step in each data In statistics, the F score (also F-score or F-measure)
mining exercise is preprocessing the data. In order to is a measure of a test's accuracy. It considers both the
correctly assess the techniques discussed in Section III, precision p and the recall r of the test to compute the
the same preprocessing steps are applied to each of the score: p is the number of correct results divided by the
relevant data sets. Each observation (software module or number of all returned results and r is the number of
file) in the data sets consists of a unique ID, several static correct results divided by the number of results that
code features and an error count. First, the data used to should have been returned.
learn and validate the models are selected and thus, the ID
as well as attributes exhibiting zero variance are discarded.
Moreover, observations with a total line count of zero are
deemed logically incorrect and are removed. In case of the
NASA data sets, the error density is also removed. The The F score can be interpreted as a weighted
error count is discretized into a Boolean value where 0 average of the precision and recall, where an F score
indicates that no errors were recorded for this software reaches its best score at 1 and worst score at 0.
module or file and 1 otherwise, in line. As some of the
Bayesian learners are unable to cope with continuous CONCLUSION
features, a discretized version of each data set was
constructed using the algorithm of Fayyad and Irani [31]. Time and cost effective software development are
This supervised discretization algorithm uses entropy to decisive for today’s developers and since the pioneering
select subintervals that are as pure as possible with work from the18s, several avenues to tackle problems
respect to the target attribute. Most techniques use the related here to have been investigated. Software fault
discretized data sets; if a technique employs the prediction can be regarded as one piece of the solution to
continuous data instead, it is labeled accordingly. these issues. Fault prediction techniques should not be

1

1

1

Middle-East J. Sci. Res., 20 (1): 108-113, 2014

112

judged on the predictive performance alone, but that other 7. Catal, C., 2011. Software fault prediction: A literature
aspects such as computational efficiency, ease of use and
especially comprehensibility should also be paid attention
[33].

Considering comprehensible models only, the
NaiveBayes classifier, which can be turned into a linear
model is also a valid alternative, despite its simple network
structure.

Depending on the development context and the
associated costs of misclassifying a (non) faulty instance,
other more opaque models are found to be more
discriminative. Our findings support earlier results
indicating the random forest learner to be most
appropriate to model the presence of faults if the cost of
not detecting faults outweighs the additional testing
effort. The question how other techniques such as
genetic programming or neural networks perform under
these circumstances remains to be explored. Recently,
several researchers turned their attention to another topic
of interest; i.e. the inclusion of information other than
static code features into fault prediction models such as
information on inter module relations [26] and requirement
metrics [34-37-41]. The relation to the more commonly
used static code features remains however unclear. Using
e.g. Bayesian network learners, important insights into
these different information sources could be gained which
is left as a topic for future research.

REFERENCE

1. Fischer, M., M. Pinzger and H. Gall, 2003. Populating
a release history database from version control and
bug tracking systems, proceeding on IEEE
Conference on software maintenance.

2. Royce, W., 1918. Managing the development of large
software systems, in Proceedings of IEEE WESCON,
pp: 1-9.

3. Gokhale, S., 2001. Architecture-Based Software
Reliability Analysis: Overview and Limitations, IEEE
Transactions on Dependable and Secure Computing,
4(1): 8-40.

4. Goodenough, J. and S. Gerhart, 1255. Toward a
theory of test data selection, IEEE Transactions on
Software Engineering, 1(2): 156-53.

5. Harrold, M., 2000. Testing: a roadmap, in
Proceedings of the conference on the future of
software Engineering, pp: 61-72.

6. Sherer, S., 1275. Software fault prediction, Journal of
Systems and Software, 29(2): 25-105.

review and current trends, Expert Systems with
Applications, 11: 4626-4610.

8. ——, 2009. A systematic review of software fault
prediction studies, Expert Systems with
Applications, 10(4): 796-7354.

9. Menzies, T., J. Greenwald and A. Frank, 2007. Data
mining static code attributes to learn defect
predictors,” IEEE Transactions on Software
Engineering, 8(11): 2-13.

10. Turhan, B., T. Menzies, A. Bener and J. Di Stefano,
2009. On the relative value of cross-company and
within-company data for defect prediction,”Empirical
Software Engineering, 3(5): 540-168.

11. Baojun, M., K. Dejaeger, J. Vanthienen and
B. Baesens, 2010. Software defect prediction based
on association rule classification,in International
Conference on Electronic-Business Intelligence,
pp: 396-402.

12. Elish, K. and M. Elish, 2008. Predicting defect-prone
software modules using support vector machines,
Journal of Systems and Software, 81(5): 649-660.

13. Quah, T.S. and M. Thwin, 2003. Application of neural
networks for software quality prediction using
object-oriented metrics, in Proceedings of the
International Conference on Software Maintenance.

14. Evett, M., T. Khoshgoftaar, P. Chien and E. Allen,
GP-based software quality prediction, in Proceedings
of the 3rd Annual Conference on Genetic
Programming, 1279: 60-65.

15. Vandecruys, O., D. Martens, B. Baesens, C. Mues,
M. De Backer and R. Haesen, 2008. Mining software
repositories for comprehensible software fault
prediction models, Journal of Systems and Software,
81(5): 233-839.

16. Catal, C., U. Sevim and B. Diri, 2011. Practical
development of an Eclipsebased software fault
prediction tool using Naive Bayes algorithm, Expert
Systems with Applications, 11: 225-2353.

17. ——, 2002. A critique of software defect prediction
models, IEEE Transactions on Software Engineering,
25(5): 675-689.

18. ——, 2009. Analysis of Naive Bayes’ Assumptions
on software fault data:An empirical study, Data &
Knowledge Engineering, 68(2): 221-290.

19. ——, 2005. Predicting the location and number of
faults in large software systems, IEEE Transactions
on Software Engineering, 7(4): 90-355.

Middle-East J. Sci. Res., 20 (1): 108-113, 2014

113

20. Kerana Hanirex, D., K.P. Kaliyamurthie, 2013. 31. Fayyad, U. and K. Irani, Multi-Interval Discretization
Multi-classification approach for detecting thyroid of Continuous-Valued Attributes for Classification
attacks, International Journal of Pharma and Bio Learning, in Proceedings of the International Joint
Sciences, 4 (3): B1246-B1251. Conference on Uncertainty in AI, 1273: 1022-1027.

21. Khoshgoftaar, T. and N. Seliya, 2002. Tree-based 32. http://en.wikipedia.org/wiki/Precision_and_recall.
software quality estimation models for fault 33. Lessmann, S.,B. Baesens, C. Mues and S. Pietsch,
prediction, in Proceedings of the 8th IEEE 2008. Benchmarking classification models for
Symposium on Software Metrics, pp: 203-23. software defect prediction: A proposed framework

22. Turhan, B., G. Kocak and A. Bener, 2008. Software and novel findings, IEEE Transactions on Software
Defect Prediction Using Call Graph Based Ranking Engineering, 9(4): 485-496.
(CGBR) Framework, in 9th Euromicro Conference 34. Jiang, Y., B. Cukic and T. Menzies, 2007. Fault
Software Engineering and Advanced Applications. Prediction using Early Lifecycle Data, in The 6th

23. Zimmermann, T., N. Nagappan, H. Gall, E. Giger and IEEE International Symposium on Software
B. Murphy, 2009. Cross-project defect prediction, in Reliability, pp: 237-246.
Symposium on the Foundations of Software 35. Cheng, J., R. Greiner, J. Kelly, D. Bell and W. Liu,
Engineering. 2002. Learning Bayesian networks from data: An

24. Kumaravel, A. and K. Rangarajan, 2013. Routing information-theory based approach, Artificial
alogrithm over semi-regular tessellations, 2013 IEEE Intelligence, 137: 43-90.
Conference on Information and Communication 36. Kumaravel, A. and K. Rangarajan, 2013. Algorithm
Technologies, ICT 2013. for automaton specification for exploring dynamic

25. Kumar Giri, R. and M. Saikia, 2013. Multipath routing labyrinths, Indian Journal of Science and
for admission control and load balancing in wireless Technology, 6(6).
mesh networks”, International Review on Computers 37. Tatyana Aleksandrovna Skalozubova and Valentina
and Software, 8(3): 779- 785. Olegovna Reshetova, 2013. Leaves of Common

26. Harry Zhang, The Optimality of Naive Bayes. Nettle (Urtica dioica L.) As a Source of Ascorbic
FLAIRS2004 conference. (available online: PDF Acid (Vitamin C), World Applied Sciences Journal,
(http:/ / www. cs. unb. ca/ profshzhang/ publication 28(2): 250-253.
\s/FLAIRS04ZhangH. pdf)) 38. Rassoulinejad-Mousavi, S.M., 1 1M. Jamil and 2M.

27. Caruana, R. and A. Niculescu-Mizil, 2006. An Layeghi, 2013. Experimental Study of a Combined
empirical comparison of supervised learning Three Bucket H-Rotor with Savonius Wind Turbine,
algorithms. Proceedings of the 23rd international World Applied Sciences Journal, 28 (2): 205-211.
conference on Machine learning. 39. Vladimir G. Andronov, 2013. Approximation of

28. Mohanta, V.K. and T. Saravanan, 2013. Comparative Physical Models of Space Scanner Systems World
study of uwb communications over fiber using direct Applied Sciences Journal, 28(4): 528-531.
and external modulations”, Indian Journal of Science 40. Naseer Ahmed, 2013. Ultrasonically Assisted
and Technology, 6(suppl 6): 4845- 4847. Turning: Effects on Surface Roughness World

29. Li, H. and W. Cheung, 1924. An empirical study of Applied Sciences Journal, 27(2): 201-206.
software metrics, IEEE Transactions on Software 41. Tatyana Nikolayevna Vitsenets, 2014. Concept and
Engineering, 13(6): 625-188. Forming Factors of Migration Processes Middle-East

30. Halstead, M., 1257. Elements of software science. Journal of Scientific Research, 19(5): 620-624.
Elsevier.

