Middle-East Journal of Scientific Research 19 (5): 723-728, 2014 ISSN 1990-9233 © IDOSI Publications, 2014 DOI: 10.5829/idosi.mejsr.2014.19.5.21022

Problem-Solving in Deterministic Factor Analysis

Evgeniy Aleksandrovich Filatov and Vladimir Borisovich Nechaev

The National Research Irkutsk State Technical University, Irkutsk, Russia

Abstract: The article is concerned with author's methods of factor analysis which allow one to draw conclusions about changes in financial position of a company in the most accessible and less time-consuming way and to estimate the impact of factors on index changes within the economic system and index change trends. The article contains numerical data based on traditional methods of factor analysis. The main task of the author's methods of factor analysis is to identify the factors which determine changes in economic index value in relation to the main factors being its components. The author's methods are aimed at obtaining key (more informative) parameters to have a comprehensive idea of changes in sales revenues.

Key words: Factor analysis • Profitability • «indecomposable rest» • Comparative indices • Effect of factor index changes

INTRODUCTION

An important methodological issue for economic analysis is to estimate influence degree of factors on the value of economic indices under consideration.

The main task of the author's methods of factor analysis (Filatov's methods [1-7]), as well as the traditional ones, is to identify the factors which determine the total industrial supply, i.e. the total changes in production volume in relation to the main factors being its components. The author's methods are aimed at obtaining key (more informative) parameters to have a comprehensive idea of changes in sales revenues.

The traditional methods of deterministic factor analysis cause some problems [8-10]. For example, when using the chain substitution method, results depend largely on the sequence of factor substitutions. According to the rule, first, one estimates the impact of quantitative factors characterizing extensity and then – the impact of qualitative factors characterizing intensity. It is the quantitative factors which the indecomposable rest falls to.

When using the integral method, calculations are based on planned values of indices and calculation errors (indecomposable rest) are distributed equally amongst factors unlike the chain substitution method using which the most part of the rest falls to the last qualitative factor. [11, 12].

Hence, the traditional methods of deterministic factor analysis have the disadvantages as follows:

- The sequence of factor changes is based on the principle according to which the quantitative (extensive) factor changes before the qualitative (intensive) one.
- When decomposing a performance index into its components characterizing the isolated impact of factors causing that change, the indecomposable rest (which is also referred to as a coeffect of factor indices) is formed.

The below given example serves as a proof of problem solving in deterministic factor analysis.

Initial data for an alternative factor analysis are shown in Table 1.

where:

* **0** is the last (base) period (year) being a comparison base; **** I** is a period under review (current) (year); ******* Δ is an annual change calculated as the difference between Fact and Plan (**I** – **0**).

Corresponding Author: Filatov, The National Research Irkutsk State Technical University, 83, Lermontov Street, Irkutsk, Russian Federation 664074.

Middle-East J. Sci. Res., 19 (5): 723-728, 2014

Table 1: Initial data for an alternative factor analysis

No.	Indices	No. of an initial factor	Plan* 0	Fact** I	Deviation*** Δ
1	V - is a sales volume, RUR000's.		1424646,496	1757302,56	332656,064
2	Tsr - is an average number of IPP, person.	F ₁	910	900	-10
3	Ksr - is an average number of workers, day.	F ₂	239	249	10
4	Hsr - is an average shift length, hr.	F ₃	7,12	7,54	0,42
5	Wsr - is an average hourly productivity per worker, RUR000's.	F_4	0,92	1,04	0,12

Table 2: Single-factor multiple comparative coefficients

Notation of a comparative coefficient	Calculation of coefficients	Value	Product of coefficients (value
A ₁	$F_{1(I)} / F_{1(0)}$	0,989010989	1,0
A_2	$F_{1(0)} / F_{1(I)}$	1,011111111	
A_3	$F_{2(I)} / F_{2(0)}$	1,041841004	1,0
A_4	$F_{2(0)} / F_{2(I)}$	0,959839357	
A ₅	$F_{3(I)} / F_{3(0)}$	1,058988764	1,0
A_6	F ₃₍₀₎ / F _{3(I)}	0,944297082	
A ₇	$F_{4(I)} / F_{4(0)}$	1,130434783	1,0
A_8	$F_{4(0)} / F_{4(1)}$	0,884615385	

Table 3: Two-factor multiplicative comparative coefficients

Table 4: Three-factor multiplicative comparative coefficients

Notation of a comparative coefficient	Calculation of coefficients	Factor multipliers	Value
B ₁	$(F_{1(I)} * F_{2(I)}) / (F_{1(0)} * F_{2(0)})$	$A_1 * A_3$	1,030392202
B ₂	$(F_{3(0)} * F_{4(0)}) / (F_{3(I)} * F_{4(I)})$	$A_6 * A_8$	0,835339727

Notation of a comparative coefficient	Factor comparison	Factor multipliers	Value	Product of coefficients (value)
C ₁	$(F_{1(I)} * F_{2(I)} * F_{3(I)}) / (F_{1(0)} * F_{2(0)} * F_{3(0)})$	B_1*A_5	1,091173764	1,0
C ₂	$(F_{1(0)} * F_{2(0)} * F_{3(0)}) / (F_{1(I)} * F_{2(I)} * F_{3(I)})$	$A_2 * A_4 * A_6$	0,916444321	
C ₃	$(F_{1(I)} * F_{2(I)} * F_{4(I)}) / (F_{1(0)} * F_{2(0)} * F_{4(0)})$	B_1*A_7	1,164791185	1,0
C ₄	$(F_{1(0)} * F_{2(0)} * F_{4(0)}) / (F_{1(I)} * F_{2(I)} * F_{4(I)})$	$A_2 * A_4 * A_8$	0,858522981	
C ₅	$(F_{1(I)} * F_{3(I)} * F_{4(I)}) / (F_{1(0)} * F_{3(0)} * F_{4(0)})$	$A_1 * A_5 * A_7$	1,183962593	1,0
C ₆	$(F_{1(0)} * F_{3(0)} * F_{4(0)}) / (F_{1(I)} * F_{3(I)} * F_{4(I)})$	B_2*A_2	0,844621279	
C ₇	$(F_{2(I)} * F_{3(I)} * F_{4(I)}) / (F_{2(0)} * F_{3(0)} * F_{4(0)})$	A ₃ *A ₅ *A ₇	1,247206341	1,0
C ₈	$(F_{2(0)} * F_{3(0)} * F_{4(0)}) / (F_{2(1)} * F_{3(1)} * F_{4(1)})$	B_2*A_4	0,801791946	

The assumption formula for carrying out factor analysis is (1):

$$V = Tsr * Ksr * Hsr * Wsr$$
(1)

Supportive data on comparative coefficients for carrying out factor analysis are represented in Tables 2, 3 and 4.

The ten author's (alternative) methods of deterministic factor analysis (formulas 1.1 - 10.4) are shown in Tables 5, 6.

According to the effect of adjusting coefficients, methods 1.1 and 1.2, 2.1, methods 2.2, 3.1 and 3.2, 4.1, methods 4.2, 5.1 and 5.2 mirror each other.

Method 1.1 (formulas 1.1 - 1.4 in Table 5) is based on the difference between plan performance indices which are adjusted for comparative coefficients (A₁, B₁, C₁).

Method 1.2 (formulas 2.1 - 2.4 in Table 5) is based on the difference between actual performance indices which are adjusted for comparative coefficients (C₈, B₂, A₈).

Method 2.1 (formulas 3.1 - 3.4 in Table 5) is based on the deviation of an original factor from an original plan factor multiplied by a plan performance index which is adjusted for comparative coefficients (A₁, B₁, C₁).

Method 2.2 (formulas 4.1 - 4.4 in Table 5) is based on the deviation of an original factor from an original actual factor multiplied by an actual performance index which is adjusted for comparative coefficients (C₈, B₂, A₈).

Method 3.1 (formulas 5.1 - 5.4 in Table 6) is based on the difference between actual and plan performance indices which are adjusted for comparative coefficients (A₁, B₁, C₁).

Method 3.2 (formulas 6.1 - 6.4 in Table 6) is based on the difference between actual and plan performance indices which are adjusted for comparative coefficients (C_8 , B_2 , A_8).

Method 4.1 (formulas 7.1 – 7.4 in Table 6) is based on the deviation of a performance factor from the difference between actual and plan performance factors which are adjusted for comparative coefficients (A_1 , B_1 , C_1).

	Formulas / calculations		
No. of a formula	 Formula basis	Adjustment coefficients	
1.1	$\Delta V(F_1) = V_0^*(A_1) - V_0$	-	
1.2	$\Delta V (F_2) = (V_0^*(A_3) - V_0)^*$	\mathbf{A}_{1}	
1.3	$\Delta V (F_3) = (V_0^*(A_5) - V_0)^*$	(A ₁ *A ₃) или B ₁	
1.4	$\Delta V (F_4) = (V_0^*(A_7) - V_0)^*$	(A ₁ *A ₃ *A ₅) или C ₁	
2.1	$\Delta V(F_1) = (V_1 - V_1 * (A_2))*$	(A ₈ *A ₆ *A ₄) или C ₈	
2.2	$\Delta V (F_2) = (V_1 - V_1 * (A_4))*$	(A ₈ *A ₆) или B ₂	
2.3	$\Delta V (F_3) = (V_1 - V_1 * (A_6))*$	A_8	
2.4	$\Delta V (F_4) = V_1 - V_1 * (A_8)$	-	
3.1	$\Delta V (F_1) = (\Delta F_1 / F_{1(0)}) * V_0$	-	
3.2	$\Delta V (F_2) = (\Delta F_2 / F_{2(0)}) * V_0 *$	\mathbf{A}_{1}	
3.3	$\Delta V (F_3) = (\Delta F_3 / F_{3(0)}) * V_0 *$	(A ₁ *A ₃) или B ₁	
3.4	$\Delta V (F_4) = (\Delta F_4 / F_{4(0)}) * V_0 *$	(A ₁ *A ₃ *A ₅) или C ₁	
4.1	$\Delta \mathbf{V} (\mathbf{F}_1) = (\Delta \mathbf{F}_1 / \mathbf{F}_{1(1)})^* \mathbf{V}_1^*$	(A ₈ *A ₆ *A ₄) или C ₈	
4.2	$\Delta V (F_2) = (\Delta F_2 / F_{2(1)}) * V_1 *$	(A ₈ *A ₆) или B ₂	
4.3	$\Delta \mathbf{V} (\mathbf{F}_3) = (\Delta \mathbf{F}_3 / \mathbf{F}_{3(1)}) * \mathbf{V}_1 *$	A_8	
4.4	$\Delta \mathbf{V} (\mathbf{F}_4) = (\Delta \mathbf{F}_4 / \mathbf{F}_{4(1)})^* \mathbf{V}_{\mathrm{I}}$	-	

Middle-East J. Sci. Res., 19 (5): 723-728, 2014

Table 6: Methods 3.1, 3.2, 4.1, 4.2, 5.1 and 5.2 of alternative factor analysis using comparative coefficients

	Formulas / calculations		
No. of a formula	formula basis	formula basis	
5.1	$\Delta V(F_1) = V_1^*(C_8) - V_0$	-	
5.2	$\Delta V (F_2) = (V_1 * (C_6) - V_0) *$	A_1	
5.3	$\Delta V (F_3) = (V_1 * (C_4) - V_0) *$	(A ₁ *A ₃) или B ₁	
5.4	$\Delta V (F_4) = (V_1 * (C_2) - V_0) *$	(A ₁ *A ₃ *A ₅) или C ₁	
6.1	$\Delta V(F_1) = (V_1 - V_0^*(C_7))^*$	(A ₈ *A ₆ *A ₄) или C ₈	
6.2	$\Delta V (F_2) = (V_1 - V_0^* (C_5))^*$	(A ₈ *A ₆) или B ₂	
6.3	$\Delta V (F_3) = (V_1 - V_0^*(C_3))^*$	A_8	
6.4	$\Delta \mathbf{V} (\mathbf{F}_4) = \mathbf{V}_1 - \mathbf{V}_0^* (\mathbf{C}_1)$	-	
7.1	$\Delta \mathbf{V} (\mathbf{F}_1) = \Delta \mathbf{V} - (\mathbf{V}_1 - (\mathbf{V}_0 * \mathbf{A}_1))$	-	
7.2	$\Delta V (F_2) = \Delta V - (V_1 - (V_0 * A_3))*$	A_1	
7.3	$\Delta \mathbf{V} (\mathbf{F}_3) = \Delta \mathbf{V} - (\mathbf{V}_1 - (\mathbf{V}_0 \ast \mathbf{A}_5)) \ast$	(A ₁ *A ₃) или B ₁	
7.4	$\Delta \mathbf{V} (\mathbf{F}_4) = \Delta \mathbf{V} - (\mathbf{V}_1 - (\mathbf{V}_0 \ast \mathbf{A}_7)) \ast$	(A ₁ *A ₃ *A ₅) или C ₁	
8.1	$\Delta \mathbf{V} (\mathbf{F}_1) = \Delta \mathbf{V} - ((\mathbf{V}_1 \ast \mathbf{A}_2) - \mathbf{V}_0) \ast$	(A ₈ *A ₆ *A ₄) или C ₈	
8.2	$\Delta \mathbf{V} (\mathbf{F}_2) = \Delta \mathbf{V} - ((\mathbf{V}_1 \ast \mathbf{A}_4) - \mathbf{V}_0) \ast$	(A ₈ *A ₆) или B ₂	
8.3	$\Delta V (F_3) = \Delta V - ((V_1 * A_6) - V_0) *$	A_8	
3.4	$\Delta \mathbf{V} (\mathbf{F}_4) = \Delta \mathbf{V} - ((\mathbf{V}_1 \ast \mathbf{A}_8) - \mathbf{V}_0) \ast$	-	
9.1	$\Delta \mathbf{V} (\mathbf{F}_1) = \Delta \mathbf{V} - (\mathbf{V}_1 - (\mathbf{V}_1 * \mathbf{C}_8))$	-	
9.2	$\Delta V(F_2) = \Delta V - (V_1 - (V_1 * C_6))*$	A_1	
9.3	$\Delta \mathbf{V} (\mathbf{F}_3) = \Delta \mathbf{V} - (\mathbf{V}_1 - (\mathbf{V}_1 * \mathbf{C}_4)) *$	(A ₁ *A ₃) или B ₁	
9.4	$\Delta V (F_4) = \Delta V - (V_1 - (V_1 * C_2))*$	(A ₁ *A ₃ *A ₅) или C ₁	
10.1	$\Delta \mathbf{V} (\mathbf{F}_1) = \Delta \mathbf{V} - ((\mathbf{V}_0 \ast \mathbf{C}_7) - \mathbf{V}_0) \ast$	(A ₈ *A ₆ *A ₄) или C ₈	
10.2	$\Delta \mathbf{V} (\mathbf{F}_2) = \Delta \mathbf{V} - ((\mathbf{V}_0 \ast \mathbf{C}_5) - \mathbf{V}_0) \ast$	(A ₈ *A ₆) или B ₂	
10.3	$\Delta V (F_3) = \Delta V - ((V_0 * C_3) - V_0) *$	A_8	
10.4	$\Delta \mathbf{V} (\mathbf{F}_4) = \Delta \mathbf{V} - ((\mathbf{V}_0 \ast \mathbf{C}_1) - \mathbf{V}_0)$	-	

Method 4.2 (formulas 8.1 - 8.4 in Table 6) is based on the deviation of a performance factor from the difference between actual and plan performance factors which are adjusted for comparative coefficients (C₈, B₂, A₈).

Method 5.1 (formulas 9.1 - 9.4 in Table 6) is based on the deviation of a performance factor from the difference between actual performance factors which are adjusted for comparative coefficients (A₁, B₁, C₁). Method 5.2 (formulas 10.1 - 10.4 in Table 6) is based on the deviation of a performance factor from the difference between plan performance factors which are adjusted for comparative coefficients (C₈, B₂, A₈).

The result based on methods 1.1, 2.1, 3.1, 4.1, 5.1 is shown in Table 7. The result based on methods 1.2, 2.2, 3.2, 4.2, 5.2 is shown in Table 8.

No.	Formula basis	Adjustment coefficients		Result, RUR000's
1	$\Delta V(F_1) = -15655,456$	-		-15655,456
2	$\Delta V(F_2) = 59608,640$	0,989010989	\mathbf{A}_1	58953,600
3	$\Delta V(F_3) = 84038,136$	1,030392202	$A_1 * A_3$	86592,240
4	$\Delta V(F_4) = 185823,456$	1,091173764	$A_1 * A_3 * A_5$	202765,680
	313814.776			332656.064

Table 7: The result based on methods 1.1, 2.1, 3.1, 4.1 and 5.1

Table 8: The result based on methods 1.2, 2.2, 3.2, 4.2 and 5.2

No. Formula basis		adjustment coefficients		Result, RUR000's.
1	$\Delta V(F_1) = -19525,584$	0,801791946	$A_8 * A_6 * A_4$	-15655,456
2	$\Delta V(F_2) = 70574,400$	0,835339727	$A_8 * A_6$	58953,600
3	$\Delta V(F_3) = 97886,880$	0,884615385	A_8	86592,240
4	$\Delta V(F_4) = 202765,680$	-		202765,680
	351701,376			332656.064

	Formulas / Calculations		
Index	ΔV (FCOn)	(1 - Kn)	Result, RUR000's.
$\Delta V (FK_1)$			0,000
$\Delta V (FK_2)$	59608,640	-0,01098901	-655,040
$\Delta V (FK_3)$	84038,136	0,030392202	2554,104
$\Delta V (FK_4)$	185823,456	0,091173764	16942,224
			18841,288

Table 10: IFCE according to methods 1.2, 2.2, 3.2, 4.2 and 5.2

	Formulas / Calculations		
Index	ΔV (FCOn)	(1 - Kn)	Result, RUR000's.
$\Delta V (FK_1)$	-19525,584	-0,19820805	3870,128
$\Delta V (FK_2)$	70574,400	-0,16466027	-11620,800
$\Delta V (FK_3)$	97886,880	-0,11538462	-11294,640
$\Delta V (FK_4)$			0,000
			-19045,312

I suppose the biggest challenge in conducting an analysis based on Filatov's methods was to implement comparative coefficients. The purpose of my studies was to propose new methods of deterministic factor analysis based on comparative coefficients in order to assess its results more reliably and with reason.

Based on the above considered author's methods, let us calculate the impact of factor change effect (comparative coefficients) on changes in performance index (formula 11).

$$\Delta V (Kn) = \Delta V (FCOn) * (1 - Kn)$$
(11)

where:

 ΔV (Kn) – is the impact of factor change effect (hereinafter referred to as IFCE) on changes in performance index;

 ΔV (FCOn) – is the impact of a relevant factor on changes in performance index according to the formula basis of the author's method.

 \mathbf{K} – is an adjustment coefficient; \mathbf{n} – is a number of a factor.

The IFCE according to the author's methods is shown in Tables 9, 10.

In order to conduct a factor analysis based on the author's methods, let us completely change the sequence of factors in the initial formula (formula 12):

$$V = Wsr * Hsr * Ksr * Tsr$$
(12)

As a consequence, results shown in Tables 7 and 8 completely coincide (regardless of the change of summands in formulas 1 and 13) with results in Tables 11 and 12.

The IFCE based on the author's methods with change of summands is represented in Tables 13, 14.

The comparison of IFCE with change and without change of factors is shown in Tables 15-17.

Middle-East J. Sci. Res., 19 (5): 723-728, 2014

No.	Formula basis	Adjustment	coefficients	Result, RUR000's
[$\Delta V(F_4) = 185823,456$	-		185823,456
	$\Delta V(F_3) = 84038,136$	1,130434783	A_7	94999,632
	$\Delta V(F_2) = 59608,640$	1,197117733	$A_7 * A_5$	71358,560
	$\Delta V(F_1) = -15655,456$	1,247206341	$A_7 * A_5 * A_3$	-19525,584
	313814,776			332656,064
able 12: The	result according to methods 1.2, 2.2, 3.2, 4.2 and 5	5.2 with change of summ	nands	
0.	Formula basis	0	t coefficients	Result, RUR000's
	$\Delta V(F_4) = 202765,680$	0,916444321	$A_2 * A_4 * A_6$	185823,456
	$\Delta V(F_3) = 97886,880$	0,970504239	$A_2 * A_4$	94999,632
	$\Delta V(F_2) = 70574,400$	1,011111111	A_2	71358,560
	$\Delta V(F_1) = -19525,584$	-		-19525,584
	351701,376			332656,064
able 13: The	IFCE with change of summands according to meth	hods 1.1, 2.1, 3.1, 4.1 ar	nd 5.1	
	Formulas / Calculation			
ıdex	 ΔV (FCOn)		(1 - Kn)	Result, RUR000's.
V (FK ₄)	- ()			0,000
$V(FK_3)$	84038,136	(0,130434783	10961,496
$V(FK_2)$	59608,640		0,197117733	11749,920
$V(FK_1)$	-15655,456		0,247206341	-3870,128
(111)	10000,100	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18841,288
	Formulas / Calculation 	(1 - Kn) 0,08355568	Result, RUR000's. -16942,224
V (FK ₄) V (FK ₃) V (FK ₂)	ΔV (FCOn)	() () -(-(,	Result, RUR000's. -16942,224 -2887,248 784,160 0,000
AV (FK ₄) AV (FK ₃) AV (FK ₂)	ΔV (FCOn) 202765,680 97886,880	() () -(-(0,08355568 0,02949576	-16942,224 -2887,248 784,160
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁)	ΔV (FCOn) 202765,680 97886,880	((-0)	0,08355568 0,02949576 ,011111111	-16942,224 -2887,248 784,160 0,000
$V (FK_4)$ $V (FK_3)$ $V (FK_2)$ $V (FK_1)$ able 15: Conn ndex	ΔV (FCOn) 202765,680 97886,880 70574,400 nparison of IFCE in RUR000's according to metho Without change of fact	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 2
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con idex	ΔV (FCOn) 202765,680 97886,880 70574,400 parison of IFCE in RUR000's according to method Without change of fact 2	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors 3	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 2 4
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con adex V (FK ₁)	ΔV (FCOn) 202765,680 97886,880 70574,400 	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con dex V (FK ₁) V (FK ₁)	ΔV (FCOn) 202765,680 97886,880 70574,400 parison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con idex V (FK ₁) V (FK ₂) V (FK ₃)	ΔV (FCOn) 202765,680 97886,880 70574,400 parison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040 2554,104	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con ndex V (FK ₁) V (FK ₂) V (FK ₃)	ΔV (FCOn) 202765,680 97886,880 70574,400 parison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040	((-(-(0)) ds 1.1, 2.1, 3.1, 4.1, 5.1	0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄)	ΔV (FCOn) 202765,680 97886,880 70574,400 aparison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040 2554,104 16942,224 18841,288	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) Table 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) Table 16: Con	ΔV (FCOn) 202765,680 97886,880 70574,400 aparison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040 2554,104 16942,224	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224
$V (FK_4)$ $V (FK_3)$ $V (FK_2)$ $V (FK_1)$ $V (FK_1)$ $V (FK_1)$ $V (FK_2)$ $V (FK_3)$ $V (FK_4)$ $V (FK_4)$ $V (FK_4)$	ΔV (FCOn) 202765,680 97886,880 70574,400 aparison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040 2554,104 16942,224 18841,288 aparison of IFCE in RUR000's according to method	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) V (FK ₄)	ΔV (FCOn) 202765,680 97886,880 70574,400 aparison of IFCE in RUR000's according to methor Without change of fact 2 0,000 -655,040 2554,104 16942,224 18841,288 aparison of IFCE in RUR000's according to methor Without change of fact 2 2 2 2 2 2 2 2 2 2 2 2 2	((-(-(0))))))))))))))))))	0,08355568 ,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) Cable 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₃) V (FK ₄) Cable 16: Con ndex V (FK ₁)	ΔV (FCOn) 202765,680 97886,880 70574,400 aparison of IFCE in RUR000's according to methor Without change of fact 2 0,000 -655,040 2554,104 16942,224 18841,288 aparison of IFCE in RUR000's according to methor Without change of fact	((-(-(0))))))))))))))))))	0,08355568 ,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 -
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con adex V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) able 16: Con adex V (FK ₁) V (FK ₁) V (FK ₂)	$\frac{\Delta V (FCOn)}{202765,680}$ 97886,880 70574,400 aparison of IFCE in RUR000's according to method Without change of fact 2 0,000 -655,040 2554,104 16942,224 18841,288 aparison of IFCE in RUR000's according to method Without change of fact 2 3870,128	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con adex V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) able 16: Con adex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₁) V (FK ₂) V (FK ₃)	$\begin{tabular}{ c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con adex V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) able 16: Con adex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₁) V (FK ₂) V (FK ₃)	$\begin{tabular}{ c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	((-(-(0))))))))))))))))))	0,08355568 0,02949576 0,011111111	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392
AV (FK ₄) AV (FK ₃) AV (FK ₂) AV (FK ₁) Cable 15: Con ndex AV (FK ₁) AV (FK ₂) AV (FK ₃) AV (FK ₄) Cable 16: Con ndex AV (FK ₁) AV (FK ₄)	$\begin{tabular}{ c c c c c c } \hline & & & & & & & \\ \hline & & & & & & & \\ \hline & & & &$	((((0))))))))))))))))))	0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) Cable 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₃) V (FK ₄) Cable 16: Con ndex V (FK ₁) V	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	((0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) Cable 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) Cable 16: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) Cable 17: Con ndex	$\begin{tabular}{ c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	((0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 -
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) Cable 15: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) Cable 16: Con ndex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) Cable 17: Con ndex	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	((0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312 Methods 1.2, 2.2, 3.2, 4.2, 5.2 3	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4
V (FK ₄) V (FK ₃) V (FK ₂) V (FK ₁) able 15: Con idex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) able 16: Con idex V (FK ₁) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) able 17: Con idex V (FK ₁)	$\begin{tabular}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $	((0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312 Methods 1.2, 2.2, 3.2, 4.2, 5.2 3 -3870,128	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 0,000
V (FK ₄) V (FK ₃) V (FK ₁) V (FK ₂) V (FK ₃) V (FK ₄) V (FK ₁)	$\begin{tabular}{ c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	((0,08355568 0,02949576 ,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312 Methods 1.2, 2.2, 3.2, 4.2, 5.2 3 -3870,128 12404,960	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 0,000
ndex $\Delta V (FK_1)$ $\Delta V (FK_2)$ $\Delta V (FK_3)$ $\Delta V (FK_4)$ $\Delta V (FK_4)$ $\Delta V (FK_1)$ $\Delta V (FK_2)$ $\Delta V (FK_3)$ $\Delta V (FK_4)$	$\begin{tabular}{ c c c c c } \hline & & & & & & & & \\ \hline & & & & & & & & \\ \hline & & & &$	((0,08355568 0,02949576 0,011111111 With change of factors 3 -3870,128 11749,920 10961,496 0,000 18841,288 5.2 With change of factors 3 0,000 784,160 -2887,248 -16942,224 -19045,312 Methods 1.2, 2.2, 3.2, 4.2, 5.2 3 -3870,128	-16942,224 -2887,248 784,160 0,000 -19045,312 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 -3870,128 12404,960 8407,392 -16942,224 0,000 Difference (3 - 4 0,000

CONCLUSION

Thus, for the first time, we have mathematically proved the following conclusions about the nature of "indecomposable rest":

- The rest is not errors in calculations (based on the traditional methods);
- The rest refers not only to quantitative factors;
- The rest refers not only to qualitative factors;
- The rest is a result of a combined impact of all factors involved in calculations;
- Its size depends on the size of all factors involved in calculations;
- Its positive and negative values depend on the sequence of factor impact estimation (regardless of the extensity or intensity of factors).

REFERENCES

- Filatov, E.A., 2006. Identification of the influence degree of quantifiable factors on the value of the studied economic indicators on Filatov's methods // Proceedings of the ISEA - Irkutsk: BSUEL, 2(47): 13-14.
- Filatov, E.A., 2009. Factor analysis on Filatov's methods // Proceedings of the ISEA - Irkutsk: BSUEL, 5(67): 110-113.
- Filatov, E.A., 2011. Determinate factor analysis basing on Filatov's models // Proceedings of the ISEA (BSUEL): Online Journal, pp: 4.
- Filatov, E.A. and V.B. Nechayev, 2011. Determinate factor analysis on the original Filatov's method with the example of multiplicative models // Bulletin of ISTU - Irkutsk: ISTU, 4(51): 196-199.

- Filatov, E.A., 2011. Determinate factor analysis basing on two-factor Filatov's models // Actual Problems of Law, Economics and Management: Collection of papers of the international scientificpractical conference. - Irkutsk: EPD SALEM. - Issue VII(V. I): 165-167.
- Filatov, E.A., 2011. Determinate factor analysis basing on three-factor Filatov's models // Actual Problems of Law, Economics and Management: Collection of papers of the international scientificpractical conference. - Irkutsk: EPD SALEM, VII(V. I): 168-170.
- Filatov, E.A., 2011. Solving the basic problems in determinate factor analysis based on Filatov's methods // European Social Science Journal - Riga-M.: Publishing House of the International Research Institute, 3: 294-303.
- Filatov, E.A., 2011. Methods of determinate (functional) factor analysis: Monograph / Irkutsk: ISTU, pp: 104.
- Filatov, E.A., 2012. Methods of alternative functional analysis // Proceedings of the ISEA (BSUEL): Online Journal, pp: 1.
- Evgeny Filatov, 2012. Methods of determinate (functional) factor analysis: Monograph / E. A. Filatov. - Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH & Co. KG, pp: 102.
- 11. Filatov, E.A., 2012. Methods of factor analysis: Monograph / Irkutsk: EPD SALEM, pp: 96.
- Filatov, E.A., 2013. Factor analysis of equity capital profitability by author's methods // Bulletin of ISTU -Irkutsk: ISTU, 6(77): 234-240.