Problem-Solving in Deterministic Factor Analysis

Evgeniy Aleksandrovich Filatov and Vladimir Borisovich Nechaev

The National Research Irkutsk State Technical University, Irkutsk, Russia

Abstract

The article is concerned with author's methods of factor analysis which allow one to draw conclusions about changes in financial position of a company in the most accessible and less time-consuming way and to estimate the impact of factors on index changes within the economic system and index change trends. The article contains numerical data based on traditional methods of factor analysis. The main task of the author's methods of factor analysis is to identify the factors which determine changes in economic index value in relation to the main factors being its components. The author's methods are aimed at obtaining key (more informative) parameters to have a comprehensive idea of changes in sales revenues.

Key words: Factor analysis • Profitability • «indecomposable rest» - Comparative indices • Effect of factor index changes

INTRODUCTION

An important methodological issue for economic analysis is to estimate influence degree of factors on the value of economic indices under consideration.

The main task of the author's methods of factor analysis (Filatov's methods [1-7]), as well as the traditional ones, is to identify the factors which determine the total industrial supply, i.e. the total changes in production volume in relation to the main factors being its components. The author's methods are aimed at obtaining key (more informative) parameters to have a comprehensive idea of changes in sales revenues.

The traditional methods of deterministic factor analysis cause some problems [8-10]. For example, when using the chain substitution method, results depend largely on the sequence of factor substitutions. According to the rule, first, one estimates the impact of quantitative factors characterizing extensity and then the impact of qualitative factors characterizing intensity. It is the quantitative factors which the indecomposable rest falls to.

When using the integral method, calculations are based on planned values of indices and calculation errors (indecomposable rest) are distributed equally amongst
factors unlike the chain substitution method using which the most part of the rest falls to the last qualitative factor. [11, 12].

Hence, the traditional methods of deterministic factor analysis have the disadvantages as follows:

- The sequence of factor changes is based on the principle according to which the quantitative (extensive) factor changes before the qualitative (intensive) one.
- When decomposing a performance index into its components characterizing the isolated impact of factors causing that change, the indecomposable rest (which is also referred to as a coeffect of factor indices) is formed.

The below given example serves as a proof of problem solving in deterministic factor analysis.

Initial data for an alternative factor analysis are shown in Table 1.
where:

* $\mathbf{0}$ is the last (base) period (year) being a comparison base; ** I is a period under review (current) (year); *** $\boldsymbol{\Delta}$ is an annual change calculated as the difference between Fact and Plan ($\mathbf{I}-\mathbf{0}$).

Middle-East J. Sci. Res., 19 (5): 723-728, 2014

Table 1: Initial data for an alternative factor analysis

No. Indices	No. of an initial factor	Plan* 0	Fact** I	Deviation*** Δ	
1	V - is a sales volume, RUR000's.		1424646,496	1757302,56	332656,064
2	Tsr - is an average number of IPP, person.	F_{1}	910	900	-10
3	Ksr - is an average number of workers, day.	F_{2}	239	249	10
4	Hsr - is an average shift length, hr.	F_{3}	7,12	7,54	0,42
5	Wsr - is an average hourly productivity per worker, RUR000's.	F_{4}	0,92	1,04	0,12

Table 2: Single-factor multiple comparative coefficients

Notation of a comparative coefficient	Calculation of coefficients	Value	Product of coefficients (value)
A_{1}	$\mathrm{~F}_{1(\mathrm{I})} / \mathrm{F}_{1(0)}$	1,0	
$\mathrm{~A}_{2}$	$\mathrm{~F}_{1(0)} / \mathrm{F}_{1(1)}$	0,989010989	
$\mathrm{~A}_{3}$	$\mathrm{~F}_{2(1)} / \mathrm{F}_{2(0)}$	1,011111111	
$\mathrm{~A}_{4}$	$\mathrm{~F}_{2(0)} / \mathrm{F}_{2(\mathrm{I})}$	1,041841004	1,0
$\mathrm{~A}_{5}$	$\mathrm{~F}_{3(1)} / \mathrm{F}_{3(0)}$	0,959839357	
$\mathrm{~A}_{6}$	$\mathrm{~F}_{3(0)} / \mathrm{F}_{3(1)}$	1,058988764	1,0
$\mathrm{~A}_{7}$	$\mathrm{~F}_{4(\mathrm{I})} / \mathrm{F}_{4(0)}$	0,944297082	
$\mathrm{~A}_{8}$	$\mathrm{~F}_{4(0)} / \mathrm{F}_{4(\mathrm{I})}$	1,130434783	1,0

Table 3: Two-factor multiplicative comparative coefficients

Notation of a comparative coefficient	Calculation of coefficients	Factor multipliers	Value
B_{1}	$\left(\mathrm{~F}_{1(1)} * \mathrm{~F}_{2(I)}\right) /\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{2(0)}\right)$	$\mathrm{A}_{1} * \mathrm{~A}_{3}$	1,030392202
$\mathrm{~B}_{2}$	$\left(\mathrm{~F}_{3(0)} * \mathrm{~F}_{4(0)}\right) /\left(\mathrm{F}_{3(1)} * \mathrm{~F}_{4(\mathrm{I})}\right)$	$\mathrm{A}_{6} * \mathrm{~A}_{8}$	0,835339727

Table 4: Three-factor multiplicative comparative coefficients

Notation of a comparative coefficient	Factor comparison	Factor multipliers	Value	Product of coefficients (value)
C_{1}	$\left(\mathrm{F}_{1(\mathrm{I})} * \mathrm{~F}_{2(1)} * \mathrm{~F}_{3(1)}\right) /\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{2(0)} * \mathrm{~F}_{3(0)}\right)$	$\mathrm{B}_{1}{ }^{*} \mathrm{~A}_{5}$	1,091173764	1,0
C_{2}	$\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{2(0)} * \mathrm{~F}_{3(0)}\right) /\left(\mathrm{F}_{1(1)} * \mathrm{~F}_{2(1)} * \mathrm{~F}_{3(1)}\right)$	$\mathrm{A}_{2} * \mathrm{~A}_{4} * \mathrm{~A}_{6}$	0,916444321	
C_{3}	$\left(\mathrm{F}_{1(\mathrm{I})} * \mathrm{~F}_{2(1)} * \mathrm{~F}_{4(1)}\right) /\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{2(0)} * \mathrm{~F}_{4(0)}\right)$	$\mathrm{B}_{1}{ }^{*} \mathrm{~A}_{7}$	1,164791185	1,0
C_{4}	$\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{2(0)} * \mathrm{~F}_{4(0)}\right) /\left(\mathrm{F}_{1(1)} * \mathrm{~F}_{2(1)} * \mathrm{~F}_{4(1)}\right)$	$\mathrm{A}_{2}{ }^{*} \mathrm{~A}_{4} * \mathrm{~A}_{8}$	0,858522981	
C_{5}	$\left(\mathrm{F}_{1(1)} * \mathrm{~F}_{3(1)} * \mathrm{~F}_{4(1)}\right) /\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{3(0)} * \mathrm{~F}_{4(0)}\right)$	$\mathrm{A}_{1} * \mathrm{~A}_{5} * \mathrm{~A}_{7}$	1,183962593	1,0
C_{6}	$\left(\mathrm{F}_{1(0)} * \mathrm{~F}_{3(0)} * \mathrm{~F}_{4(0)}\right) /\left(\mathrm{F}_{1(1)} * \mathrm{~F}_{3(1)} * \mathrm{~F}_{4(1)}\right)$	$\mathrm{B}_{2}{ }^{*} \mathrm{~A}_{2}$	0,844621279	
C_{7}	$\left(\mathrm{F}_{2(1)} * \mathrm{~F}_{3(1)} * \mathrm{~F}_{4(\mathrm{I})}\right) /\left(\mathrm{F}_{2(0)} * \mathrm{~F}_{3(0)} * \mathrm{~F}_{4(0)}\right)$	$\mathrm{A}_{3} * \mathrm{~A}_{5} * \mathrm{~A}_{7}$	1,247206341	1,0
C_{8}	$\left(\mathrm{F}_{2(0)} * \mathrm{~F}_{3(0)} * \mathrm{~F}_{4(0)}\right) /\left(\mathrm{F}_{2(1)} * \mathrm{~F}_{3(1)} * \mathrm{~F}_{4(1)}\right)$	$\mathrm{B}_{2}{ }^{*} \mathrm{~A}_{4}$	0,801791946	

The assumption formula for carrying out factor analysis is (1):
$\mathrm{V}=\mathrm{Tsr} * \mathrm{Ksr} * \mathrm{Hsr} *$ Wsr

Supportive data on comparative coefficients for carrying out factor analysis are represented in Tables 2, 3 and 4.

The ten author's (alternative) methods of deterministic factor analysis (formulas $1.1-10.4$) are shown in Tables 5, 6.

According to the effect of adjusting coefficients, methods 1.1 and $1.2,2.1$, methods $2.2,3.1$ and $3.2,4.1$, methods 4.2, 5.1 and 5.2 mirror each other.

Method 1.1 (formulas $1.1-1.4$ in Table 5) is based on the difference between plan performance indices which are adjusted for comparative coefficients $\left(\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right)$.

Method 1.2 (formulas $2.1-2.4$ in Table 5) is based on the difference between actual performance indices which are adjusted for comparative coefficients $\left(\mathrm{C}_{8}, \mathrm{~B}_{2}, \mathrm{~A}_{8}\right)$.

Method 2.1 (formulas 3.1 - 3.4 in Table 5) is based on the deviation of an original factor from an original plan factor multiplied by a plan performance index which is adjusted for comparative coefficients $\left(\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right)$.

Method 2.2 (formulas $4.1-4.4$ in Table 5) is based on the deviation of an original factor from an original actual factor multiplied by an actual performance index which is adjusted for comparative coefficients $\left(\mathrm{C}_{8}, \mathrm{~B}_{2}, \mathrm{~A}_{8}\right)$.

Method 3.1 (formulas 5.1-5.4 in Table 6) is based on the difference between actual and plan performance indices which are adjusted for comparative coefficients ($\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$).

Method 3.2 (formulas 6.1-6.4 in Table 6) is based on the difference between actual and plan performance indices which are adjusted for comparative coefficients $\left(\mathrm{C}_{8}, \mathrm{~B}_{2}, \mathrm{~A}_{8}\right)$.

Method 4.1 (formulas 7.1 - 7.4 in Table 6) is based on the deviation of a performance factor from the difference between actual and plan performance factors which are adjusted for comparative coefficients ($\left.\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}\right)$.

Table 5: Methods 1.1, 1.2, 2.1 and 2.2 of alternative factor analysis using comparative coefficients

No. of a formula	Formulas / calculations	
	Formula basis	Adjustment coefficients
1.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\mathrm{V}_{0} *\left(\mathrm{~A}_{1}\right)-\mathrm{V}_{0}$	-
1.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\mathrm{V}_{0}{ }^{*}\left(\mathrm{~A}_{3}\right)-\mathrm{V}_{0}\right)^{*}$	A_{1}
1.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\mathrm{V}_{0} *\left(\mathrm{~A}_{5}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3}\right)$ или B_{1}
1.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\left(\mathrm{V}_{0}{ }^{*}\left(\mathrm{~A}_{7}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{1}{ }^{*} \mathrm{~A}_{3} * \mathrm{~A}_{5}\right)$ или C_{1}
2.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{I}} *\left(\mathrm{~A}_{2}\right)\right)^{*}$	$\left(\mathrm{A}_{8} * \mathrm{~A}_{6} * \mathrm{~A}_{4}\right)$ или C_{8}
2.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{I}} *\left(\mathrm{~A}_{4}\right)\right)^{*}$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}\right)$ или B_{2}
2.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{I}} *\left(\mathrm{~A}_{6}\right)\right)^{*}$	A_{8}
2.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{\mathrm{I}} *\left(\mathrm{~A}_{8}\right)$	-
3.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\left(\Delta \mathrm{F}_{1} / \mathrm{F}_{1(0)}\right) * \mathrm{~V}_{0}$	-
3.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\Delta \mathrm{F}_{2} / \mathrm{F}_{2(0)}\right) * \mathrm{~V}_{0}{ }^{*}$	A_{1}
3.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\Delta \mathrm{F}_{3} / \mathrm{F}_{3(0)}\right) * \mathrm{~V}_{0} *$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3}\right)$ или B_{1}
3.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\left(\Delta \mathrm{F}_{4} / \mathrm{F}_{4(0)}\right) * \mathrm{~V}_{0}{ }^{*}$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3} * \mathrm{~A}_{5}\right)$ или C_{1}
4.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\left(\Delta \mathrm{F}_{1} / \mathrm{F}_{1(\mathrm{I})}\right) * \mathrm{~V}_{1} *$	$\left(\mathrm{A}_{8} * \mathrm{~A}_{6} * \mathrm{~A}_{4}\right)$ или C_{8}
4.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\Delta \mathrm{F}_{2} / \mathrm{F}_{2(\mathrm{I})}\right) * \mathrm{~V}_{1} *$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}\right)$ или B_{2}
4.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\Delta \mathrm{F}_{3} / \mathrm{F}_{3(1)}\right) * \mathrm{~V}_{1}{ }^{*}$	A_{8}
4.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\left(\Delta \mathrm{F}_{4} / \mathrm{F}_{4(\mathrm{I}}\right) * \mathrm{~V}_{\mathrm{I}}$	-

Table 6: Methods 3.1, 3.2, 4.1, 4.2, 5.1 and 5.2 of alternative factor analysis using comparative coefficients

No. of a formula	Formulas / calculations	
	formula basis	formula basis
5.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\mathrm{V}_{1} *\left(\mathrm{C}_{8}\right)-\mathrm{V}_{0}$	-
5.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\mathrm{V}_{1}{ }^{*}\left(\mathrm{C}_{6}\right)-\mathrm{V}_{0}\right)^{*}$	A_{1}
5.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\mathrm{V}_{1}{ }^{*}\left(\mathrm{C}_{4}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{1}{ }^{*} \mathrm{~A}_{3}\right)$ или B_{1}
5.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\left(\mathrm{V}_{1}{ }^{*}\left(\mathrm{C}_{2}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3} * \mathrm{~A}_{5}\right)$ или C_{1}
6.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\left(\mathrm{V}_{1}-\mathrm{V}_{0} *\left(\mathrm{C}_{7}\right)\right)^{*}$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6} * \mathrm{~A}_{4}\right)$ или C_{8}
6.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\left(\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{0} *\left(\mathrm{C}_{5}\right)\right)^{*}$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}\right)$ или B_{2}
6.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\left(\mathrm{V}_{1}-\mathrm{V}_{0} *\left(\mathrm{C}_{3}\right)\right)^{*}$	A_{8}
6.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\mathrm{V}_{\mathrm{I}}-\mathrm{V}_{0} *\left(\mathrm{C}_{1}\right)$	-
7.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{0} * \mathrm{~A}_{1}\right)\right.$	-
7.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{0} * \mathrm{~A}_{3}\right)\right)^{*}$	A_{1}
7.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{0}{ }^{*} \mathrm{~A}_{5}\right)\right)^{*}$	$\left(\mathrm{A}_{1}{ }^{*} \mathrm{~A}_{3}\right)$ или B_{1}
7.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{0} * \mathrm{~A}_{7}\right)\right)^{*}$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3} * \mathrm{~A}_{5}\right)$ или C_{1}
8.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{1} * \mathrm{~A}_{2}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{8} * \mathrm{~A}_{6} * \mathrm{~A}_{4}\right)$ или C_{8}
8.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{1} * \mathrm{~A}_{4}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}\right)$ или B_{2}
8.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{1} * \mathrm{~A}_{6}\right)-\mathrm{V}_{0}\right)^{*}$	A_{8}
8.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{1} * \mathrm{~A}_{8}\right)-\mathrm{V}_{0}\right)^{*}$	-
9.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{\mathrm{I}} * \mathrm{C}_{8}\right)\right)$	-
9.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{1}{ }^{*} \mathrm{C}_{6}\right)\right)^{*}$	A_{1}
9.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{1}-\left(\mathrm{V}_{1}{ }^{*} \mathrm{C}_{4}\right)\right)^{*}$	$\left(\mathrm{A}_{1}{ }^{*} \mathrm{~A}_{3}\right)$ или B_{1}
9.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\Delta \mathrm{V}-\left(\mathrm{V}_{\mathrm{I}}-\left(\mathrm{V}_{1}{ }^{*} \mathrm{C}_{2}\right)\right)^{*}$	$\left(\mathrm{A}_{1} * \mathrm{~A}_{3} * \mathrm{~A}_{5}\right)$ или C_{1}
10.1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{0}{ }^{*} \mathrm{C}_{7}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{8} *^{*}{ }_{6}{ }^{*} \mathrm{~A}_{4}\right)$ или C_{8}
10.2	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{0}{ }^{*} \mathrm{C}_{5}\right)-\mathrm{V}_{0}\right)^{*}$	$\left(\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}\right)$ или B_{2}
10.3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{0}{ }^{*} \mathrm{C}_{3}\right)-\mathrm{V}_{0}\right)^{*}$	A_{8}
10.4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=\Delta \mathrm{V}-\left(\left(\mathrm{V}_{0} * \mathrm{C}_{1}\right)-\mathrm{V}_{0}\right)$	-

Method 4.2 (formulas $8.1-8.4$ in Table 6) is based on the deviation of a performance factor from the difference between actual and plan performance factors which are adjusted for comparative coefficients $\left(\mathrm{C}_{8}, \mathrm{~B}_{2}, \mathrm{~A}_{8}\right)$.

Method 5.1 (formulas 9.1 - 9.4 in Table 6) is based on the deviation of a performance factor from the difference between actual performance factors which are adjusted for comparative coefficients ($\mathrm{A}_{1}, \mathrm{~B}_{1}, \mathrm{C}_{1}$).

Method 5.2 (formulas $10.1-10.4$ in Table 6) is based on the deviation of a performance factor from the difference between plan performance factors which are adjusted for comparative coefficients $\left(\mathrm{C}_{8}, \mathrm{~B}_{2}, \mathrm{~A}_{8}\right)$.

The result based on methods 1.1, 2.1, 3.1, 4.1, 5.1 is shown in Table 7. The result based on methods 1.2, 2.2, 3.2, 4.2, 5.2 is shown in Table 8.

Middle-East J. Sci. Res., 19 (5): 723-728, 2014

Table 7: The result based on methods 1.1, 2.1, 3.1, 4.1 and 5.1

No.	Formula basis	------------------Adjustment coefficients----------------		Result, RUR000's.
1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=-15655,456$	-		-15655,456
2	$\Delta V\left(F_{2}\right)=59608,640$	0,989010989	A_{1}	58953,600
3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=84038,136$	1,030392202	$\mathrm{A}_{1}{ }^{*} \mathrm{~A}_{3}$	86592,240
4	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=185823,456$	1,091173764	$\mathrm{A}_{1} * \mathrm{~A}_{3} * \mathrm{~A}_{5}$	202765,680
313814,776				332656,064
Table 8: The result based on methods 1.2, 2.2, 3.2, 4.2 and 5.2				
No.	Formula basis	----------------	ts----------------	Result, RUR000's.
1	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=-19525,584$	0,801791946	$\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6} * \mathrm{~A}_{4}$	-15655,456
2	$\Delta V\left(\mathrm{~F}_{2}\right)=70574,400$	0,835339727	$\mathrm{A}_{8}{ }^{*} \mathrm{~A}_{6}$	58953,600
3	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=97886,880$	0,884615385	A_{8}	86592,240
4	$\Delta V\left(\mathrm{~F}_{4}\right)=202765,680$	-		202765,680
351701,376				332656,064

Table 9: IFCE according to methods 1.1, 2.1, 3.1, 4.1 and 5.1
Formulas / Calculations

Index	$\Delta \mathrm{V}(\mathrm{FCOn})$	$(1-\mathrm{Kn})$	Result, RUR000's.
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$			0,000
$\Delta \mathrm{~V}\left(\mathrm{FK}_{2}\right)$	59608,640	$-0,01098901$	$-655,040$
$\Delta \mathrm{~V}\left(\mathrm{FK}_{3}\right)$	84038,136	0,030392202	2554,104
$\Delta \mathrm{~V}\left(\mathrm{FK}_{4}\right)$	185823,456	0,091173764	16942,224
			18841,288

Table 10: IFCE according to methods 1.2, 2.2, 3.2, 4.2 and 5.2

Index	Formulas / Calculations		Result, RUR000's.
	$\Delta \mathrm{V}$ (FCOn)	($1-\mathrm{Kn}$)	
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$	-19525,584	-0,19820805	3870,128
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	70574,400	-0,16466027	-11620,800
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	97886,880	-0,11538462	-11294,640
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$			0,000
			-19045,312

I suppose the biggest challenge in conducting an analysis based on Filatov's methods was to implement comparative coefficients. The purpose of my studies was to propose new methods of deterministic factor analysis based on comparative coefficients in order to assess its results more reliably and with reason.

Based on the above considered author's methods, let us calculate the impact of factor change effect (comparative coefficients) on changes in performance index (formula 11).
$\Delta \mathrm{V}(\mathrm{Kn})=\Delta \mathrm{V}(\mathrm{FCOn}) *(1-\mathrm{Kn})$
where:
$\Delta \mathbf{V}(\mathbf{K n})$ - is the impact of factor change effect (hereinafter referred to as IFCE) on changes in performance index;
$\Delta \mathbf{V}$ (FCOn) - is the impact of a relevant factor on changes in performance index according to the formula basis of the author's method.
\mathbf{K} - is an adjustment coefficient; \mathbf{n} - is a number of a factor.

The IFCE according to the author's methods is shown in Tables 9, 10.

In order to conduct a factor analysis based on the author's methods, let us completely change the sequence of factors in the initial formula (formula 12):
$\mathrm{V}=\mathrm{Wsr} * \mathrm{Hsr}^{*} \mathrm{Ksr} * \mathrm{Tsr}$

As a consequence, results shown in Tables 7 and 8 completely coincide (regardless of the change of summands in formulas 1 and 13) with results in Tables 11 and 12 .

The IFCE based on the author's methods with change of summands is represented in Tables 13, 14.

The comparison of IFCE with change and without change of factors is shown in Tables 15-17.

Table 11: The result according to methods $1.1,2.1,3.1,4.1$ and 5.1 with change of summands

No.	Formula basis	--------------Adjustment coefficients-----------------		Result, RUR000's
1	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=185823,456$	-		185823,456
2	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=84038,136$	1,130434783	A_{7}	94999,632
3	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=59608,640$	1,197117733	$\mathrm{A}_{7}{ }^{\text {A }}$,	71358,560
4	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=-15655,456$	1,247206341	$\mathrm{A}_{7}{ }^{*} \mathrm{~A}_{5}{ }^{*} \mathrm{~A}_{3}$	-19525,584
313814,776				332656,064
Table 12: The result according to methods 1.2, 2.2, 3.2, 4.2 and 5.2 with change of summands				
No.	Formula basis	---------------A	-------------	Result, RUR000's
1	$\Delta \mathrm{V}\left(\mathrm{F}_{4}\right)=202765,680$	0,916444321	$\mathrm{A}_{2}{ }^{*} \mathrm{~A}_{4}{ }^{*} \mathrm{~A}_{6}$	185823,456
2	$\Delta \mathrm{V}\left(\mathrm{F}_{3}\right)=97886,880$	0,970504239	$\mathrm{A}_{2}{ }^{*} \mathrm{~A}_{4}$	94999,632
3	$\Delta \mathrm{V}\left(\mathrm{F}_{2}\right)=70574,400$	1,011111111	A_{2}	71358,560
4	$\Delta \mathrm{V}\left(\mathrm{F}_{1}\right)=-19525,584$	-		-19525,584
351701,376				332656,064

Table 13: The IFCE with change of summands according to methods $1.1,2.1,3.1,4.1$ and 5.1
Formulas / Calculations

Index	$\Delta \mathrm{V} \text { (FCOn) }$	$(1-K n)$	Result, RUR000's.
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$			0,000
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	84038,136	0,130434783	10961,496
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	59608,640	0,197117733	11749,920
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$	-15655,456	0,247206341	-3870,128
			18841,288

Table 14: The IFCE with change of summands according to methods $1.2,2.2,3.2,4.2$ and 5.2

Index	Formulas / Calculations		Result, RUR000's.
	$\Delta \mathrm{V}$ (FCOn)	($1-\mathrm{Kn}$)	
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$	202765,680	-0,08355568	-16942,224
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	97886,880	-0,02949576	-2887,248
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	70574,400	0,011111111	784,160
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$			0,000
			-19045,312
Table 15: Comparison of IFCE in RUR000's according to methods 1.1, 2.1, 3.1, 4.1, 5.1			
Index	Without change of factors	With change of factors	Difference (3-2)
1	2	3	4
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$	0,000	-3870,128	-3870,128
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	-655,040	11749,920	12404,960
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	2554,104	10961,496	8407,392
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$	16942,224	0,000	-16942,224
	18841,288	18841,288	0,000
Table 16: Comparison of IFCE in RUR000's according to methods 1.2, 2.2, 3.2, 4.2 and 5.2			
Index	Without change of factors	With change of factors	Difference (3-2)
1	2	3	4
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$	3870,128	0,000	-3870,128
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	-11620,800	784,160	12404,960
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	-11294,640	-2887,248	8407,392
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$	0,000	-16942,224	-16942,224
	-19045,312	-19045,312	0,000
Table 17: Comparison of IFCE in RUR000's according to mirror methods			
Index	Methods 1.1, 2.1, 3.1, 4.1, 5.1	Methods 1.2, 2.2, 3.2, 4.2, 5.2	Difference (3-2)
1	2	3	4
$\Delta \mathrm{V}\left(\mathrm{FK}_{1}\right)$	-3870,128	-3870,128	0,000
$\Delta \mathrm{V}\left(\mathrm{FK}_{2}\right)$	12404,960	12404,960	0,000
$\Delta \mathrm{V}\left(\mathrm{FK}_{3}\right)$	8407,392	8407,392	0,000
$\Delta \mathrm{V}\left(\mathrm{FK}_{4}\right)$	-16942,224	-16942,224	0,000
	0,000	0,000	0,000

CONCLUSION

Thus, for the first time, we have mathematically proved the following conclusions about the nature of "indecomposable rest":

- The rest is not errors in calculations (based on the traditional methods);
- The rest refers not only to quantitative factors;
- The rest refers not only to qualitative factors;
- The rest is a result of a combined impact of all factors involved in calculations;
- Its size depends on the size of all factors involved in calculations;
- Its positive and negative values depend on the sequence of factor impact estimation (regardless of the extensity or intensity of factors).

REFERENCES

1. Filatov, E.A., 2006. Identification of the influence degree of quantifiable factors on the value of the studied economic indicators on Filatov's methods // Proceedings of the ISEA - Irkutsk: BSUEL, 2(47): 13-14.
2. Filatov, E.A., 2009. Factor analysis on Filatov's methods // Proceedings of the ISEA - Irkutsk: BSUEL, 5(67): 110-113.
3. Filatov, E.A., 2011. Determinate factor analysis basing on Filatov's models // Proceedings of the ISEA (BSUEL): Online Journal, pp: 4.
4. Filatov, E.A. and V.B. Nechayev, 2011. Determinate factor analysis on the original Filatov's method with the example of multiplicative models // Bulletin of ISTU - Irkutsk: ISTU, 4(51): 196-199.
5. Filatov, E.A., 2011. Determinate factor analysis basing on two-factor Filatov's models // Actual Problems of Law, Economics and Management: Collection of papers of the international scientificpractical conference. - Irkutsk: EPD SALEM. - Issue VII(V. I): 165-167.
6. Filatov, E.A., 2011. Determinate factor analysis basing on three-factor Filatov's models // Actual Problems of Law, Economics and Management: Collection of papers of the international scientificpractical conference. - Irkutsk: EPD SALEM, VII(V. I): 168-170.
7. Filatov, E.A., 2011. Solving the basic problems in determinate factor analysis based on Filatov's methods // European Social Science Journal - RigaM.: Publishing House of the International Research Institute, 3: 294-303.
8. Filatov, E.A., 2011. Methods of determinate (functional) factor analysis: Monograph / Irkutsk: ISTU, pp: 104.
9. Filatov, E.A., 2012. Methods of alternative functional analysis // Proceedings of the ISEA (BSUEL): Online Journal, pp: 1.
10. Evgeny Filatov, 2012. Methods of determinate (functional) factor analysis: Monograph / E. A. Filatov. - Saarbrücken, Germany: LAP LAMBERT Academic Publishing GmbH \& Co. KG, pp: 102.
11. Filatov, E.A., 2012. Methods of factor analysis: Monograph / Irkutsk: EPD SALEM, pp: 96.
12. Filatov, E.A., 2013. Factor analysis of equity capital profitability by author's methods // Bulletin of ISTU Irkutsk: ISTU, 6(77): 234-240.
