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Integration of Satellite and Inertial Navigational Systems 
on the Basis of Non Linear-Filtering Theory

Igor Vasiljevich Scherban and Sergey Viktorovich Sokolov
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Abstract: Now for synthesis of the integrated Navigational Systems (NS) the linearized equations of errors 
of inertial NS, inconvertible only on small time intervals and linearized measuring of satellite NS are used, 
as a rule. Similar simplifications lead to divergence of assessment process of navigational variables. There
is a problem appeared on synthesis of NS integration algorithms invariant to physical model of object 
motion and to kind of its motion trajectory and also permissive to avoid the simplified representations of 
SNS measuring signals models. In order to solve this problem in the article it is suggested the complete 
non-linear model of state vector of autonomous Strapdown Inertial Navigational System (SINS), providing 
inconvertible estimation of navigational parameters at loss of satellite measuring. 
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INTRODUCTION

The solution of problem of navigation of Mobile 
Objects (MO) with usage of satellite navigational
systems is carried out now in two directions: by 
immediate use of navigational information from SNS
MO onboard and by integration of measuring
information from SNS with readings of Inertial
Navigational System (INS). Since the first approach not 
yet able to provide the complete solution of the problem
of high-precision solution of MO navigational problem, 
we will consider further only a condition of tight
integration of NS. In spite of the fact that its
examinations are begun long time ago [1-3], the
problem of providing of given accuracy and stability of 
integrated NS remains still very actual. This
circumstance is bound to impossibility of this problem 
solution on the basis of existing mathematical apparatus 
supposing the use only of SNS linearized measuring 
and linear equations of INS errors, inconvertible only 
on small intervals of time [1, 4-7]. Thereforethere a 
problem appears on development of essentially new 
approach, allowing solving a problem of tight
integration of SNS and INS in the most general case. 

A MATHEMATICAL MODEL OF STATE 
VECTOR OF INERTIAL NS

As INS we will consider a model of strapdown INS 
[3, 4] (SINS) at which synthesis we will use the
following right Co-ordinate Systems (CS) [4, 5]:

• Instrumental CS (ICS)J 0xyz, which beginning is 
disposed in center of mass MC) of object and the 
axes are directed on orthogonal sensitivity axes of 
the equipment which are a part of SINS meters,

• Inertial CS (ICS) I 0ηξζ with origin incenter of
Earth,

• Rotating together with Earth Greenwich CS
(GrCS) G 0η1ξ1ζ1,

• Accompanying (ACS) SOXYZ which begining
coincides with MO centre of mass, an axis Z
coincides with local vertical, an axis Y is parallel 
to an initial meridian plane (movement starts
from), an axis X completes the system to a right 
one.

We consider as well that at reference time the axes 
ICS and ACS (and ICS and GrCS as well) coincide and 
the three accelerometres and three Angular-Rate
Sensors (ARS) include into measuring complex SINS. 

For synthesis of SINS state vector further use the 
parameters of Rodrigues-Hamilton. The mutual current 
orientation of ACS and ICS is described by system of 
the kinematic equations [4, 5]
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01= λ ( )
02 20λ = λ ( )

03 30λ = λ ( )
04 40 ,λ = λ

T
1 2 3 4λ = λ λ λ λ Vector of parameters of

Rodriga's-Gamilton;

0

T
S X Y Zω = ω ω ω iω i X,Y,Z=

-The projections of absolute angular velocity of ACS to 
its axis, equal to: 

( )
SX X 2 3 1 42ω = ω + Ω λ λ + λ λ

( )
S

2 2
Y Y 1 32 2 1ω = ω +Ω λ + λ −

( )Z 3 4 1 22ω = Ω λ λ − λ λ

Si
ω , i = X,Y-the projections of ACS angular velocity to 

its axisconditioned by MO movement concerning the 
Earth; Ω-the rotational velocity of the Earth.

In its turn, a current orientation of trihedral J of 
ICS concerning a trihedral I of ICS can be set as 
follows:

( )0 J
1

µ µ
2

= Φ ω (2)

( )
01 10µ = µ , ( )

02 20µ = µ , ( )
03 30µ = µ , ( )

04 40µ = µ

T
1 2 3 4µ = µ µ µ µ ,

T

J x y zω = ω ω ω Vector of

absolute angular velocity of instrumental trihedral
rotation which can be gained under indications

T

d x y zZ Z Z Z=

of three orthogonal ARSes, positioned on MO:

J d d dZ m Wω = − − (3)
where

T

d x y zW W W W= Vector of the additive

interferences of ARS measuring, described by white 
Gaussian noise (WGN) with zero average and lower 
intentions matrix

dD ;
x y z

T

d d d dm m m m= Vector of mathematical

expectation of ARS zero replacement.
Taking into account (3) an angular movement of 

SINS (2) regarding ICS can be presented in a vector 
kind as follows:

( )( )0 d d d
1

µ µ Z m W
2

= Φ − − (4)

For final synthesis of MO navigational system state 
vector it is necessary to present in a closed form the 
right members of equations initial systems (1), (4).
Thus further we will consider that the projections of 
angular velocity 

S SX Y,ω ω of trihedral S are related to 

projections of MO linear speed VX, VY on ACS axes by 
linear ratios [4, 5]:

( )
SX YV r h= ω + (5)

( )
SY XV r h= −ω + (6)

where r-Radius of the Earth; h-an object altitude above 
the sea level.

For   synthesis   of  expressions  of  projections
VX, VY we will turn to main equation of inertial
navigation [4, 5]:

( )S S S S Sa V 2O V g= + + ω × + (7)

where ×-a sign of vector product; gs-gravitational
vector; a-the acceleration vector, measured by
accelerometers;

T
S X Y ZV V V V= Velocity vector of object

concerning the Earth;

T
S X Y ZO = Ω Ω Ω the vector of Earth rotation

angular velocity, which projections on the axis ACS 
having a view:

( )X 2 3 1 42Ω = Ω λ λ + λ λ

( )2 2
Y 1 32 2 1Ω = Ω λ + λ −

( )Z 3 4 1 22Ω = Ω λ λ − λ λ (8)

For chosen orientations of ACSaxes of projections 
of vector 
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T
S X Y Zg g g g=

on ACS axes define as:

( )( )( )2
X 2 3 1 4 3 4 1 2g 4 r h= Ω + λ λ + λ λ λ λ − λ λ (9)

( )( )( )2 2 2
Y 1 3 3 4 1 2g 2 r h 2 2 1= Ω + λ + λ − λ λ − λ λ

( ) ( ) ( )( )
( )( )

222 2 2
Z 2 3 1 4 1 3

0 1 4

g r h 2 2 2 1

g r,h,

=−Ω + λ λ + λ λ + λ + λ −

− ϕ λ ÷ λ

where g0-the gravitational acceleration, considered as 
function [4, 5] of altitude hand latitude 

( )1 4ϕ λ ÷ λ ( )3 4 1 2arcsin2 k= λ λ − λ λ + π , k 0,= ∞ , [4, 5].

Thevectorof accelerometers output signals 

T
a 1 2 3Z Z Z Z=

can be presented as follows:

a aZ Ca W= + (10)

where

x y z

T

a a a aW W W W= a vector of accelerometers

disturbances, described by WGN with zero math
expectation and matrix of intensities Da(t);

( ) ( ) ( )TC , D Bµ λ = µ λ

C(µ,λ)-a matrix of guiding cosines, determining
ICS orientation regarding ACS;

D(µ)-a matrix of second kind turn [4, 5],
determining   the   ICS   orientation   regarding   ICS;
B = D(λ)-a matrix of second kind, determining ACS 
orientation regarding ICS.

Then, taking into account (10), a vector of
accelerations, measured by accelerometers, can be
presented as kind follows:

( )T
a aa C Z W= − (11)

Expression (7) in scalar form has a view:

( )
SX X Z Y Y Y Z Xa V 2 V 2 V g= − Ω + Ω + ω + (12)

( )
SY Y Z X X X Z Ya V 2 V 2 V g= + Ω − Ω + ω +

( ) ( )
S SZ Z Y Y X X X Y Za V 2 V 2 V g= − Ω + ω + Ω + ω +

where from,substituting in (12) the expressions (5), (6) 
and (11), we will receive:

( ) ( )( )

( )( )
X a a Z Y1

1
Y X Z X

V C , Z W 2 V

2 V r h V g
−

= µ λ − + Ω −

Ω + + −



( ) ( )( )

( )( )
Y a a Z X2

1
X Y Z Y

V C , Z W 2 V

2 V r h V g
−

= µ λ − − Ω +

Ω − + −


(13)

( )
( )

1
Z (3) a a Y X X

1
X Y Y Z

V C ( , )(Z W ) 2 V (r h) V

2 V (r h) V g

−

−

= µ λ − + Ω + +

− Ω − + −



where through ( ) ( )( )iC , i 1,..,3µ λ = it is designated i-th

row of matrix CT (µ,λ).
Included into given earlier expressions an object 

altitude habovesealevel is determined by vertical
constituent of its velocity 

Zh V= (14)

that allows locking up into uniform system all
expressions received.

In  final  view  the  expressions  of  stochastic 
vector of SINS on bases of three ARS and of three 
accelerometers have a view:

( ) ( )
( )

( )
( )

2 3 1 4Y
1 2 2

0 X 1 3

3 4 1 2

2V
1 r h V 2 2 1
2

0 2

−

 Ω λ λ + λ λ−
  λ = Φ λ + + Ω λ + λ − 
 Ω λ λ − λ λ  



( ) ( )0 d d d
1

µ Z m W
2

= Φ µ − −

( ) ( ) ( ) ( )

( )( ( ) )
( )( )( )

X a a 3 4 1 2 Y1

12 2
1 3 X Z

2
2 3 1 4 3 4 1 2

V C , Z W 4 V

2 2 2 1 V r h V

4 r h ,

−

= µ λ − + Ω λ λ − λ λ −

− Ω λ + λ − + + −

− Ω + λ λ + λ λ λ λ − λ λ


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( ) ( )( ) ( )

( )( ( ) )
( ) ( )( )

Y a a 3 4 1 2 X2

1
2 3 1 4 Y Z

2 2 2
1 3 3 4 1 2

V C , Z W 4 V

4 V r h V

2 r h 2 2 1 ,

−

= µ λ − − Ω λ λ − λ λ +

+ Ω λ λ + λ λ − + −

− Ω + λ + λ − λ λ − λ λ



( )
( )

( ) ( ) ( )( )
( )( )

2 2 1
Z (3) a a 1 3 X X

1
2 3 1 4 Y Y

222 2 2
2 3 1 4 1 3

0 1 4 Z

V C ( , )(Z W ) 2 (2 2 1) V (r h) V

4 ( ) V (r h) V

r h 2 2 2 1

g r,h, ,h V

−

−

= µ λ − + Ω λ + λ − + + −

− Ω λ λ + λ λ − + +

+Ω + λ λ + λ λ − λ + λ − +

+ ϕ λ ÷ λ =





Or in canonical view− in Lanzheven’s vector form:

( ) ( )0Y F Y,t F Y,t= + ξ (15)
where

TT T
X Y ZY V V V h= λ µ

TT T
d aW Wξ =

The principal features of exp ressions (15) are their 
general character, first of all and, secondly, the
possibility of utilization on its bases of nonlinear
filtration methods providing the navigational
estimations optimality at integration of SINS and SNS.

In order to use this possibility it is necessary to 
receive an equation of vector Y observer, following [7] 
(i.e. an analytical model of signal, carrying an
information on vector Y components).

MATHEMATICAL MODEL OF 
AUTONOMOUS OBSERVER OF SINS 
CONDITION STOCHASTIC VECTOR

In order to solve this problem we consider a
possibility of SINS complexion with Doppler’s sensors 
of velocity (DSV). 

ForusageofDSVinformationinalgorithmswesuppose
further that the vector of outlet signals 

y

T

D Dx D DzZ Z Z Z=

of DSV which axes are orthogonal and directed per ICS 
axes have a view:

D D DZ V W U= + + (16)
where

T

x y ZV V V V=

a vector of normalized velocity of MO in INS; 
WD-markovian noise vector on DSV outlet;
UD-WGN with zero average and matrix of intensities 
DU.

In general case the vector WD is being described by 
stochastic equation:

( ) ( )
0D D D D D DW f W ,t f W , t= + ξ (17)

where
0D Df ,f -the known vector and matrix functions,

ξD-WGN with zero average and matrix of
intensities DD.

As soon as a projection of relative linear velocity 
of MO on ICS axes Vx, Vy and Vz determine on 
projections of velocity VX, VY and VZ on ACS axis as:

SV C( , )V= µ λ (18)

the n the expression of observer of SINS condition 
vector will have a view:

D S D DZ C( , )V W U= µ λ + +

or in more generalized view (canonical):

( )D DZ H Y,t U= + (19)
where

( ) S DH Y,t C( , )V W= µ λ +

(Thus the vector WD should be included into
composition of all SINS state vector Y and vectorξD-
into composition of its vector of noise:

( ) T1 T T T
d a DW Wξ = ξ ). Representation of SdNS motion 

equations in form "object-observer" uncloses the
principal possibility of optimum estimation of MO
movements’ parameters. 

SYNTHESIS OF ALGORITHMS OF NON-
LINEAR FILTERING OF AUTONOMOUS SDNS 

NAVIGATIONAL PARAMETERS

In the theory of non-linear filtering for deriving of 
processes estimations of kind (15) utilize the different 
approximate (suboptimal) methods most demanded of 
which is the non-linear (Gaussian) filter of Kalman-
Byyusi ensuring the required compromise between an 
estimation precision and volume of computing
expenditures [7, 8].

The equations (15, 19) in form “object-observer"
easily allow, following [7], to record the non-linear
filter for considered NS as:
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( ) ( )T
1

U

ˆH Y,t
ˆK Y,t R D ,

Ŷ
−

∂
=

∂

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T

T T
0 0 U

ˆ ˆF Y,t F Y, t
ˆ ˆ ˆR Y,t R Y,t R Y, tˆ ˆY Y

ˆ ˆ ˆ ˆF Y,t D F Y,t K Y,t D K Y,t ,ξ

∂ ∂
= + +

∂ ∂

+ −


(21)

( )0 0Ŷ M Y= , ( ) ( ){ }T

0 0 0 0 0
ˆ ˆR M Y Y Y Y ,= − −

where Ŷ -a vector of current estimate of NS state
vector Y (t).

The gained estimates of SdNS navigational
parameters  allow  ensuring  inconvertible  estimation 
of MO navigational parameters even at absence of
satellite  measuring. At  the  same  time  a presence of 
last ones can essentially increase a precision of
estimation, so in this connection we will consider a 
possibility of integration of satellite and autonomous 
measuring in more detail.

MATHEMATICAL MODEL OF SIGNALS
OF SATELLITE MEASURING

In reference condition an informational signal of 
code measuring (pseudo-distance) can be recorded
(taking into account an algorithmic compensation errors 
stipulated by transition of radio signal through
ionosphere and troposphere, the errors of clocks of the 
receiver and satellite) as:

R

2 2 2
R c c c ZZ ( ) ( ) ( ) W= ξ − ξ + η − η + ζ − ζ + (22)

where ξc, ηc, ζc-satellite coordinates in Greenwich CS, 
calculated onboard of satellite and transmitted to an 
object in navigational notification.
ξηζ-an object current coordinates in the Greenwich CS;

RZW -WGN with zero average and known variance

RZD (t) .
Similarly the informational signal of Doppler

measuring
VZD (t) can be presented as follows:

( ) V

c c c c
V

c c

1
2 2 2

c c c Z

( )(V V ) ( )(V V )
Z

( )(V V )

( ) ( ) ( ) W

ξ ξ η η

ζ ζ

−

ξ − ξ − + η −η − 
=  

+ ζ −ζ −  

× ξ − ξ + η − η + ζ − ζ +

(23)

where Vξc,  Vηc, Vζc-the projections of satellite velocity 
onto axis of GrCS,

Vξ,  Vη,  Vζ-the projections of object velocity onto 
axis of GrCS,

VZW -a WGN with zero average and known
dispersion

VZD (t) .
Signals of coded and Doppler measuring bear

theinformation both: on MO current coordinates and on 
its velocity, i.e. can be used as signals of observation of 
object state vector. But for this purpose it is necessary 
to present them in corresponding ACS. In case being 
considered we have for object coordinates:

( )2 4 1 32(r h) ,ξ = + ⋅ λ λ + λ λ

( )3 4 1 22(r h) ,η = + ⋅ λ λ − λ λ

2 2
1 4(r h) (2 2 1)ζ = + ⋅ λ + λ −

At definition of connection of object velocity
vector in Greenwich CS VG with velocity vector VS in 
ACS it is necessary to consider that this connection is 
defined not only by matrix B(λ1, λ2, λ3, λ4) of ACS 
orientation regarding to ICS shown earlier, but it
requires also an additional use of matrix of turning 
point G of Greenwich CS regarding ICS:

cos t 0 -sin t
G 0 1 0

sin t 0 cos t

Ω Ω
=

Ω Ω

In this case a representation of vector VGhas the 
appearance follow:

T T
G 1 2 3 4 S SV G( t)B ( , , , )V GB ( )V= Ω λ λ λ λ = λ (24)

Hence, it is finally possible to present the
informational models of signals of code and Doppler 
measuring as follows:

RR ZZ W= + ( ) ( ) ( )( ) ( )2 2 2 2 2
c 2 4 1 3 c 3 4 1 2 c 1 4( 2 r h ) ( 2 r h ) ( r h (2 2 1))ξ − + λ λ + λ λ + η − + λ λ − λ λ + ζ − + λ + λ − =

RR ZH ( ,h) Wλ +
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( )( ) T
V c 2 4 1 3 c (1) SZ [( 2 r h )(V [GB ( )] V )ξ= ξ − + λ λ + λ λ − λ +

( )( ) ( )T 2 2 T
c 3 4 1 2 c (2) S c 1 4 c (3) S( 2 r h )(V [GB ( )] V ) ( r h (2 2 1))(V [GB ( )] V)]η ζ+ η − + λ λ − λ λ − λ + ζ − + λ + λ − − λ

( )( ) ( )( ) ( )2 2 2 2 2 1
c 2 4 1 3 c 3 4 1 2 c 1 4( ( 2 r h ) ( 2 r h ) ( r h (2 2 1)) )−× ξ − + λ λ + λ λ + η − + λ λ − λ λ + ζ − + λ + λ −

V VZ V S ZW H ( , h , V ) W+ = λ + (25)

where [GBT(λ)](i)-i-th row of matrix GBT(λ).
The  most  important  feature  of satellite observations which is essentially impeding a high-precision estimation of
continuous  navigational  parameters  of  object-especially  for  high-speed  MO,  is  their  discrete  character  (in

GLONASS time interval between the lines-navigational
communications makes 2 with [1]). The similar
problem related already to case of continuous-the
discrete filtering and can be, as known [7], solved on 
the basis of sharing use of two kinds of estimates: a 
continuous-on interval between satellite observations
and a discrete-at the moment of reception of
navigational conferring. (At subsequent synthesis of the 
last we will use-in accordance with offered in [7],
Gaussian approximation of a posteriori density of
probability of state vector).

THE SOLUTION OF NAVIGATIONAL 
PROBLEM ON COMPLEXION MEASURING

OF INTEGRATED NS

So, we will consider a scheme of estimation of
integrated NS state vector which complexion observer 
forms both: on SdNS autonomous measuring and on 
satellite measuring. Thus the equations of satellite
measuring (25) for the purpose of simplification of
further build-ups we will represent in vector view:

R

V

ZR R

c
ZV V S

WZ H ( ,h)

Z H (Y, t )
WZ H ( , h , V )

λ

= = + = + ζ
λ

(26)

where ζ-a white Gaussian vector a noise with zero 
average and matrix of intensity

R

V

Z
CHC

Z

D 0
D

0 D
=

Since these observations are discrete, then the
satellite measuring equations (26) is necessary to
present in the view follow:

K C KZ H (Y,K)= + ζ (27)

where k =1,2, …-a number of step of navigational
conferring reception. 

The generalscheme of NS integration in this case 
will be the following: on time interval between the
satellite measuring for estimation of navigational
parameters the continuous non-linear filter (20,21) is 
used and while the processing of satellite navigational 
information it will be used the discrete Gaussian filter 
[7, 9]. Thus, it is necessary to bear in mind that the 
continuous filter is used only on time intervals [tK-1, tK],
k = 1,2, …,   between  the  discrete  satellite  measuring
therefore    the   initial   conditions K 1Ŷ(t )− ,   R(tK-1)  of 
equations of continuous filtering of kind (20,21) on the 
interval [tK-1, tK] are formed as a result of discrete 
estimation

K 1 K 1
ˆ ˆY Y(t 0)− −= + , K 1 K 1R R(t 0)− −= +

ofvector Y intK-1instant:

K 1 K 1 K 1
ˆ ˆ ˆY(t ) Y Y(t 0)− − −= = +

K 1 K 1 K 1R(t ) R R(t 0)− − −= = +

The result of integration KŶ(t ) , R(tK) of equations 
(20,21) at terminal of time interval [tK-1, tK] is an initial 
condition

K K0
ˆ ˆY(t 0) Y− = , K K0R(t 0) R− =

for performance of algorithm of discrete estimation in 
tK instant:

K K 0 K
ˆ ˆ ˆY(t 0) Y Y(t )− = = K K 0 KR(t 0) R R(t )− = =

Similar connection of initial and terminal
conditions of algorithms of discrete and continuous
estimation is one of the main requirements of condition 
of tight integration of autonomous SdNS and SNS.

At synthesis of discrete non-linear filter it is
necessary to consider that in contrast to a case of 
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continuous filtering the discrete estimation is carried 
out at expanded vector of observation:

( )(1)
D K DZ Z H Y,K U ,= = + K c KZ H (Y,K)= + ζ

this is further in order to simplify an entry will be
represented as:

( )
( )

( )
(1)

DK? ? ? ? ? ? ? ? ?
? K

KcK

H Y,K UZ
Z H Y,K ?

H Y,KZ
= = + = +

ζ

where ? ? ?
Kζ -WGN with zero average and intensity

matrix

U
? ? ?

CHC

D 0
D

0 D
=

The algorithm of discrete estimation at similar
expanded observer according to [7] looks like:

( ) ( )
? ? ? T

K0 1 ? ? ? ? ? ?
K K 0 K ? ? ? K K0

ˆH Y ,K
ˆ ˆ ˆY(t 0) Y R(t 0) D Z H Y , K ,

Ŷ
−

∂
 + = + + − ∂∫ (28)

( ) ( )? ? T T ? ? T
K 0 K01 1 1

K K0 ? ? T

ˆ ˆH Y ,K H Y ,K
R (t 0) R Dˆ ˆY Y

− − −
∂ ∂

+ = +
∂ ∂

Hence, the offered scheme of sharing usage of
algorithms of estimation (20, 21) and (28) allows in
essence and in most general case, without any
simplifying assumptions, to solve the problem of tight 
integration of autonomous SdNS and SNS.

EXAMPLE

For illustration of possibility of effective use of the 
offered algorithm of integration of SINS with SNS the 
numerical modeling of estimation equations (20), (21), 
(28) has been carried out.

Modeling operation was carried out on time
interval t∈[0;10000]c with step ∆t=0,01c by method of 
Runge-Kutta of fourth order [10] at following chosen 
initial conditions: 

0 0 0 0 0, , , ,
5 4 3 5 4
π π π π π

λ = ϕ = α = β = − γ =

At modeling operation a character of object CM 
movement relative to Earth surface has been defined by 
time functions:

( ) ( )XV 200exp 0,1t 10cos 0,25t= − +

( ) ( )YV 100exp t 5sin 0.25t= − +

( ) ( )
( )( ) ( )( )

( )
Z

300exp 0.08t 3sin 0.25t , if 0 t 25

V 284exp 0.07 t 25 3sin 0.25t , if25 t 100

3sin 0.25t , if 100 t 1000

 − + < ≤
= − − − + < ≤


< ≤



As a model of noises the additive Gaussian
uncorrelated vector-noise with zero mathematical
expectation and intensity has been used for:
accelerometers-(10-5 m/s3) 2, DSV-(0.5m/s) 2, SAR-(10-4

1/c) 2, coded measuring-(15m) 2, Doppler measuring-
(0.5m/s) 2. Modeling of satellite signals loss was carried 
out twice: on 110th second on time interval 15sec. and 
on 3100th sec. on time interval 35sec.

Upon the termination of modeling time interval the 
peak errors of vector Y components have made: on 
vertical constituent of object velocity vector VZ-7 %, on 
projection VX-5,8%, on projection VY-4,7%, per
orientation angles-0,4 %, on longitude-17 m, on
latitude-12 m that testifies to possibility of effective 
practical use of offered algorithm.

CONCLUSIONS

It is developed a complete non-linear model of 
state vector of autonomous SINS, containing in
structure a measuring DSV complex and providing
inconvertible estimation of navigational parameters at 
loss of satellite measuring. 

In presence of SNS measuring the offered model 
allows constructing a general nonlinear observer of
complete vector of navigational parameters on the basis 
of complexation of independent and satellite measuring.

Synthesis of complex observer, in turn, provides a 
possibility of rigorous application of nonlinear filtering 
theory and development on its basis of procedure of 
common solution of navigational problem of integrated 
NS, ensuring a high-precision parameter estimation of 
object motion at presence of satellite measuring and 
inconvertible estimation-at their loss. 
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