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Indoor Slam Using an Omnidirectional Camera
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Abstract: This paper presents a Simultaneous Localization and Mapping (SLAM) algorithm for an indoor robot
using bearing-only observations. An omnidirectional camera is used to observe indoor scene from which
vertical lines are extracted to obtain bearing measurements. To track vertical lines through sequence of
omnidirectional images, a matching algorithm based on histogram of oriented gradients technique is proposed.
The Extended Kalman Filter (EKF) is used to estimate the 3-DoF motion of the robot along with two-dimensional
positions of vertical lines in the environment. In order to overcome bearing-only initialization, the Unscented
Transform is used to estimate the probability distribution function (PDF) of an initialized vertical line.
Simulations have been carried out to validate the proposed algorithm.
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INTRODUCTION view, features remain longer in sight of the

Simultaneous Localization   and  Mapping  (SLAM) pose estimate. We use the standard EKF based SLAM
is the key problem in mobile robotics research. Most framework adapted to the visual case to solve  the
implementations of SLAM is related to range-bearing bearing-only SLAM. Vertical lines in the environment,
SLAM which requires  observations  of  range  and such as doors and wall, are extracted to obtain bearing
bearing  to  features  from  the robot [1, 2]. However, measurements which are incorporated in the update stage
range-bearing SLAM relies on accurate but expensive of the EKF. We will present an algorithm for extracting
sensors, such as scanning laser rangefinder or radar. and matching vertical lines on consecutive
Therefore, inexpensive sensors are suitable for SLAM omnidirectional images. In addition, we propose a feature
deployment in many practical applications. And bearing- initialization algorithm based on Unscented Transform
only SLAM is an attractive  solution  as it enables  the allowing us to properly estimate PDF through non-linear
use of inexpensive vision sensors. A well-known bearing- function.
only SLAM system consists of fusing measurements from The format of the paper is as follows. The next
proprioceptive (odometry) and exteroceptive sensors section discusses the previous bearing-only SLAM
(vision sensor) by means of an EKF. EKF provides an algorithms. Section III presents proposed algorithms for
estimate of the robot pose, as well as an estimate for extracting and matching feature. Section IV discusses our
feature location. bearing-only SLAM based on EKF approach. Section V

In  contrast   to   range-bearing   SLAM,  only a specifically describes the feature initialization algorithm.
single bearing measurement is  not  sufficient to Finally, results of simulation are shown in Section VI and
determine the feature location and at least two conclusions are made in Section VII.
measurements are required. However, location estimate
may be ill-conditioned if the base-line between a pair of Related Work: While range-bearing SLAM has received
bearing measurements is insufficient [3]. Due to the a lot of attention, little work has been presented regarding
difficulty of feature initialization, little work has been bearing-only SLAM. Similarly to range-bearing SLAM,
presented regarding bearing-only SLAM. bearing-only SLAM is essentially an estimation problem

In this paper we highlight some of the specific issues and can be solved using several stochastic techniques,
faced in bearing-only SLAM using an omnidirectional such as Maximum Likelihood approaches, particle filter or
camera as exteroceptive sensor. Due to the large field of EKF.

omnidirectional camera that increase accuracy of robot
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In [4] the author’s use a multi-hypothesis filtering
approach in which several hypotheses of the position of
a landmark are created based along the direction of the
first observation of a feature. The validity of the
hypotheses is evaluated based on the sequential
probability ratio test. Lemaire uses a Gaussian Sum Filter,
but place Gaussians along the initial bearing to
approximate a uniform uncertainty in depth [5]. 

Davison solves the initialization problem by
assuming a uniform prior for the depth of a landmark [6].
Particle filter is then employed to recursively estimate the
feature depth which is not correlated with the rest of the
map. Each new observation is used to update the
distribution of possible depths, until the variance range is
small enough to consider a Gaussian estimation. In [7] the
authors propose the algorithm which combines a bundle
adjustment for feature initialization and a Kalman filter.

In [3] Bailey  stores  the  robot  pose  and Fig. 1: Vertical line extraction on an omnidirectional image
observation data in the state vector  and  uses
constrained initialization  to  compute  the  feature omnidirectional camera is perpendicular to the floor of the
position when robot is at a sufficient distance from the environment, all world vertical lines project into radial
first observation.   The  Kullback-Leibler  distance is lines on the image plane.
used to  determine   whether   feature   initialization is To extract vertical lines, we first compute the image
well-conditioned. Computational cost of this method is gradients and pixels whose gradient vector points to the
high due to the calculation of the Kullback-Leibler image center are kept. Then the Hough transform is used
distance. to extract vertical lines. In order to reduce the number of

There are some works that show solutions for SLAM features to be processed, an omnidirectional image is
problem using an omnidirectional camera. In [8] the divided into two parts related to the center of the image.
authors integrate Spherical Camera Model for central Line segments with the same Hough transform bin are
omnidirectional systems into the EKF-based SLAM by merged if the distance between them is less than the
linearizing the direct and the inverse projection. In [9] specified value; too small line segments are discarded.
SLAM algorithm based on the FASTSLAM approach and Result of vertical line extraction algorithm is shown in
the Hungarian algorithm for hierarchical data association Figure 1.
is proposed. In order to match vertical lines between consecutive

Vertical Lines Extraction and Matching for unique and invariant to the rotation and illumination
Omnidirectional Images: The main advantage of an change,  to represent the local neighborhood of an
omnidirectional camera is that it provides a 360° filed of vertical line. The descriptor is based on the histogram of
view which  gives   a  very  rich  information.  However, oriented  gradients,  which  counts occurrences of
the  mirror   geometry  provides  radial  distortion  and gradient orientation in interested portions of an image.
non-uniform resolution on the image, so conventional Then matching can be done by finding the line with the
image processing techniques are not directly applicable in closest descriptor.
omnidirectional images [10]. In order to apply image To make the descriptor invariant to the rotation,
processing techniques for conventional cameras, vertical lines are rotated to a fixed direction, such as axis
omnidirectional images usually are unwrapped to Ox. In order to reduce the computational cost, rotation is
perspective views which remove the  radial  distortion. processed only for the pixels of the line and its
But this procedure is computationally expensive. neighborhood which forms a rectangular region of interest

In this section we propose an algorithm for vertical around the line. Then the region of interest is divided into
line extraction and matching without unwrapping sectors along the length of the line and symmetric about
omnidirectional  images.   Assuming  that  the  axis  of  the the  line,  as  shown  in  Figure   2.  In order to improve the

omnidirectional images, we use a descriptor, which is
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Fig. 2. Descriptor of a vertical line

performance of the descriptor, we apply a Gaussian spatial
window, who’s  the  standard  deviation  equal  to  one
half the width of the region, within the region of interest.
It allows us to weight pixels around the edge of the region
less. For each sector, we compute a histogram of oriented
gradients, each bin of which contains the sum of weighted
magnitudes of gradients having the same orientation
interval. The descriptor is formed from a vector containing
the values of  all  the  histogram  of  oriented  gradients.
To reduce the effects of illumination change, descriptor
vector is normalized to unit length.

We use the Euclidean distance to determine a
distance between two descriptor vectors. The
correspondent of a vertical line in the consecutive images
can be searched by finding the features with the closest
descriptor. However, if a feature doesn’t have a
correspondent in another image, there is a closest feature
anyway. Therefore, to improve the robustness of the
comparison, we use the second criteria that the distance
from the closest feature must be smaller than the distance
from the second closest feature.

EKF-Slam Using Vertical Lines: The state vector of the
system containing a robot pose x  = [x y ]  and a set ofR r r r

T

2D positions of vertical lines x  = [x   y ]  at the time stepL L L
T

. The state vector is considered

as Gaussian random variable with covariance P, which can
be decomposed as:

(1)

where P  - covariance of the robot pose; P  - covariancerr u

of the map of vertical lines; P , P  – cross-covariancerl lr

between the two.
At the beginning of time step k, a prior state vector

x [k] is predicted by a state-transition model which–

describes the evolution of the state vector from the
previous state estimate x (k – 1) given a control vector+

u[k]:

(2)

where u[k] is the control vector containing linear and
angular velocity of the robot; w[k] is the process noise
vector which is assumed to be a Gaussian variable with
covariance Q[k].

The prior covariance of the state vector P [k]–

propagated forward via:

(3)

where F  = f and F  = f are the Jacobian matrices of the state-transition function f(x , u, w) w.r.t the robot pose andR xR U u R

the control vector respectively.

Fig. 3: The robot motion model
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The fusion of the observation into the state estimate is accomplished by first calculating a predicted observation,
using the observation model h(x[k], v[k]):

(4)

where v[k] is observation noise with covariance R[k]?
When vertical lines are obtained from the omnidirectional camera, they must be matched with initialized ones by the

proposed algorithm at section 3. The difference between the actual observation z[k] from the omnidirectional camera and
the predicted observation z [k] is known as the innovation v[k].–

v[k] = z[k] – z [k] = z[k] – h(x [k], v[k]) (5)– –

The innovation covariance S[k] is computed from current state covariance estimate P [k], the Jacobian matrices of–

the observation model H  =  h, H  =  h, and the covariance of the observation model R[k].R xR L xL

(6)

The state estimate and covariance are updated using optimal Kalman gain K[k] which provides a weighted sum of
the prediction and observation.

x [k] = x [k] + K[k]v[k] (7)+ –

P [k] = P [k] – K[k]S[k]K [k] (8)+ – T

K[k] = P [k](  h[k]) S [k] (9)– T T
x

Unscented Transform Based Feature Initialization: The problem with bearing-only initialization is that a single
observation is insufficient to determine the location of the feature and at least two observations from two different
vehicle pose are required. The location of the feature is determined by triangulation method [3].

(10)

where . is sufficient. And a criterion, such as Kullback-Leibler
Equation 8 may be extremely ill-conditioned distance [3], must be used to determine whether the

depending on the uncertainty of the pose estimates, estimate is well-conditioned. However, the complexity of
observations and the base-line between the two vehicle methods used to compare two contributions is very high.
poses. Figure 4 shows PDF for the depth of a feature In order to overcome the problems of the bearing-
estimated from two noisy vehicle poses and bearing only initialization, we propose Unscented Transform
measurements at different base-lines. Estimates converge based algorithm to estimate PDF of a feature’s location.
to a Gaussian shape when the base-line between two The Unscented Transformation is a method for calculating
robot poses increases. Estimates at low base-lines are the statistics of a random variable which undergoes a
highly non-Gaussian and have “heavy-tailed” nonlinear transformation [11]. The state is represented by
distributions which cannot be correctly processed by a Gaussian distribution and a set of points is used to
EKF. Feature initialization can be deferred until a base-line sample  the  distribution  of the state. These sample points
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Fig. 4: PDF of the feature location with different base-line using weighted sample mean and covariance of the

are chosen such that they completely capture the true
mean and covariance of the Gaussian distribution. After
propagating these sample points through the non-linear (18)
system, we capture the posterior mean and covariance
accurately to the 3-rd order. 

We first form a Gaussian random vector µ which
consists two robot poses, two correspondent bearing (19)
measurements. All these variables are needed to
determine the location of a feature by the triangulation The skewness of the estimate is calculated to
method. When a feature is first observed, the robot pose determine whether the estimate is well-conditioned. For a
and the bearing measurement of the feature  are stored well-conditioned estimate, its skewness must tend to zero.1

in the random vector µ. Next observations of the feature
and robot poses are alternately added to the random
vector µ in order to determine the location of the feature
using triangulation method from two bearings. (20)

(11) An ill-conditioned estimate is deleted and the next

Covariance P of the random vector µ is diagonal Once a new feature initialization is considered well-
matrix containing variances of the robot poses and conditioned, its mean and covariance are augmented to
observations. We form a set  of 2n + 1 sigma vectors the state vector and covariance of the system.i

(with corresponding weights W ) which samples Gaussiani

distribution of the random vector µ. (21)

X  = µ (12)0

(13) (22)

(14)

(15)

(16)

(17)

where  = (n + ) is a scaling parameter. ,  determine2

how far the sample points are away from the mean µ.  =
2 Is optimal for Gaussian distribution.  is the i-

th row of the matrix square root .

These sigma vectors are propagated through non-
linear function given by Equation 8. The location and
covariance estimates of the feature are approximated

transformed sigma vectors.

observation is obtained to process feature initialization.

where  is the Jacobian matrix of the function

w.r.t the current robot pose.

Experimental Result: Several simulations have been
executed in order to test the performance of the proposed
algorithm. Simulation provides ground truth and true
parameters  of   the   noise  statistics.  In  this  experiment,
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Fig. 5: (a) Result of simulation. (b) Error of estimate for odometry (blue) and proposed algorithm (red). (c) Uncertainty
of estimate. (d) Measurement residual

the  bearing   measurement   uncertainty   is   1  degree. The result of simulation  is  shown  in  Figure  5a.
The simulated environment consists 80 features within a Here,  the green  trajectory depicts  the  true  path,  the
80 by 80 meters region. The robot travels with average red – the path estimated by the proposed algorithm and
speed of 3 m/s. The standard deviations of the control the blue – estimated by the odometry only. The blue
values are 0.3 m/s and 3 degrees respectively. points represent the true feature locations, the red – the
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estimated. The ellipses indicate the mean and uncertainty 2. Dissanayake,  M.W.M.G.,   P.  Newman,  S.  Clark,
bounds of each feature estimate. The errors and H.F. Durrant-Whyte and M. Csorba, 2001. A solution
uncertainty in the robot pose estimate by proposed to the simultaneous localization and map building
algorithm and the odometry are shown in Figure 5b, 5c. (SLAM) problem. IEEE Transactions on Robotics and
Figure 5d represents the measurement residual between Automation, 17(3): 229-241.
the actual observation from the omnidirectional camera 3. Bailey, T., 2003. Constrained initialisation for bearing-
and the predicted observation. only SLAM. In Proceedings of the 2003 IEEE

Obviously, the robot pose uncertainty is stable International Conference on Robotics and
during the simulation  which  shows  that  the  EKF Automation, pp: 1966-1971.
process is consistent and new feature initializations are 4. Kwok, N.M. and G. Dissanayake, 2004. An Efficient
well-conditioned. Without the proposed feature Multiple Hypothesis Filter for Bearing-Only SLAM.
initialization algorithm, SLAM diverges as soon as a new In Proceedings of IEEE/RSJ International Conference
feature isn’t properly initialized. At the end  of  the on Intelligent Robots and Systems, pp: 736-741.
trajectory, the robot has revisited the place with the first 5. Lemaire, T., S. Lacroix and J. Sola, 2005. A practical
observed features and the uncertainty of the estimation 3D bearing-only SLAM algorithm. In Proceedings of
dramatically decreases. IEEE Intelligent Robots and Systems, pp: 2449-2454.

CONCLUSION localization  and   mapping   with   a   single  camera.

In this paper we have presented an approach to 7. Deans, M. and M. Hebert, 2000. Experimental
bearing-only SLAM using the system based  on an comparison of techniques for localization and
omnidirectional camera and an odometry. Azimuth of mapping using a bearing-only sensor. In
vertical lines extracted from omnidirectional images is International Symposium on Experimental Robotics.
used as exteroceptive measurements of the environment 8. Rituerto L. Puig and J.J. Guerrero, 2010. Visual SLAM
which the robot can use for navigation and localization. with an Omnidirectional Camera. In Proceedings of
Conventional image processing techniques are not International Conference on  Pattern  Recognition,
directly applicable in omnidirectional images, so pp: 348-351.
algorithms for   vertical  lines  extraction  and  matching 9. Gamallo,  M.  Mucientes  and  C.V.  Regueiro,  2013.
are proposed. The bearing information  from  the A FastSLAM-based algorithm for omnidirectional
omnidirectional camera is exploited in the update phase of cameras. Journal of Physical Agents, 7: 1.
an EKF. The feature initialization algorithm based on 10. Baker, S. and  S.K.  Nayar,  1999.  A  Theory of
Unscented Transform is proposed. The Unscented Single-Viewpoint Catadioptric Image Formation.
Transform allows us to use the skewness of the estimate International   Journal    on     Computer   Vision,
to determine whether the estimate is well-conditioned. 35(2): 175-196.
Finally, we have shown results of simulation which 11. Julier, S. and J. Uhlmann, 1997. A new extension of
validate the proposed algorithms. the Kalman filter to nonlinear systems. In
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