
Middle-East Journal of Scientific Research 15 (8): 1125-1133, 2013
ISSN 1990-9233
© IDOSI Publications, 2013
DOI: 10.5829/idosi.mejsr.2013.15.8.1830

Corresponding Author: M. Aqeel Iqbal, Department of Computer Engineering College of Electrical and Mechanical Engineering
National University of Sciences and Technology (NUST), Pakistan.

1125

High Speed Computational Unit Design for
Reconfigurable Instruction Set Processors

M. Aqeel Iqbal and Shoab A. Khan 1 2

Department of Computer Engineering College of Electrical and Mechanical Engineering1

National University of Sciences and Technology (NUST), Pakistan
Department of CE, College of E and ME, NUST, Pakistan2

Abstract: Reconfigurable computing is intended to fill the gape between hardware and software by
providing an ideal platform for scientific and commercial computations. The platform tends to be as much
flexible as that of general purpose processors (GPP) and also tends to be as much high speed as that of
application specific integrated circuits (ASICs). Reconfigurable processors are the one of the most advanced
solutions being proposed for reconfigurable computing. The performance of a reconfigurable processor is
greatly dependant on the design of its reconfigurable computational unit. A large number of designs for
such kind of computational units have already been proposed but majority of them are suffering from the
problem of enormous configuration overheads. In this research paper a high speed computational unit
design for reconfigurable processors has been proposed. The proposed design is using many emerging
techniques like multi-port configuration memory, intelligent configuration updation, concurrent configuration
mapping and multi-threaded configuration controller. The proposed design has been simulated for the
execution of a variety of different application programs and the performance statistics so obtained have
proved that it can be an excellent candidate for the design of high speed reconfigurable processors with the
tendency of minimum possible configuration overheads and hence can be used to enhance the performance
of high speed scientific and commercial applications.

Key Words: FPGAs RFUs Reconfigurable Computing Reconfigurable Processors RFU Coupling

INTRODUCTION sequentialization in the execution of the program. Casting

Reconfigurable Computing: General purpose processors executed sequentially on the under laying processor
(GPPs) have always been at the heart of the most of results in the degraded performance of the computation.
the current high performance computing platforms. Application Specific Integrated Circuits (ASICs) provide
They provide a flexible computing platform and are an alternate solution which addresses the performance
capable of executing a large class of applications. The issues of the general purpose processors. ASICs have
software for general purpose processors is developed by fixed functionality and superior performance for a highly
implementing high level functions in the form of a tightly restricted set of the applications. However, ASICs restrict
coupled software core using the instruction set of the the flexibility of the mapped algorithms on the
under laying architecture. As a result, the same fixed architecture.
hardware can be used for many general purpose A new computing paradigm using
applications. Unfortunately, this generality is achieved at Reconfigurable Computing (RC) promises an
the expense of performance. The software program stored intermediate trade-off between flexibility and performance
in memory has to be fetched, decoded and executed. [1]. Reconfigurable computing utilizes hardware that
In addition, data is fetched from and stored back into can be adapted at run-time to facilitate the greater
memory. These conditions force the explicit flexibility without compromising performance gain [2].

all complex functions into simpler instructions to be

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1126

Reconfigurable architectures can exploit fine-grain and
coarse-grain parallelism available in the application
because of the adaptability. Exploiting this parallelism
provides significant performance advantages as compared
to the conventional microprocessors. The
reconfigurability of hardware permits adaptation of the
hardware for specific computations in each application to
achieve higher performance compared to software [3].
Complex functions can be mapped onto the architecture
achieving higher silicon utilization and reducing
instruction fetch, decode and execute bottleneck.
Reconfigurable logic can be defined to consist of matrix
of programmable computational units with a
programmable interconnection network superimposed on
the computational matrix. Reconfigurable computing is
introduced to fill the gap between hardware and software
based systems. The goal is to achieve the performance
better than that of software based solutions while
maintaining the greater flexibility than that of the hardware
based solutions [4].

Reconfigurable computing is based on a
reconfigurable core being integrated inside the
reconfigurable processor. The reconfigurable core is
composed of many computational elements whose
functionality is determined through the programmable
configurations as shown in Figure 1. These elements
some times known as Configurable Logic Blocks (CLBs)
are connected by programmable routing resources as
shown in Figure 2. The idea of configuration is to map
logic functions of a design to the processing units within
a reconfigurable device and use the programmable
interconnects to connect processing units together to
form the necessary circuit [5]. Huge flexibility comes from
the programmable nature of processing elements and the
routing resources. Performance can be much better than
software based approaches due to the reduced
execution overhead. Under this definition Field
Programmable Gate Array (FPGA) is a form of
reconfigurable computing device and is shown in.

Reconfigurable Processors (RPs): Combine a
microprocessor core with a reconfigurable logic like FPGA
[6], [7] as shown in Figure 3. The reconfigurable logic
provides hardware specialization to application being
under execution. Reconfigurable Processors can be
adapted after the design in the same way as the
programmable processors can adapt to the application
changes [6]. The location of the reconfigurable logic in
the architecture, relative to the microprocessor affects the
performance. The speed advantages achieved by

Fig. 1: A Typical FPGA Architecture

Fig. 2: Programmable Routing Resources for CLBs

Fig. 3: Typical Reconfigurable Processor Design

Fig. 4: RFU as Loosely Coupled Independant Unit

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1127

executing a program in a reconfigurable logic depend on with the processor as an independent functional unit.
the type of the communication interfaces used between
the reconfigurable logic and the remaining modules of
the system architecture. A reconfigurable functional unit
(RFU) can be placed in three different places, relative to
the processor [6]; As an Attached Processor, as a
Coprocessor and as a Functional Unit. The
reconfigurable logic loads its configurations from an
external memory i.e. Configuration EPROM etc. The
configuration is loaded in the form of a bit stream either
parallelly or serially, just like the bit stream loaded in any
FPGA. If we can configure the RFU after initialization,
 the instruction set can be bigger than the size
allowed by the reconfigurable logic. If we divide the
application in functionally different blocks, the RFUs can
be reconfigured according to the needs of the each
individual block. In this way the instruction adaptation is
done in a per block basis.

RFU as Loosely Coupled Device: In such a kind of
coupling of reconfigurable fabric with the host processor,
the fabric is attached with main host processor via an
external bus like serial port or parallel port etc. In such
kind of loosely coupled systems, the reconfigurable
functional unit (RFU) has no direct data transfer links to
the main host processor as shown in Figure 4. Instead, all
data communication takes place through main memory of
the computing system. The host processor or a separate
configuration controller is responsible to load a
configuration stream into the RFU and places operands
for the instruction into the main memory. Then RFU can
perform the operations specified by the executing
instruction and return the results back to main memory.
Since such kind of loosely coupled and independent
RFUs are separate from the traditional host processor, the
integration of the RFU into existing computer systems is
simplified. Unfortunately, this kind of loose coupling also
limits the bandwidth and increases the latency of data
transmissions between the RFU and traditional host
processor. For this reason such kind of loosely coupled
independent RFUs are well suited only to those
applications where the RFU can work independently from
the main host processor. Examples include data-streaming
applications with significant digital signal processing,
such as multimedia applications like image compression,
decompression and data encryption.

RFU as Co-processor: As opposed to the loosely coupled
independent processing model, other systems more
tightly couple the RFUs with the main host processor on
the same chip. In some cases, the RFU is loosely coupled

Such architectures typically allow direct access to the
RFU from the main host processor as well as
independent access to memory. Examples include the Garp
and the Chameleon systems. Alternatively, the RFU can
be coupled more tightly with the main host processor. For
example, in Chimaera system the RFU is incorporated as
a reconfigurable processing unit (RPU) within the main
host processor itself.

RFU as Attached Processor: The commercial
Reconfigurable Processor (RPs) was created by
Chameleon Systems Incorporation [8]. It combined an
embedded processor subsystem with an RFU via
proprietary shared bus architecture. The RFU had direct
access to the processor as well as direct memory
access (DMA). The reconfigurable fabric also had a
programmable I/O interface so that users could process
off-chip I/O independent of the rest of the embedded on-
chip processing system. This provided more flexibility for
the RFU than in typical reconfigurable processing
architectures, where the RFUs generally had access only
to the processor and memory. The Chameleon architecture
was able to provide an improved price to performance
relative to highest performing commercially available
DSPs, but its reconfigurable processing fabric consumed
more power because of the RFU.

Rfu as Tightly Coupled Functional Unit: Such a kind of
systems tightly couple the RFU to the central
processing unit data-path in a same way as that of
traditional CPU functional units such as the ALU, the
multiplier and the FPU as shown in Figure 5. In some
cases, these architectures only provide RFU access to
input data from the register file in the same way as the
traditional FUs of CPU. Other architectures allow the
RFU to access data stored in the local cache memory
directly. For reconfigurable computing architectures in
which the RFU is tightly coupled with the processing
core, the processor pipeline must be updated so that to
dissolve the unit likes a traditional pipeline unit. RFU
typically run during the execute stage and possibly the
memory stage of the pipeline. Some of these processors
are capable of running RFUs in parallel with instructions
that use more traditional processor resources, such as the
ALU or FPU and even support out-of-order execution like
Chimaera [8].

Proposed Computational Unit: The flow chart showing
the complete configuration and execution cycle for the
proposed unit is shown in Figure 6. The proposed
computational unit as shown in Figure 7 and simulated

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1128

Fig. 5: RFU as Tightly Coupled Dependant Unit

Fig. 6: Computational Unit Program Execution Chart

design using Proteus software is shown in Figure 8 is
composed of many sub-modules. The External
Input/Output Logic (EIOL) of the Bus Interface Unit
(BIU) is used to load instructions in the instruction Fig. 9: Performance of Proposed Unit
register, source operands in general-purpose registers and
the configuration stream in Reconfigurable Functional (5 x 24) input. De-MUX selects one of the general-purpose
Units (RFUs). The second job of the EIOL is to store the registers for data loading and the decoder enables its
configuration stream being loaded in the RFUs for the output channel connecting to the registers through the
analysis purpose and results being generated after the MUX of the size 2 x1. This MUX receives 32-bits data
execution of VLIW. The source operands Sr-1and Sr-2 are operand from External De-MUX at input “1” and receives
loaded into the internal General Purpose Registers 32-bits results from RFUs at the input “0”. If the IO_En
(GPRs) by the External De-MUX of size 1 x 24 as shown signal is OFF then it selects the result coming from the
in Figure 3. The address given for the Data-in is RFUs and loads it in the register. If the IO_En signal is
connected to the select lines of De-MUX as well as ON then it selects the data coming from the
to Decoder External

Fig. 7: Proposed Computational Unit Architecture

Fig. 8: RFUs Simulation Environment

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1129

De-MUX and loads it in the registers. Since there are eight are also read by the FGL and the flags are calculated for
RFUs that can load their results in the same register, each RFU. Flag register is a 32-bits register but recently
hence in order to solve this problem an 8 x 1 MUX (32- only Carry Flag, Sign Flag, Zero Flag, Overflow Flag and
bits) is interfaced with each register input. Each MUX is Equal Flag have been computed in the system. Field
controlled by the RFU Data-path Controller which Programmable Gate Arrays (FPGAs) consists of an
analyzes the Destination Addresses of all the RFUs and array of Configurable Logic Blocks (CLBs) overlaid with
selects only that RFU whose output is valid output. In an interconnection network of wires known as
order to store the results and the flags being available in Programmable Interconnect as shown in Figure 1. Both
the general purpose registers (GPRs) and Flag Registers the logic blocks and the interconnection network are
(FLGs) into the data cache of processor, the 32 x 1 configurable [7].
External MUX (32-bits) is used which can read the The configurability is achieved by using either
contents of the selected register and sends it to the data anti-fuse elements or Static Random Access Memory
cache of the reconfigurable processor. (SRAM) memory bits to control the configurations of

In order to load/store the data across the RFUs transistors. The Anti-fuse technology utilizes strong
there are two 32 x 1 MUXs (32-bits) and one 1 x 24 De- electric currents to create a connection between two
MUX (32-bits) for each RFU as shown in Figure 6. Using terminals and is typically less reprogrammable [9], [10].
two MUXs the RFU is able to read the source data The SRAM based configuration can be reprogrammed on
operands (Sr-1 and Sr-2) from any one of the 32 registers fly by downloading different configuration bits into the
and using the one De-MUX it stores its results back to SRAM memory cells. Current and future generation of
any one of the GPRs. Flags generated during execution of reconfigurable devices ameliorate the reconfiguration cost
the VLIW are loaded into relevant FLGs. There are by providing partial and dynamic reconfigurability [11].
eight FLGs (32-bits) and twenty four GPRs (32-bits) as In partial reconfiguration, it is possible to modify the
shown in Figure 7. GPRs can be read and written by configuration of a part of the device while configuration
programmer but the FLGs can only be read by the of remaining parts is retained [12], [13]. In the dynamic
programmer and can not be written. RFUs can read/write reconfiguration, the devices permit this partial
any one of these thirty two registers. More than one RFU reconfiguration even while other logic blocks are
can read the contents of the same register at the same time performing computations. Devices in which multiple
but only one RFU can write in a register at the same time contexts of the configuration of logic block can be stored
because the read operation is shareable but the write in the logic block and context switched dynamically have
operation is not shareable. FLGs are loaded with the been proposed [12]. In order to further increase the
flags, being generated by the RFUs and can be read by performance of such devices by reducing the
the programmer through the external MUX. In case of the configuration overheads, the concepts of Configuration
GPRs, the programmer can read the registers through the Cloning, Configuration Pre-fetching, Configuration
External MUX but in order to write contents into Context-Switching, Configuration Compression and
registers there is a 2 x 1 MUX (32-bits) which selects the Intelligent Configuration techniques have also been
data for the register either from some RFU output or from proposed.
data cache. The 8 x 1 MUX interfaced at the input of the
2 x 1 MUX selects the valid RFU for the results to be Performance Analysis Of Design
stored in the register as shown in Figure 3. In order to Typical DSP Performance: For the comparison of the
select the valid RFU for results, there is a RFU Data path performance of the proposed unit we selected the
Controller being attached with all MUXs. This controller well-known DSP processor TMS320C6X [14] provided by
reads the select lines of all the De-MUXs of RFUs and Texas Instruments. It is a fixed-point VLIW architecture
after analysis it selects that RFU whose output is a valid containing a total of eight functional units. The pipeline
output. of the TMS320C6X can fetch a VLIW of eight

Reconfigurable core unit is consisting of a layer of instructions [14]. It is known as Fetch-Packet. A fetch
eight RFUs that are the computational units of packet is converted into an Execute-Packet by looking at
reconfigurable processor and can be reconfigured at any the resources available. An execute packet consists of
time according to the demands of the running those instructions that can be executed in the pipeline in
applications. They have been tightly coupled with parallel without any resource conflicts. The program fetch,
integrated field programmable gate array (FPGAs) as the program dispatch and instruction decode units can
shown in Figure 7. The outputs generated by the RFUs deliver up to eight 32-bits instructions to the functional

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1130

Table 1: Equation Parameters Description
Parameter Values
No of fetch packets (FP) 1 - N / Program
Packet Fetch Time (T) 1 Cycle/F. PacketPFT

Operands Fetch Time (T) 1 Cycle/F. PacketOFT

Exe. packets (E = Fn + Dn) 1 - 4 /F. Packet n

Delay Slots (Dn) 0 - 1Cycles/E.Packet
Functional Unit Latency (Fn) 1 Cycle/E. Packet
Total Execution Time (T) M CyclesT

units every CPU clock cycle. Hence it can execute a
maximum of eight instructions in a single CPU clock cycle
if these instructions have no internal resource conflicts.
In case of internal resource conflicts, these fetch-packets
are converted into two or more execute packets and then
executes. The following mathematical equation can be
used for the calculation of execution times of programs.
Consider Table 1 for equation parameters being used.

T = FP (T + T) + [(F + D) + …+ (F + D)] CyclesT PFT OFT n n 0 0

Consider the application programs P1, P2, P3, P4 and
P5 for execution time calculations. The programs have
following statistics when run on TMS320C6X [14].

Application Program (P-1):
ADD R00, R01, R02;
ADD R00, R01, R03;
ADD R00, R01, R04;
ADD R00, R01, R05;
SUB R00, R01, R06;
SUB R00, R01, R07;
MUL R00, R01, R08;
MUL R00, R01, R09;

VLIW Fetch Time T = 1 CycleF

Operand Fetch Time T = 1 CycleO

No of execute packets = 1
Execute Time T = 1 x 2 Cycles E

T = FP (T + T) + (F + D)Total PFT OFT 0 0

 = 4 Cycles

Application Program (P-2):
ADD R00, R01, R02;
ADD R00, R01, R03;
ADD R00, R01, R04;
ADD R00, R01, R05;
SUB R00, R01, R06;
SUB R00, R01, R07;
SUB R00, R01, R08;
SUB R00, R01, R09;

VLIW Fetch Time T = 1 CycleF

Operand Fetch Time T = 1 CycleO

No of execute packets = 2
Execute Time T = 2 x 1 Cycles E

T = FP (T + T) + (F + D) + (F + D)Total PFT OFT 0 0 1 1

 = 4 Cycles

Application Program (P-3):
MUL R00, R01, R02;
MUL R00, R01, R03;
MUL R00, R01, R04;
MUL R00, R01, R05;
MUL R00, R01, R06;
MUL R00, R01, R07;
MUL R00, R01, R08;
MUL R00, R01, R09;

VLIW Fetch Time T = 1 CycleF

Operand Fetch Time T = 1 CycleO

No of execute packets = 4
Execute Time T = 4 x 2 Cycles E

T = FP (T + T) + (F + D) +…… + (F + D)Total PFT OFT 0 0 3 3

 = 10 Cycles

Application Program (P-4):
MUL R00, R01, R02;
MUL R00, R01, R03;
MUL R00, R01, R04;
MUL R00, R01, R05;
MUL R00, R01, R06;
MUL R00, R01, R07;
MUL R00, R01, R08;
MUL R00, R01, R09;

VLIW Fetch Time T = 2 CycleF

Operand Fetch Time T = 2 CycleO

No of execute packets = 8
Execute Time T = 8 x 2 Cycles E

T = FP (T + T) + (F + D) +…… + (F + D)Total PFT OFT 0 0 7 7

 = 20 Cycles

Application Program (P-5):
ADD R00, R01, R02;
ADD R00, R01, R03;
ADD R00, R01, R04;
ADD R00, R01, R05;
SUB R00, R01, R06;
SUB R00, R01, R07;
SUB R00, R01, R08;
SUB R00, R01, R09;

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1131

VLIW Fetch Time T = 2 CycleF

Operand Fetch Time T = 2 CycleO

No of execute packets = 6
Execute Time T = (2 x 1) + (4 x 2) Cycles E

T = FP (T + T) + (F + D) +…… + (F + D)Total PFT OFT 0 0 5 5

 = 14 Cycles

B. Proposed Unit Performance: Consider the Figure 7 for
proposed computational unit design. In a typical RISP
using proposed unit the program fetch unit and VLIW
unit take one CPU Cycle to fetch and deliver eight
instructions based VLIW. The program analyzer unit,
program schedule unit and program dispatch unit take
one Cycle to analyze, schedule and dispatch eight
instructions based VLIW. The execution time taken by
program computational unit depends upon the type of the
instructions to be executed. The configuration time
required to configure different hardware modules needed
by the running application varies from device to device
and from hardware to hardware to be reconfigured.
Configuration times mentioned here are for Vertex-E
device based configuration cloning architectures.
The operating speed assumed for the proposed unit has
been taken as the fastest possible speed of Virtex-E
series of field programmable Gate Array. So for, these
devices are capable of operating at a high speed of more
than 500MHz. Following is the mathematical model being
formulated for the calculations of the total no of cycles
(T) consumed by proposed unit for the execution of anTotal

application program. The formulated mathematical model
is based on an equation which calculates the total number
of clock cycles being required by the unit to execute the
said application program. Consider the Table.2 for the
mathematical model parameters.

T = N (T + T) + T + E + Total VLIW VFT OFT D VLIW CNF

Where = (N x T),CNF CNF CNF

N = (N + N) / 8VLIW INST NOP

 E = (E , E , E … E)VLIW VLIW-0 VLIW-1 VLIW-2 VLIW-N

Consider same application programs P1, P2, P3, P4 and P5
for execution time calculations when run on a RISP using
the proposed computational unit. The programs have
following statistics.

Application Program (P-1):
No of Long words N = 1VLIW

VLIW Fetch Time T = 1 CycleVFT

Operand Fetch Time T = 1 CycleOFT

Dispatch Time T = 1 CycleD

Table 2: Equation Parameters Description
Parameters Description Possible Values
Total Instructions (N) 1 – J / ProgramINST

Total NOPs Used (N) 0 – 7 / VLIWNOP

Total VLIWs (N) 1 – K / ProgramVLIW

VLIW Fetch Time (T) 1 Cycle / VLIWVFT

Operand Fetch Time (T) 0 – 1 Cycle / VLIWOFT

VLIWs Exe. Time (E) 1 – L Cycles/ ProgramVLIW

Total Config. Time () 0 – M Cycles/ ProgramCNF

Total Config. (N) 0 - N / ProgramCNF VLIW

Configuration Time (T) 1 – N Cycles / VLIWCNF

Config Time =1 CycleCNF

No of execute packets =1
Execution time E = 1 x 2 = 2 Cycle VLIW

T = N (T + T) + T + E + = 6 Cycles Total VLIW VFT OFT D VLIW CNF

Application Program (P-2):
No of Long words N = 1VLIW

VLIW Fetch Time T = 1 CycleVFT

Operand Fetch Time T = 1 CycleOFT

Dispatch Time T = 1 CycleD

Config Time =1 CycleCNF

No of execute packets =1
Execution time E = 1 x 1 = 1 Cycle VLIW

T = N (T + T) + T + E + = 5 Cycles Total VLIW VFT OFT D VLIW CNF

Application Program (P-3):
No of Long words N 1VLIW =

VLIW Fetch Time T = 1 CycleVFT

Operand Fetch Time T = 1 CycleOFT

Dispatch Time T = 1 CycleD

Config Time =1 CycleCNF

No of execute packets =1
Execution time E = 1 x 2 = 2 Cycle VLIW

T = N (T + T) + T + E + = 6 Cycles Total VLIW VFT OFT D VLIW CNF

Application Program (P-4):
No of Long words N = 2VLIW

VLIW Fetch Time T = 1 CycleVFT

Operand Fetch Time T = 1 CycleOFT

Dispatch Time T = 1 CycleD

Config Time =1 CycleCNF

No of execute packets =2
Execution time E = 2 x 2 = 4 Cycle VLIW

T = N (T + T) + T + E + = 11 Cycles Total VLIW VFT OFT D VLIW CNF

Application Program (P-5):
No of Long words N = 2VLIW

VLIW Fetch Time T = 1 CycleVFT

Operand Fetch Time T = 1 CycleOFT

Dispatch Time T = 2 CycleD

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1132

Config Time =2 Cycle dynamically reconfigurable platforms. There is aCNF

No of execute packets =2 significant lack of research in development of models of
Execution time E = (1 x 1) + (1 x 2) = 3 Cycle reconfigurable architectures that can be utilized forVLIW

T = N (T + T) + T + E + = 11 Cycles developing a formal framework for mapping applications.Total VLIW VFT OFT D VLIW CNF

A variety of programs have been executed and on developing architectures and the associated software
benchmarked on the both processors. The theoretically tools for mapping onto their specific architecture. Such
calculated and simulated performance statistics have been projects include Berkeley Garp, National Semiconductor
shown in the form of a comparison graph as shown in NAPA and CMU PipeRench.
Figure 9. It has been observed that the segments of
codes of an application containing loops of similar or D. Configuration Pipelining: Pipelined designs have
repeated operations will be drastically boasted up on a been studied by several researchers in the configurable
reconfigurable processor using the proposed unit. computing domain. The concept of virtual pipelines and

Related Research Work: The following topics outline the analyzed. A group has addressed some of the issues in
different aspects of reconfigurable computing that mapping virtual pipelines onto a physical pipeline by
research has been addressing in the past several years using incremental reconfiguration in the context of
and still there is a lot of research work required to explore PipeRench. Yet another group described the pipeline
new ideas that can further enhanced the performance of morphing and virtual pipelines as an idea to reduce the
reconfigurable computing systems. reconfiguration costs. A pipeline configuration is

A. Algorithmic Synthesis: Dynamically reconfigurable reconfiguring the stage by stage while computations are
architectures give rise to new classes of problems being performed in the remaining stages.
in mapping computations onto the architectures.
New algorithmic techniques are needed to schedule the CONCLUSION
computations. Existing algorithmic mapping techniques
focus primarily on loops in general purpose programs. The proposed computational unit provides us a great
Loop structures provide repetitive computations, scope performance parameter over the traditional processor
for pipelining and parallelization and are candidates for computational units. In the proposed computational unit
mapping to reconfigurable hardware. the hardware changes according to requirements of

B. Emerging Architectures: As far as the reconfigurable hardware is swapped in and the unused hardware is
architectures are concerned, a variety of reconfigurable swapped out and hence providing more hardware than
devices and system architectures have been developed that actually available in the system during the execution
which propose the various ways of organizing and of the application. This reconfiguration of the hardware
interfacing the configurable logic resources. Certain does not stop the application being under execution. Due
architectures are based on fine-grain functional units and to the partial reconfiguration of device, the time
some are based on coarse-grain functional units [15]. overheads required to reconfigure device are

Coarse-grain architectures are configured on the fly compensated because the application keeps continue its
to execute an operation from a given set of the operations. operation during reconfiguration of the device. Such kind
Also the commercially available reconfigurable of computational units are very suitable for those
architectures are exploring the integration of the applications where different kinds of processing units
reconfigurable logic and the microprocessors on the same are frequently required to boast up the performance of
chip. executing application.

C. Software Tools: Current software tools still rely on REFERENCES
CAD based mapping techniques. But, there are several
tools being developed to address run-time 1. Benkrid, Khaled, 2008. “High Performance
reconfiguration, compilation from high-level languages Reconfigurable Computing: From Applications to
such as C, simulation of dynamically reconfigurable logic Hardware” IAENG International Journal of Computer
in software and the complete operating system for Science, 1: 35.

There have been several research projects that focused

their mapping onto physical pipelines has also been

morphed into another configuration by incrementally

applications being under execution. The required

Middle-East J. Sci. Res., 15 (8): 1125-1133, 2013

1133

2. Philip Garcia and Katherine Compton, 2006. 9. Kuon, I. and J. Rose, 2006. “Measuring the gap
Michael Schulte, Emily Blem and Wenyin Fu, “An between FPGAs and ASICs,” in Proceedings of the
overview of reconfigurable hardware in embedded ACM/SIGDA 14th International Symposium on
systems”, EURASIP Journal on Embedded Systems, Field-Programmable Gate Arrays (FPGA ’06),
pp: 1-19. Monterey, Calif, USA, pp: 21-30.

3. Todman, T.J., G.A. Constantinides, 10. Sima, M., S. Vassiliadis, S.D. Cotofana, J.T.J. van
S.J.E. Wilton, O. Mencer, W. Luk and Eijndhoven and K.A. Vissers, 2002. Field-
P.Y.K. Cheung, 2005. “Reconfigurable programmable custom computing machines-a
computing: architectures and design methods,” taxonomy. In Proceedings of the 12th International
IEE Proceedings: Computers and Digital Techniques, Conference on Field-Programmable Logic and
152(2): 193-207. Applications (FPL 2002). Reconfigurable

4. Hartenstein, R., 2002. “Trends in reconfigurable logic Computing Is Going Mainstream, pp: 79-88.
and reconfigurable computing,” in Proceedings of 11. Xilinx, 2001. Virtex Series FPGAs,
the 9th IEEE International Conference on Electronics, http://www.xilinx.com,
Circuits and Systems (ICECS ’02), Dubrovnik, 12. Philip James-Roxby and A. Steven, 2000.
Croatia, September, pp: 801-808. Guccione, Automated Extraction of Run-Time

5. Hartenstein, R., 2001. A decade of reconfigurable Parameterisable Cores from Programmable Device
computing: a visionary retrospective. In DATE ’01: Configurations. In Proceedings of IEEE Workshop
Proceedings of the conference on Design, on Field Programmable Custom Computing
automation and test in Europe, pages Piscataway, Machines, pp: 153-161.
NJ, USA, IEEE Press, pp: 642-649. 13. Edson L. Horta and John W. Lockwood, 2001.

6. Francisco Barat, R. Lauwereins and G. Deconinck, PARBIT: A Tool to Transform Bitfiles to Implement
2002. “Reconfigurable Instruction Set Processors Partial Reconfiguration of Field Programmable Gate
from a Hardware/Software Perspective”; IEEE Arrays (FPGAs). Washington University
Transactions on Software Engineering, 28(9): 847- Department of Computer Science Technical Report
862. WUCS-01-13. July (Available at http://

7. Hauck, S., 1998. “The Roles of FPGAs in www.arl.wustl.edu/ arl/ projects/fpx/parbit.
Reprogrammable Systems” Proceedings of the 14. TMS320C62x/C67x CPU and Instruction Set
IEEE, 86(4): 615-638. Reference Guide Literature Number: SPRU189C

8. Hauck, S., T. Fry, M. Hosler and J. Kao, 2004. March 1998.
“CHIMAERA: Integrating a Reconfigurable Unit 15. Peck, W., E. Anderson, J. Agron, J. Stevens, F. Baijot
into a High-Performance, Dynamically-Scheduled and D. Andrews, 2006. Hthreads: A computational
Superscalar Processor,” in IEEE Transactions on model for reconfigurable devices. In 16th
Very Large Scale Integration (VLSI) Systems, 12: 2. International Conference on Field Programmable

Logic and Applications, Madrid, Spain, August.

