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Abstract: Let G be a finite p-group of exponent p . In this paper we present a new bound for the exponent ofe

the Schur multiplier of G, when G is of class 3, 4 or 5 and e satisfies in some conditions.
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INTRODUCTION

It has been conjectured that the exponent of the
Schur multiplier of a finite p-group is a divisor of the
exponent of the group itself. I.D. Macdonld, J.W.
Wamsley and others have constructed an example of a
group of exponent 4 whereas its Schur multiplier has
exponent 8, namely, the conjecture is not true in general.
On the other hand M.R. Jones has shown in [3] that the
conjecture is true for p-groups of class 2 and emphasized
that it is true for some p-groups of class 3,  but  the  did
not  characterize  in  which  conditions  it   may  be true.
He has also proved that if G is a p-group of class c 2 and
e(G)= p , then e(M(G)) p  (see [3, Corollary 2.7]), ine e(c-1)

which e(X) denotes the exponent of a group X. A result of
G.Ellis [2, Theorem B(i)] shows that with these
assumptions we have e(M(G)) p , where [c/2] denotes[c/2]e

the smallest integer n such that n  c/2. Clearly the recent
bound sharpens the bound obtained by M.R. Jones.

In this paper we show that the conjecture is true for
p-groups of class 4 and 5, when e is odd or p  –1 modulo
3 and 4

(Theorems 2.2, 2.5 and Remark 2.8).it is also shown
that for such e or p, we have, e(M(G)) p  (Corollaries 2.4,e

2.7 and Remark 2.8). This sharpens (under some
assumptions) the above result of M.R. Jones [3] and also
the results of J. Burns and G. Ellis [1] and G. Ellis [2] for
c=3, 4 and 5.

Notation and Preliminaries: Let x and y be two elements
of a finite group G, then [x,y], the commutator of x and y
and x  denote the elements x y xy and y xy, respectively.y -1 -1 -1

The commutator of higher weight is defined inductively as
follows; [x ,x ,…,x ,x ]=[[x ,x ,…,x ],x ] (n>2). The lower1 2 n-1 n 1 2 n-1 n

central series of a group G is denoted by

(G is repeated n times), (n>2). Finally the minimum
number of generators of a group X is denoted by d(X).
Other notations, where not explained, will be standard.

Theorem 1.1: (Schur 1907) Let G be a finite group and
1 R F G 1 be a free presentation for G. Then

Definition 1.2: Let G be a finitegroup. An exact sequence
1 A G G 1(*), where  is called a stem-*

extension of G. if furthermore A M(G), the (*) is called a
stem-cover of G and in this case G* is said to be a
covering group of G.

It is known that such a G  always exists although*

need not be unique.

The Bound Obtained
Lemma 2.1: Let X be a group and x,y X. then for every
positive integer n, we have the following identity modulo

inwhich [a,  b] is [a,b,b,…,b] (b is repeated k times).k

Proof: The proof can be done using induction on n. 

Theorem 2.2: Let G be a finite p-group (p>3) of class 4
and e(G)=p  in which e is an odd number. If G  is ae *

covering group of G,
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then e(G )|e(G)*

Proof: Suppose that G=<g ,g ,…g > and f:G G is the1 2 d(G)
*

epimorphism satisfied in the definition of the covering
group. Let u G be such that f(u )= g  for 1  I   d(G).i i i

*

Since kerf (G ), then G = <u ,u ,…u >.* *
1 2 d(G)

For each x G we have1
*

 therefore

for all x G . Now using Lemma 2.1, one can easily check2
*

that

(1)

A similar argument shows that:

(2)

On the other hand for all
 Byapplying Lemma 2.1, it is

concluded that

(3)

Clearly (p  – 1)/2  Z, hencee

, by (1). Also if p  1 (mod 3),

then 3 | p  – 1 and so 6|p  – 1 and if p  – 1 (mod 3), then 3e e

| p  – 2 (since e is odd) and hence 6 | (p  – 1)(p  – 2).e e e

Therefore in any case we have
, by (2). Now (3) follows that

(4)

In the following we intend to prove that 

The property of covering group implies that
 and so therefore  by Lemma 2.1 and

the above comments it is enough to show that

and  by  (2), we must illustrate that .

(Note that: 

We consider two cases:

Case 1: p  1 (mod 4). If p 1 (mod 3), then 12|(p  – 1) ande

since p  – 3 is even, hence 24 | (p  – 1)(p  – 3). If p  – 1e e e

(mod 3), then 3 | p  – 1.e

But 4 | p  – 1. and 2 | p  – 3. whence we are done.e e

Case 2: p  – 1 (mod 4). It follows that 4 | p  – 3. if p  1e

(mod 3), than 6 | p  – 1 and so 24 |  (p   –   1)(p    –   3). Lete e e

p  1 (mod 3), then 3 | p  – 2 and also 2 | p  – 1, 4 | p  – 3e e e

They therefore follow that 24 | (p  – 1)(p  – 2)(p  – 3), ase e e

required.

(Recall that p is odd and so p  2 (mod 4)). 

The argument which is done in  the  proof of
Theorem 2.2, shows that in some cases, in can be omitted
the extra condition to be odd for e. In other words we
have;

Corollary 2.3: Let G be a finite p-group (p>3) of class 4
and p  – 1 modulo 3 and 4. Suppose also that G  is a*

covering group of G, then e(G )|e(G)*

As it is mentioned in the introduction, the following
corollary sharpens the bound of M.R. Jones [3, Corollary
2.7] and J.Burns and  G.Ellis[1,  Theorem  6]  and  G.  Ellis
[2, Theorem B (i)] on the exponent of the Schur multiplier
of some prime-power groups.

Corollary 2.4: Let G be a finite p-group (p>3) of class 4
and e(G) = p  thene

e(M(G)) pe

When one of the following conditions hold:

e is an odd number.
p  1 modulo 3 and 4.
(Note that  can be taken to mean “divides”).

In the next theorem we show that our above results
can be extended to p-groups of one class more.

Theorem 2.5: Let p>5 be a prime and G be a finite p-group
of class 5 with e(G) = p , in which e is odd. If G  is ae *

covering group of G, then e(G )| e.*
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Proof: Wekeep all the notations used in the proof of Case 4: p   3 (mod 5). Then 5 |  p   – 4 and the assertion
Theorem 2.2. By a similar argument which is applied in the follows immediately.
proof of Theorem 2.2 and repeated use of Lemma 2.1, one
can prove that;

[u , u ,] = 1 (2 t 5), (5)it j

(6)

(7)

(Note that in Theorem 2.2, (G ) = 1 whereas our recent6
*

assumption implies that (G ) = 1.)7
*

On the other hand, since  then

by Lemma 2.1 we deduce that;

(8)

Since , it is immediately follows,

from the relations (6) and (7) that both terms of the second
product is identity.

We have also shown in Theorem 2.2 that 

for r=2,3 and 4. Whence by (5) it is concluded that:

We claim that 

Case 1: p  1 (mod 5). Hence 5|p  – 1. We know from thee

previous that 24| (p  – 1)(p  – 2)(p  – 3). Consequently 120e e e

| (p  – 1)(p  – 2)(p  – 3)(p  – 4).e e e e

Case 2: p  2 (mod 5). If e  1 (mod 4), then we can write
e  =  4k  +  1, for some k Z. Hence by  Fermat  theorem
p p (mod 5) and therefore 5 | p  – 2. Now similare e

previous, it is concluded that 5 | p  – 3 and so again similare

to case 1, the required assertion follows.

Case 3: p  3 (mod 5). similar to case 2, e  1 (mod 4)
implies that 5 |  p   –  3   and e   3  (mod  4)  implies  thate

5 | p  – 3. In each case we are in a position like case 1.e

e

Now  clearly   we    have      by   (5).

It therefore follows from (8) that  as required.

The above process shows that the condition of being
odd for e can be replaced with the other condition, as
follows:

Corollary 2.6: Suppose that G is a finite p-group (p>5) of
class 5 and p  – 1 modulo 3 and 4. Then for every
covering group G  of G, we have .*

Proof: Let p  be the exponent of G.  By  the  assumptione

24| (p  – 1)(p  – 2)(p  – 3). Now if in a addition to casede e e

considered in the proof of the Theorem 2.5, we pay
attention to the two cases e  0 or 2 modulo 4 (when e is
even), then with a similar argument to Theorem 2.5, the
required assertion follows.

Corollary 2.7: If G is a finite p-group (p>5) of class 5 and
exponent p . Thene

When one of the following conditions hold:

e is an odd number. 
p  – 1 modulo 3 and 4.

Corollary 2.7 shows that the bounds p  and p  which4e 3e

are  obtained  for the exponent of the Schur multiplier of
p-finite groups of class 5 in [3] and [2] respectively, can
be reduced to p  for some p-finite groups.e
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