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Abstract: In the part two of this paper we investigate Non-Nil idea radical. In the part three we show that
if R non-nil noetherian ring, Nil(R) divided prime ideal and nil(R[x])i (f)" fl RXJ\nil(R[x]). Then R[X]

Non-nil noetherian Ring.
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INTRODUCTION

We suppose that all of the rings in this article are
commutative with 1t O.

Let R be a ring. Then nil(R) denotes the set of
nilpotent elements of R.I is called non-nil ideal of R if
I€ ml(®) and +7={rl RSNl N, "7 1}. Jis a non-nil
ideal radical of Rif $ non-nil idea 1=2J=+7. Pisdivided
prime ided if pi "X RWP. Min(R) is the Set of
minimal prime ideals of R. If | be an idea of R then
min(l) is the set of minimal prime ideals contains I.R is
non-nil noetherian ring if every non-nil ideal of R be
finitely generated.

NON-NIL IDEAL RADICAL

Theorem 2.1: Let R be a ring then this following are
equivalent:

1) R non-nil noetherian.

2) R satisfies in ascending chain condition on non-nil
ideals of R.

3) Every non-empty set of non-nil ideals of R has
maximal el ement.

Proof: (1)?(2) Let Iyl Il 15?......... be arbitrary
ascending chain of non-nil ideal of R. E;j nli is anon-nil
ideal of Rthus Ejinli = (a,,a,,,......,2;,) Suppose that j
=max{ig, iz,... ik} we have Eij nIil I thus I =1;" 3.

(2)? (3) Let F be non-empty set of non-nil ided of
R and |41 F If 1; is not maximal element of F there
exists I, belong to El1? |,. So if F does not have
maxima element then there will exist an infinite chain
of non-nil ideal of R and thisis A contradiction.

(3)7? (1) Suppose | be a non-nil ideal of R and F=
{@1,az,...ap|m N,af I, @,.. ay) non-nil ideal}.

Since | is non-nil thus $al | such that d nil(R),
(@l F, &£ So according to (3) F has maxima
dement (@y,..,.am) wewill show that | = (ay,..,am).

If  1'(@y,.an then $al Nay,...ay thus
(@1, ams (a:,....,ama) and @,..ana)l F we get to
acontradiction.

Theorem 2.2: Let R and S be two rings and f:R® San
onto ring homomorphism If R non-nil noetherian ring
then Swill be non-nil noetherian.

Proof: Assume that 11? 1,? 137 ....... be an increasing
chain f non-nil ideals of S. f1(1)? ()72 ...... is achain
of non-nil idealsof Rand so 3% = wk = nf = () =f
(1) and thus™ K3 nly = (1)) = f(F(1) = .

Corollary 2.3: Let Rbearing and | be an ideal of R. If
R non-nil noetherian then R/l is non-nil noetherian.

Theorem 2.4: Let R be non-nil noetherian ring and | be
non-nil ided of R. There exists P, P,..., Rl min (R)

st. PiPs,.. Pni l.

Proof: Let F be the set of non-nil ideas of R which
does not contain finite product of minimal prime ideal
of R and too F* &£ According to theorem 2.1. F has
maximal element as P.P is not prime. Thus there exists

ideals AB of R s. t. ABi P and A? P, B? P. Since

P? A+P, P? B+P so A+Pl F, B+Pi F and so $Pi,..., P,,
Q:..Q4 mn (R) stP...P,?2A+P, Q.Q,...Q.? B+P.
Thus P;...PQ1,...Qn? (A+P)(B+P)? P is a
contradiction.
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Theorem 2.5: If R be non-nil noetherian ring then
every non-nil ideal of R has primary decomposition.

Proof: Suppose that S be the set of all non-nil idea of
R which does not have primary decomposition. Wewill
show that S = A& If St /& by theorem 2.1. S has
maxima element 1.1 is not primary and thus $abl R
stal |, "ni N b 1. Let "Ki N I, = {x Rp* I} itis
clear that "k N I, is non-nil ideal and 1,?1,? ...
increasing chain of non-nil ideal of R. by.

Theorem2.6: $mi Ns.t." 3ml; =,

We define E={b"y+clyl R, cl I} E is a non-nil
ideal of R and 1? I, 1? EI=ECl,, because a I, a
i 1&b™ E&b™ 1" X EClx=b™y+c st. yI R, cf 1&b™
X I. Thus b®Yi | and so yi Iom = I hence b™1 | &

thus X . E and |, have primary decomposition so | has
primary decomposition and thisis a contradiction.

Corollary 2.7: Let R be a non-nil noetherian ring and |
be anon-nil ided of R.
There exist prime ideas Py,....... , P, such that

\T=PC....CP,.

Proof: Since R non-nil noetherian by theorem 2.5. | has
primary decomposition so there exists primary ideals
Q1.....Qn such that | = C.....CQ, and for every i j,1

Corollary 2.8: Let R be a non-nil ideal of R. There
exists Py,.., Pl Min(l) such that+7 =P;C.....CP,.

Corollary 2.9: If R be non-nil noetherian ring and |
non-nil ideal of R. Then Min(l) is a finite set.
Proof: By corollary 2.7. there exists Py,..., R min ()
st. 47 = P.C.....CP, suppose that Pl Min(l) since +7 =
Cpi Min(|)PthUS Plg(;Pn') P hence P=PR,$1£i£n.

NON-NIL NOETHERIAN R[X] WITH
NON-NIL NOETHERIAN RING R

In this section we will show that if nil(R) divided
prime ideal of R and " fl RX\nil(RX)nil(RX]T )(F)
and R non-nil noetherian ring then R[x] is non-nil
noetherian.

Lemma 3.1: Let R be aring and f: R® R[X] denote the
natural Ring homomorphism then nil(R[x]) = (nil(R))®
=nil(R)R[X].

Proof: By R.Y. Sharp (1990,exercise 1.36,page 24)

Nil(REX])={ co+Cix+......+CoX'Inl No, ¢1 nil(R) for
dl i = 0,....,n} and by R. Y. sharp (1990,exercise
247, page 44) (nil(R)® = {ro+rox+...+rX'T RIX]InT No,
il nil(R) for al i=0,.....njthus we have nil(R[x]) =
(nil(R))®.

Lemma 3.2: Let R be a ring and f:R® R[X] denote
natural Ring homomaorphism then

Ax] R[x]

- ay
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and by lemma 3.1. nil(R[x])=nil(R)R[X] thus

A [x] R o]

o

niifall il (A

Theorem 3.3: (RY. Sharp, 1990, theorem 87) Let R
be a noetherian ring and let x be an indeterminate. Then
thering R[x] of polynomialsis again anoetherian ring.

Theorem 3.4: (Badawi, A., 2003, theorem 2.2) Let R
be aring and nil(R) divided prime idea of R.thfen Risa

non-nil noetherian ring if and only if “— is a

noetherian domain.

Theorem 3.5: Let R be aring and nil(R) divided prime
ideal of R and " fl RXInil(R[X])i (f). Then R non-nil
noetherian ring if and only if R[x] non-nil noetherian
ring.

Proof: Let R[X] be non-nil noetherian since t: RX|® R,
t(ro+rix+...+1X") = ro onto homomorphism by theorem
2.2. Risnon-nil noetherian.

Converse: Let R be non-nil noetherian since nil(R)
prime idea by lemma 3.1 nil(R[x]) prime ided. Thus
nil(R[x]) divided prime idead by lemma 3.1. and

theorems 3.3. and 3.4, —L-

nit(rldy

R[X] is hon-nil noetherian.

noetherian ring and so
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