Middle-East Journal of Scientific Research 15 (12): 1663-1665, 2013 ISSN 1990-9233 © IDOSI Publications, 2013 DOI: 10.5829/idosi.mejsr.2013.15.12.431

Non-nil Ideal Radical and Non-nil Noetherian R[x]

M. R. Alinaghizadeh and R. Modabbernia

Department of Mathematics, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran

Abstract: In the part two of this paper we investigate Non-Nil ideal radical. In the part three we show that if R non-nil noetherian ring, Nil(R) divided prime ideal and $nil(R[x]) \subseteq (f) \forall f \in R[x] \setminus nil(R[x])$. Then R[x] Non-nil noetherian Ring.

Key words: Non-nil radical ideal.non-nil noetherian.divided prime ideal.minimal prime ideal

INTRODUCTION

We suppose that all of the rings in this article are commutative with $1 \neq 0$.

Let R be a ring. Then nil(R) denotes the set of nilpotent elements of R.I is called non-nil ideal of R if $I \notin nil(R)$ and $\sqrt{I} = \{r \in R | \exists n \in N, r^n \in I\}$. J is a non-nil ideal radical of R if \exists non-nil ideal $I \exists J = \sqrt{I}$. P is divided prime ideal if $p \subseteq (x) \forall x \in R \setminus P$. Min(R) is the Set of minimal prime ideals of R. If I be an ideal of R then min(I) is the set of minimal prime ideals contains I.R is non-nil noetherian ring if every non-nil ideal of R be finitely generated.

NON-NIL IDEAL RADICAL

Theorem 2.1: Let R be a ring then this following are equivalent:

- 1) R non-nil noetherian.
- 2) R satisfies in ascending chain condition on non-nil ideals of R.
- 3) Every non-empty set of non-nil ideals of R has maximal element.

Proof: (1)? (2) Let $l_1 \subseteq l_2 \subseteq l_3$? be arbitrary ascending chain of non-nil ideal of R. $\cup_{i \in N} l_i$ is a non-nil ideal of R.thus $\cup_{i \in N} l_i = (a_{l_1}, a_{l_2}, \dots, a_{i_k})$ suppose that $j = \max\{i_1, i_2, \dots, i_k\}$ we have $\cup_{i \in N} l_i \subseteq I_j$ thus $I_k = I_j \forall_k \ge j$.

(2)? (3) Let F be non-empty set of non-nil ideal of R and $l_1 \in F$ If l_1 is not maximal element of F there exists l_2 belong to $F = l_1$? l_2 . So if F does not have maximal element then there will exist an infinite chain of non-nil ideal of R and this is A contradiction.

(3)? (1) Suppose I be a non-nil ideal of R and $F = \{(\alpha_1, \alpha_2, \dots, \alpha_m) | m \in \mathbb{N}, \alpha_i \in \mathbb{I}, (\alpha_1, \dots, \alpha_m) \text{ non-nil ideal}\}.$

Since I is non-nil thus $\exists a \in I$ such that $a \notin nil(R)$, (a) $\in F$, $F \neq \emptyset$. So according to (3) F has maximal element ($\alpha_1,..,\alpha_m$) we will show that $I = (\alpha_1,..,\alpha_m)$.

If $I \neq (\alpha_1,...,\alpha_m)$ then $\exists \alpha \in I \setminus (\alpha_1,...,\alpha_m)$ thus $(\alpha_1,...,\alpha_m) \subsetneq (\alpha_1,...,\alpha_m,a) \Rightarrow (\alpha_1,...,\alpha_m,a) \in F$ we get to a contradiction.

Theorem 2.2: Let R and S be two rings and $f:R \rightarrow S$ an onto ring homomorphism If R non-nil noetherian ring then S will be non-nil noetherian.

Proof: Assume that l_1 ? l_2 ? l_3 ? be an increasing chain f non-nil ideals of S. $f^1(l_1)$? $f^1(l_2)$? is a chain of non-nil ideals of R and so $\exists k \exists \forall k \ge n f^{-1}(l_k) = f^{-1}(l_k)$ and thus $\forall k \ge nl_k = f(f^{-1}(l_k)) = f(f^{-1}(l_n)) = l_n$.

Corollary 2.3: Let R be a ring and I be an ideal of R. If R non-nil noetherian then R/I is non-nil noetherian.

Theorem 2.4: Let R be non-nil noetherian ring and I be non-nil ideal of R. There exists $P_1, P_2, ..., P_n \in \min(R)$ s.t. $P_1P_2, ..., P_n \subseteq I$.

Proof: Let F be the set of non-nil ideals of R which does not contain finite product of minimal prime ideal of R and too $F \neq \emptyset$. According to theorem 2.1. F has maximal element as P.P is not prime. Thus there exists ideals A,B of R s. t. AB \subseteq P and A? P, B? P. Since P? A+P, P? B+P so A+P \notin F, B+P \notin F and so \exists P₁,..., P_n, Q₁...Q_m \in min (R) s.t.P₁...P_n?A+P, Q₁Q₂...Q_m? B+P. Thus P₁...P_nQ₁,...Q_m? (A+P)(B+P)? P is a contradiction.

Corresoponding Author: M.R. Alinaghizadeh, Department of Mathematics, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran

Theorem 2.5: If R be non-nil noetherian ring then every non-nil ideal of R has primary decomposition.

Proof: Suppose that S be the set of all non-nil ideal of R which does not have primary decomposition. We will show that $S = \emptyset$. If $S \neq \emptyset$ by theorem 2.1. S has maximal element I.I is not primary and thus $\exists a, b \in R$ s.t. $\alpha \notin l, \forall n \in N \ b^n \notin l$. Let $\forall k \in N \ l_k = \{x \in R | b^k x \in l\}$ it is clear that $\forall k \in N \ l_k$ is non-nil ideal and l_1 ? l_2 ? ... increasing chain of non-nil ideal of R. by.

Theorem 2.6: $\exists m \in N \text{ s.t. } \forall_i \ge m l_i = l_m$.

We define $E=\{b^my+c|y\in R, c\in I\} E$ is a non-nil ideal of R and I? l_m , I? $E,I=E\cap l_m$ because $a\in l_m$, a $\notin I\&b^m\in E\&b^m\notin I.\forall x\in E\cap l_mx=b^my+c$ s.t. $y\in R$, $c\in I\&b^m$ $x\in I$. Thus $b^{2m}y\in I$ and so $y\in l_{2m} = l_m$ hence $b^my\in I$ & thus $x\in I$. E and l_m have primary decomposition so I has primary decomposition and this is a contradiction.

Corollary 2.7: Let R be a non-nil noetherian ring and I be a non-nil ideal of R.

There exist prime ideals P_1, \ldots, P_n such that $\sqrt{l} = P_1 \cap \ldots \cap P_n$.

Proof: Since R non-nil noetherian by theorem 2.5. I has primary decomposition so there exists primary ideals Q_1, \dots, Q_n such that $I = Q_1 \cap \dots \cap Q_n$ and for every i,j,1

 $\leq i \leq n, 1 \leq j \leq n, i \neq j; \sqrt{Q_i} \neq \sqrt{Q_j}$

 $Q_1 \cap Q_2 \cap \dots Q_i \cap Q_{i+1} \cap \dots Q_n$? Q_i

and

thus

$$\sqrt{l} = \sqrt{Q_1} \cap \sqrt{Q_2} \cap \dots \cap \sqrt{Q_n}.$$

Corollary 2.8: Let R be a non-nil ideal of R. There exists $P_1,..., P_n \in Min(I)$ such that $\sqrt{l} = P_1 \cap \dots \cap P_n$.

Corollary 2.9: If R be non-nil noetherian ring and I non-nil ideal of R. Then Min(I) is a finite set.

Proof: By corollary 2.7. there exists $P_1, \ldots, P_n \in \min(l)$ s.t. $\sqrt{l} = P_1 \cap \ldots \cap P_n$ suppose that $P \in Min(I)$ since $\sqrt{l} = \bigcap_{p \in Min(I)} P$ thus $P_1 \cap \ldots \cap P_n$? P hence $P = P_i \exists 1 \le i \le n$.

NON-NIL NOETHERIAN R[X] WITH NON-NIL NOETHERIAN RING R

In this section we will show that if nil(R) divided prime ideal of R and $\forall f \in R[x] \setminus nil(R[x]) \cap l(R[x] \subseteq)(f)$ and R non-nil noetherian ring then R[x] is non-nil noetherian. **Lemma 3.1:** Let R be a ring and f: $R \rightarrow R[x]$ denote the natural Ring homomorphism then $nil(R[x]) = (nil(R))^e = nil(R)R[x]$.

Proof: By R.Y. Sharp (1990, exercise 1.36, page 24)

Lemma 3.2: Let R be a ring and $f:R \rightarrow R[x]$ denote natural Ring homomorphism then

$$\frac{R[x]}{\operatorname{nil}(R[x])} = \frac{R[x]}{(\operatorname{nil}(R))^{\alpha}} = \frac{R[x]}{\operatorname{nil}(R)R[x]} \cong \frac{R}{\operatorname{nil}(R)} [x]$$

Proof: By R. Y. Sharp (1990, exercise 2.47, page 44)

$$\frac{R[x]}{(nil(R))^{\mathfrak{a}}} = \frac{R[x]}{nil(R)R[x]} \cong \frac{R}{nil(R)} [x]$$

and by lemma 3.1. nil(R[x])=nil(R)R[x] thus

$$\frac{R[x]}{nil(R[x])} \cong \frac{R}{nil(R)} [x]$$

Theorem 3.3: (R.Y. Sharp, 1990, theorem 8.7) Let R be a noetherian ring and let x be an indeterminate. Then the ring R[x] of polynomials is again a noetherian ring.

Theorem 3.4: (Badawi, A., 2003, theorem 2.2.) Let R be a ring and nil(R) divided prime ideal of R.then R is a non-nil noetherian ring if and only if $\frac{R}{nil(R)}$ is a noetherian domain.

Theorem 3.5: Let R be a ring and nil(R) divided prime ideal of R and $\forall f \in R[x]nil(R[x]) \subseteq (f)$. Then R non-nil noetherian ring if and only if R[x] non-nil noetherian ring.

Proof: Let R[x] be non-nil noetherian since τ : $R[x] \rightarrow R$, $\tau(r_0+r_1x+...+r_nx^n) = r_0$ onto homomorphism by theorem 2.2. R is non-nil noetherian.

Converse: Let R be non-nil noetherian since nil(R) prime ideal by lemma 3.1. nil(R[x]) prime ideal. Thus nil(R[x]) divided prime ideal by lemma 3.1. and theorems 3.3. and 3.4. $\frac{R[x]}{nil(R[x])}$ noetherian ring and so R[x] is non-nil noetherian.

1664

REFERENCES

- 1. Atiyah, M.F. and I.G. Macdonald, Introduction to commutative.
- 2. Van Derhall, A. 1969. Algebra reading, mass.: Addison-Wesley Publishing Company, Inc.
- 3. Badawi, A. 1999b. On divided commutative rings. Comm. Algebra, 27: 1465-1474.
- 4. Badawi, A. 2003. On NON nil-Noetherian Rings. Comm. Algebra, 31: 1669-1677.
- 5. Divinsky, N.J., 1965. Rings and radicals. Toronto: University of Toronto Press.

- 6. Dobbs, D.E., 1976. Divided rings and going-down. Pacific J. Math., 67: 353-363.
- 7. Huckaba, J., 1998. Commutative Rings with zero divisors. New York, Basel: Marcel Dekker.
- 8. Kaplansky, I. 1974. Commutative Rings. Chicago: The University of Chicago Press.
- 9. Princeton, N.J. and D. Van Nostrand, 1958. Company, Inc.
- 10. Sharp, R.Y., 2000. Steps in commutative Algebra. Cambridge University Press.
- 11. Zariski, O. and P. Samuel, 2002. Commutative Algebra, Vol: 1-2.