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Abstract: In the part two of this paper we investigate Non-Nil ideal radical. In the part three we show that 
if R non-nil noetherian ring, Nil(R) divided prime ideal and nil(R[x])⊆(f)∀f∈R[x]\nil(R[x]). Then R[x] 
Non-nil noetherian Ring. 
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INTRODUCTION 

 
 We suppose that all of the rings in this article are 
commutative with 1≠0.  
 Let R be a ring. Then nil(R) denotes the set of 
nilpotent elements of R.I is called non-nil ideal of R if 
I  and {r∈R|∃n∈N, rn∈I}. J is  a non-nil 

ideal radical of R if ∃ non-nil ideal I J  P is divided 

prime ideal if p⊆(x)∀x∈R\P. Min(R) is the Set of 
minimal prime ideals of R. If I be an ideal of R then 
min(I) is the set of minimal prime ideals contains I.R is 
non-nil noetherian ring if every non-nil ideal of R be 
finitely generated.  
 

NON-NIL IDEAL RADICAL 
 
Theorem 2.1: Let R be a ring then this following are 
equivalent: 
 
1) R non-nil noetherian.  
2) R satisfies in ascending chain condition on non-nil 

ideals of R. 
3) Every non-empty set of non-nil ideals of R has 

maximal element. 
 
Proof: (1)? (2) Let l1⊆l2⊆l3? ……… be arbitrary 
ascending chain of non-nil ideal of R. ∪i∈Nli is a non-nil 
ideal of R.thus ∪i∈Nli = ( , ,……, ) suppose that j 

= max {i1, i2,… ik} we have ∪i∈Nli⊆Ij thus Ik = Ij ∀k≥j. 
 (2)? (3) Let F be non-empty set of non-nil ideal of 
R and l1∈F If l1 is not maximal element of F there 
exists l2 belong to F l1? l2. So if F does not have 
maximal element then there will exist an infinite chain 
of non-nil ideal of R and this is  A contradiction. 

 (3)? (1) Suppose I be a non-nil ideal of R and F = 
{(α1, α2,… αm)| m∈N, αi∈I, (α1,… αm) non-nil ideal}. 
 Since I is non-nil thus ∃a∈l such that a∉nil(R), 
(a)∈F, F≠∅. So according to (3) F has maximal 
element (α1,..,αm) we will show that I = (α1,..,αm). 
 If I≠(α1,..,αm) then ∃α∈I\(α1,..,αm) thus 
(α1,..,αm) ,…..,αm,a) and (α1,..,αm,a)∈F we get to 
a contradiction. 
 
Theorem 2.2: Let R and S be two rings and f:R→S an 
onto ring homomorphism. If R non-nil noetherian ring 
then S will be non-nil noetherian. 
 
Proof: Assume that l1? l2? l3? ……. be an increasing 
chain f non-nil ideals of S. f-1(l1)? f-1(l2)? ……is a chain 
of non-nil ideals of R and so (lk) = f-

1(ln) and thus ∀k≥nlk = f(f-1(lk)) = f(f-1(ln)) = ln. 
 
Corollary 2.3: Let R be a ring and I be an ideal of R. If 
R non-nil noetherian then R/I is non-nil noetherian.  
 
Theorem 2.4: Let R be non-nil noetherian ring and I be 
non-nil ideal of R. There exists P1, P2,…, Pn∈ min (R) 
s.t. P1P2,…Pn⊆I. 
 
Proof: Let F be the set of non-nil ideals of R which 
does not contain finite product of minimal prime ideal 
of R and too F≠∅. According to theorem 2.1. F has 
maximal element as P.P is not prime. Thus there exists 

ideals A,B of R s. t. AB⊆P and  A? P, B? P. Since 

P? A+P, P? B+P so A+P∉F, B+P∉F and so ∃P1,…, Pn, 
Q1…Qm∈min (R) s.t.P1…Pn?A+P, Q1Q2…Qm? B+P. 
Thus P1…PnQ1,…Qm? (A+P)(B+P)? P is a 
contradiction. 



Middle-East J. Sci. Res., 15 (12): 1663-1665, 2013 

1664 

 
Theorem 2.5: If R be non-nil noetherian ring then 
every non-nil ideal of R has primary decomposition.  
 
Proof: Suppose that S be the set of all non-nil ideal of 
R which does not have primary decomposition. We will 
show that S = ∅. If S≠∅ by theorem 2.1. S has 
maximal element I.I is not primary and thus ∃a,b∈R 
s.t.α∉l, ∀n∈N bn∉l. Let ∀k∈N lk = {x∈R|bkx∈l} it is 
clear that ∀k∈N lk is non-nil ideal and l1? l2? … 
increasing chain of non-nil ideal of R. by. 
 
Theorem 2.6: ∃m∈N s.t. ∀i≥m li = lm. 
 We define E={bmy+c|y∈R, c∈l} E is a non-nil 

ideal of R and I? lm, I? E,I=E∩lm because a∈lm, a 
∉I&bm∈E&bm∉I.∀x∈E∩lmx=bmy+c s.t. y∈R, c∈l&bm 
x∈l. Thus b2my∈l and so y∈l2m = lm hence bmy∈I & 
thus x∈I. E and lm have primary decomposition so I has 
primary decomposition and this is a contradiction. 
 
Corollary 2.7: Let R be a non-nil noetherian ring and I 
be a non-nil ideal of R. 
 There  exist  prime  ideals  P1,……., Pn such that 

 = P1∩..…∩Pn.  
 
Proof: Since R non-nil noetherian by theorem 2.5. I has 
primary decomposition so there exists primary ideals  
Q1..…Qn such that I = Q1∩..…∩Qn and for every i,j,1 
 

 

and 

? Qi 
thus  

 = . 

 
Corollary 2.8: Let R be a non-nil ideal of R. There 
exists P1,.., Pn∈Min(I) such that  = P1∩..…∩Pn. 
 
Corollary 2.9: If R be non-nil noetherian ring and I 
non-nil ideal of R. Then Min(I) is a finite set. 
 
Proof: By corollary 2.7. there exists P1,…, Pn∈ min (l) 
s.t.  = P1∩..…∩Pn suppose that P∈Min(I) since  = 

∩p∈Min(l)P thus P1∩..…∩Pn? P hence P = Pi∃1≤i≤n.  
 

NON-NIL NOETHERIAN R[X] WITH  
NON-NIL NOETHERIAN RING R 

 
 In this section we will show that if nil(R) divided 
prime ideal of R and ∀f∈R[x]\nil(R[x])nil(R[x]⊆)(f) 
and R non-nil noetherian ring then R[x] is non-nil 
noetherian. 

 
Lemma 3.1: Let R be a ring and f: R→R[x] denote the 
natural Ring homomorphism then nil(R[x]) = (nil(R))e 
= nil(R)R[x]. 
 
Proof: By R.Y. Sharp (1990,exercise 1.36,page 24)  
 Nil(R[X])={c0+c1x+……+c0xn|n∈N0, ci∈nil(R) for 
all i = 0,….,n} and by R. Y. sharp (1990,exercise 
2.47,page 44) (nil(R))e = {r0+r1x+…+rnxn∈R[x]|n∈N0, 
ri∈nil(R) for all i=0,…..,n}thus we have nil(R[x]) = 
(nil(R))e. 
 
Lemma 3.2: Let R be a ring and f:R→R[x] denote 
natural Ring homomorphism then  
 

 =  =   

 
Proof: By R. Y. Sharp (1990, exercise 2.47, page 44)  
 

 =  

 
and by lemma 3.1. nil(R[x])=nil(R)R[x] thus  
 

 

 
Theorem 3.3: (R.Y. Sharp, 1990, theorem 8.7) Let R 
be a noetherian ring and let x be an indeterminate. Then 
the ring R[x] of polynomials is again a noetherian ring. 
 
Theorem 3.4: (Badawi, A., 2003, theorem 2.2.) Let R 
be a ring and nil(R) divided prime ideal of R.then R is a 

non-nil noetherian ring if and only if  is a 

noetherian domain.  
 
Theorem 3.5: Let R be a ring and nil(R) divided prime 
ideal of R and ∀f∈R[x]nil(R[x])⊆(f). Then R non-nil 
noetherian ring if and only if R[x] non-nil noetherian 
ring. 
 
Proof: Let R[x] be non-nil noetherian since τ: R[x]→R, 
τ(r0+r1x+…+rnxn) = r0 onto homomorphism by theorem 
2.2. R is non-nil noetherian. 
 
Converse: Let R be non-nil noetherian since nil(R) 
prime ideal by lemma 3.1. nil(R[x]) prime ideal. Thus 
nil(R[x]) divided prime ideal by lemma 3.1. and 

theorems 3.3. and 3.4.  noetherian ring and so 

R[x] is non-nil noetherian. 
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