Middle-East Journal of Scientific Research 15 (12): 1641-1650, 2013

ISSN 1990-9233

© IDOSI Publications, 2013

DOI: 10.5829/idosi.mejsr.2013.15.12.2695

On Orbits of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ under the Action of Hecke Group $H(\sqrt{2})$

M. Aslam Malik and M. Asim Zafar

Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan

Abstract: We are interested in the natural action (as Möbius transformations) of hecke group $H(\sqrt{2}) = H$ on the elements of quadratic number field over the rational numbers. The objective of this study is to find the transitive H-subsets of some H-sets of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ with the help of the structure of circuits of ambiguous numbers. For $p \equiv 3 \pmod{4}$, the number $o_H^{*-}(4p)$ of H-orbits of $\mathbb{Q}^{*-}(\sqrt{4p}) = (\mathbb{Q}^*(\sqrt{n})\setminus\mathbb{Q}^{**}(\sqrt{n}))\cup\mathbb{Q}^{**}(\sqrt{4n})$ has been determined for each prime $p \le 2011$.

AMS mathematics subject classification (2000): 05C25.11E04.20G15

Key words: Ambiguous number . Hecke groups . Möbius transformations . orbit

INTRODUCTION

Throughout this paper we take m as a square free positive integer. Since every element of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ can be expressed uniquely as $\frac{a+\sqrt{n}}{c}$, with $n=k^2m$, k is any positive integer and a, $\frac{a^2-n}{c}$ and c are relatively prime integers and we denote it by $\alpha(a,b,c)$, the set

$$Q^*(\sqrt{n}) = {\frac{a+\sqrt{n}}{c}: a,c \neq 0, b = \frac{a^2-n}{c} \in \mathbb{Z} \text{ and } (a,b,c)=1}$$

is the set of all roots of primitive second degree equations $cx^2 + 2ax + b = 0$ with reduced discriminant $\Delta = a^2 - bc$ equal to n (an equation $cx^2 + 2ax + b = 0$ is said to be primitive if (a,b,c) = 1). If n and n' are two distinct non square positive integers then $\mathbb{Q}^*(\sqrt{n}) \cap \mathbb{Q}^*(\sqrt{n'}) = \emptyset$ hence it is easy to see to see that $\mathbb{Q}(\sqrt{m}) \setminus \mathbb{Q}$ is the disjoint union of $\mathbb{Q}^*(\sqrt{k^2m})$ for all $k \in \mathbb{N}$. If $\alpha(a,b,c) \in \mathbb{Q}^*(\sqrt{n})$ and its conjugate α have opposite signs then α is called an ambiguous number [1]. The actual number of ambiguous numbers in $\mathbb{Q}^*(\sqrt{n})$ has been discussed in [2] as a function of n. The classification of the elements of $\mathbb{Q}^*(\sqrt{n})$ with respect to modulo 3 and modulo p has been explored in [3, 4].

A non-empty set Ω with an action of the group G on it, is said to be a G-set. We say that Ω is a transitive G-set if, for any p,q in Ω there exists a g in G such that $p^g=q$. In 1936, Erich Hecke [5], introduced the groups $H(\lambda)$ generated by two linear-fractional transformations $x(z)=\frac{-1}{z}$ and $y(z)=\frac{-1}{z+\lambda}$. Hecke showed that $H(\lambda)$ is

discrete if and only if $\lambda = \lambda_q = 2cos(\frac{\pi}{q})$, $q \in \mathbb{N}$, $q \ge 3$ or

 $\lambda \ge 2$. Hecke group $H(\lambda_q)$ is isomorphic to the free product of two finite cyclic group of order 2 and q and it has a presentation

$$H(\lambda_a) = \langle x, y : x^2 = y^q = 1 \rangle \cong C_2 * C_a$$

The first few of these groups are $H(\lambda_3)=PSL(2,\mathbb{Z})$, the modular group,

$$H(\lambda_4) = H(\sqrt{2}) = \langle x, y : x^2 = y^4 = 1 \rangle$$

where

$$x(z) = \frac{-1}{2z}$$
 and $y(z) = \frac{-1}{2(z+1)}$

$$H(\lambda_5) = H\left(\frac{1+\sqrt{5}}{2}\right)$$

and

$$H(\lambda_6) = H(\sqrt{3}) = \langle x, y : x^2 = y^6 = 1 \rangle$$

An action of H and its proper subgroups on $\mathbb{Q}(\sqrt{m}) \cup \{\infty\}$ has been discussed in [6-9]. In [10], the H-orbits of

$$\mathbb{Q}'(\sqrt{n}) = \mathbb{Q}^{**}(\sqrt{n}) \cup \mathbb{Q}^{**}(\sqrt{4n})$$

where

$$\mathbb{Q}^{*\blacklozenge}(\sqrt{4n}) = \left(\mathbb{Q}^*(\sqrt{n}) \setminus \mathbb{Q}^{**}(\sqrt{n})\right) \cup \mathbb{Q}^{**}(\sqrt{4n})$$

have been found for $p \equiv 1 \pmod{4}$. This paper is a continuation of paper [10] for $p \equiv 3 \pmod{4}$. The main objective of this paper is to explore the structure of the circuits formed by the elements of $\mathbb{Q}_1^* (\sqrt{4p})$, $p \equiv 3$ (mod 4). We find some proper H-subsets of $\mathbb{Q}^{r}(\sqrt{n})$ and define the types of H-orbits to obtain ambiguous lengths of H-orbits with various properties of these orbits of $\mathbb{Q}'(\sqrt{p})$. In Section 4, we discuss the H-orbits of $\mathbb{Q}^{*-}(\sqrt{4p})$ for $o_H^{*-}(4p)>4$ and have been able to prove that $(\alpha)^H, (\overline{\alpha})^H, (-\alpha)^H$ and $(-\alpha)^H$ orbits of $\mathbb{Q}^{*_{\sim}}(\sqrt{4p})$ distinct $\alpha \in \mathbb{Q}^{*}(\sqrt{4p}) \setminus ((\sqrt{\frac{p}{1}})^{H} \cup (\sqrt{\frac{p}{1}})^{H})$. The complete list of H-orbits of $\mathbb{Q}'(\sqrt{p})$, $p \equiv 3 \pmod{4}$, has been determined for all prime p≤2011.

PRELIMINARIES

We quote from [2, 6, 7, 11] the following results for later reference. Let

$$\alpha = \frac{a + \sqrt{n}}{c}$$
 with $b = \frac{a^2 - n}{c}$

We tabulate the actions on $\alpha(a,b,c) \in \mathbb{Q}^r(\sqrt{n})$ of x,y and their combinations y^2 , xy, yx and y^2x in Table 1.

Theorem 2.1: [6] $\mathbb{Q}'(\sqrt{n}) = \{\frac{\alpha}{t} : \alpha \in \mathbb{Q}^*(\sqrt{n}), t=1,2\}$ is invariant under the action of H.

Theorem 2.2: [6] Let $n \equiv 1, 2 \text{ or } 3 \pmod{4}$. Then

$$\mathbb{Q}^{**}(\sqrt{\mathbf{n}}) = \{\alpha(\mathbf{a}, \mathbf{b}, \mathbf{c}) \in \mathbb{Q}^{*}(\sqrt{\mathbf{n}}) : 2 \mid \mathbf{c}\}$$

is an H-subset of $Q'(\sqrt{n})$.

Lemma 2.3: [2] Let m be a square-free positive integer. Then

Table 1: The action of elements of H on $\alpha \in \mathbb{Q}(\sqrt{n})$

$\alpha = \frac{a + \sqrt{n}}{c}$	a	b	c
$x(0) = \frac{-1}{2\alpha}$	-a	c/2	2b
$y(0) = \frac{-1}{2\alpha + 2}$	-a-c	c/2	2(2a+b+c)
$y^2(0) = \frac{-\alpha - 1}{2\alpha + 1}$	-3a-2b-c	2a+b+c	4a+4b+c
$x y^2(\alpha) = \frac{2\alpha + 1}{2\alpha + 2}$	3a+2b+c	$\frac{4a+4b+c}{2}$	2(2a+b+c)
$y^2x(0) = \frac{-2\alpha + 1}{2\alpha - 2}$	3a-2b-c	$\frac{-4a + 4b + c}{2}$	2(-2a+b+c)
$x y^{3}(\alpha) = \frac{\alpha}{2\alpha + 1}$	a+2b	b	4a+4b+c
$(xy)^k(\alpha) = \alpha + k$	a+kc	2ka+b+k ² c	c
$(yx)^k(\alpha) = \frac{\alpha}{-2k\alpha + 1}$	a-2kb	b	-4ka+4k ² b+b+c
$(y^3x)^k(\alpha) = \alpha - k$	a-kc	2ka+b+k ² c	c

$$\mid \! \mathbb{Q}_{1}^{*}(\sqrt{m} \mid \!) \! \mid = \tau^{*}(m) \! = \! 2\tau(m) \! + \! 4 \! \sum_{a=1}^{\lfloor \sqrt{m} \rfloor} \! \! \tau(m-a^{2})$$

Lemma 2.4: [2] Let n be square free positive integer. Then

$$|\mathbb{Q}_{1}^{**}(\sqrt{n})| = 2t(n) + 4\sum_{a=1}^{\lfloor \sqrt{n} \rfloor} t'(n-a^{2})$$

where $\tau'(u)$ denotes those divisors of u, which are divisible by 2.

Lemma 2.5: [6] Let $\alpha \in \mathbb{Q}^{''}(\sqrt{n})$. Then $\alpha^H = \overline{\alpha}^H$ if and only if there exists an element β in α^H such that $x(\beta) = \overline{\beta}$.

It is well known that $G = \langle x,y : x^2 = y^3 = 1 \rangle$ represents the modular group, where $x(z) = \frac{-1}{z}, y(z) = \frac{z-1}{z}$ are linear fractional transformations.

Lemma 2.6: [7] Let $n \equiv 1,2$ or $3 \pmod 4$. Let Y be any G-subset of $\mathbb{Q}^{*-}(\sqrt{4n})$. Then $Y \cup x(Y)$ is an H-subset of $\mathbb{Q}^{*-}(\sqrt{4n})$.

Lemma 2.7: [2] Let $p \equiv 3 \pmod{4}$. Then $\mathbb{Q}^*(\sqrt{p})$ splits into at least two Gorbits, namely, $(\frac{\sqrt{p}}{1})^G$ and $(\frac{\sqrt{p}}{-1})^G$ under the action of G.

Theorem 2.8: [11] If $n \equiv 0$ or 3 (mod 4), then

$$S = \{\alpha \in Q^*(\sqrt{n}) : b \text{ or } c \equiv 1 \pmod{4}\}$$

and

$$-S = \{\alpha \in Q^*(\sqrt{n}) : b \text{ or } c \equiv -1 \pmod{4}\}$$

are exactly two disjoint G-subsets of $Q^*(\sqrt{n})$ depending upon classes [a,b,c] modulo 4.

Theorem 2.9: [4] Let p be an odd prime factor of n. Then both of

$$S_i^p = \{\alpha \in Q^* (\sqrt{n}): (b/p) \text{ or } (c/p) = 1\}$$

and

$$S_2^p = \{ \alpha \in Q^* (\sqrt{n}) : (b/p) \text{ or } (c/p) = -1 \}$$

are Gsubsets of $Q^*(\sqrt{n})$. In particular, these are the only G-subsets of $Q^*(\sqrt{n})$ depending upon classes [a,b,c] modulo p.

AMBIGUOUS LENGTHS OF THE H-ORBITS OF $\mathbb{Q}^{'c}(\sqrt{p})$

We start this section with the following definition.

Definition 3.1: By a circuit, we shall mean closed path of edges and squares in the coset diagram for H-orbit α^H where $\alpha \in \mathbb{Q}^*(\sqrt{n})$.

If $n_{\nu} n_{2} n_{3} n_{4} \dots n_{k}$ is a sequence of positive integers and

$$i_i = 0, 1, 2, i_1 \neq i_{i+1} \ (l=1, 2, ..., k-1), i_1 \neq i_k$$
 (1)

Then by a circuit of the type $(n_{li_1}, n_{2i_2}, n_{3i_3}, n_{4i_4}, ..., n_{ki_k})$ we shall mean the circuit (counter clockwise) in which $n_j j = 1, 2, 3, ..., k$ squares have i_j vertices outside the circuit.

Remarks 3.2

1. Since it is immaterial with which ambiguous number of α^H the circuit begins, we can express type (1) by any of the following k-equivalent forms

$$(n_{li_1}, n_{2i_2}, ..., n_{ki_k}) = (n_{2i_2}, n_{3i_3}, ..., n_{ki_k}, n_{li_1})$$

=... $(n_{ki_k}, n_{li_1}, ..., n_{k-li_{k-1}})$

2. The type $(n_{i_1}, n_{2i_2}, n_{3i_3}, n_{4i_4}, ..., n_{ki_k})$ can be described by the equations (1) or more briefly by

$$i_i = 0, 1, 2, i_t \neq i_{t+1 \text{(mod k)}}$$
 (2)

- 3. This circuit induces an element $g = (xy^{i_{k+1}})^{n_k}...(xy^{i_2+i})^{n_2}(xy^{i_2+i_3})^{n_1}$ of H and fixes a particular vertex of a square lying on the circuit and hence the ambiguous length of this circuit is given by $2(n_1 + n_2 + n_3 + ... + n_k)$
- 4. All of the $2(n_1 + n_2 + ... + n_k)$ numbers lies in the same orbit and hence each of them has the same type.

For example, by the circuit of the type $(6_0, 1, 1, 2, 1, 1)$ we mean the circuit (Fig. 1) induces an element

$$h=(xy)^3(xy)^3(xy)^2(xy)^2(xy)^2(xy)^3(xy)^3$$

of H which fixes vertex $\frac{\sqrt{11}}{1}$ as follows. Let $k_1 = \frac{\sqrt{11}}{1}$.

$$(xy)^3(k_1) = \frac{3+\sqrt{11}}{1} = k_2, (xy^3)(k_2) = \frac{-1+\sqrt{11}}{5} = k_3$$

$$(xy^2)(k_3) = \frac{-2 + \sqrt{11}}{2} = k_4, (xy)^2(k_4) = \frac{2 + \sqrt{11}}{2} = k_5$$

$$(xy^2)(k_5) = \frac{1+\sqrt{11}}{5} = k_6, (xy^3)(k_6) = \frac{-3+\sqrt{11}}{1} = k_7$$

and $(xy)^3(k_7) = k_1$. The ambiguous length of this circuit is 2(6+1+1+2+1+1).

We now find the H-subsets of

$$\mathbb{Q}^{r}(\sqrt{n}) = \mathbb{Q}^{**}(\sqrt{n}) \cup \mathbb{Q}^{**}(\sqrt{4n})$$

where

$$\mathbb{Q}^{*_{\sim}}(\sqrt{4\,n}\,)\!=\!\left(\mathbb{Q}^*(\sqrt{n}\,)\!\setminus\!\mathbb{Q}^{**}(\sqrt{n}\,)\right)\!\cup\mathbb{Q}^{*^*}(\sqrt{4\,n}\,)$$

Fig. 1: Orbit of
$$k_1 = \frac{\sqrt{11}}{1}$$
 and $h(k_1) = k_1$

Also we explore the action of H by finding H-orbits of $\mathbb{Q}^{*-}(\sqrt{4n})$ and discuss the ambiguous cardinalities of these H-orbits.

Theorem 3.3 Let $p \equiv 3 \pmod{8}$. Then $\mathbb{Q}^*(\sqrt{n})$ splits into three H-subsets. In particular $(\frac{\sqrt{n}}{1})^H$, $(\frac{\sqrt{n}}{-1})^H$ and $(\frac{1+\sqrt{n}}{2})^H$ are at least three H-orbits of $\mathbb{Q}^*(\sqrt{n})$.

Before giving the proof we need the following crucial remark.

Remark 3.4: Let $p \equiv 3 \pmod{4}$. Then $a^2 - n \not\equiv 0 \pmod{4}$ for all $a \in \{0,1,2...,\lfloor \sqrt{n} \rfloor \}$.

Proof of Theorem 3.3 Since $p\equiv 3\pmod 8$ and $\mathbb{Q}^{\checkmark}(\sqrt{n})=\mathbb{Q}^{*^*}(\sqrt{n})\cup\mathbb{Q}^{*^*}(\sqrt{4n})$, by Theorem 2.2, $\mathbb{Q}^{*^*}(\sqrt{n})$ is an H-subset of $\mathbb{Q}^{\checkmark}(\sqrt{n})$, by Theorem 2.8 and Lemma 2.6, $\mathbb{Q}^{*^*}(\sqrt{4n})$ splits into two H-subsets. Thus, by Remark 3.2, it is clear that $\mathbb{Q}^{\checkmark}(\sqrt{n})$ splits into three H-subsets. Clearly $(\frac{\sqrt{n}}{1})^H$, $(\frac{\sqrt{n}}{-1})^H$ and $(\frac{1+\sqrt{n}}{2})^H$ are at least three H-orbits of $\mathbb{Q}^{\checkmark}(\sqrt{n})$. This completes the proof.

Theorem 3.5: Let $p \equiv 7 \pmod{8}$. Then $\mathbb{Q}^{\checkmark}(\sqrt{n})$ splits into three H-subsets. In particular $(\frac{\sqrt{n}}{1})^{H}$, $(\frac{\sqrt{n}}{-1})^{H}$, $(\frac{1+\sqrt{n}}{2})^{H}$ and $(\frac{1+\sqrt{n}}{-2})^{H}$ are at least four Horbits of $\mathbb{Q}^{\checkmark}(\sqrt{n})$.

We now determine the ambiguous lengths of these H-orbits as a function of p, which help us to determine the remaining H-orbits of $\mathbb{Q}^*(\sqrt{p})$ and hence to classify them as well. The following lemma is concerned with the Horbits $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$ for $p \equiv 3 \pmod 8$. Before this we have the following

Remark 3.6: Let $\alpha(a,b,c) \in \mathbb{Q}^*(\sqrt{n})$ and $k \in \mathbb{N}$. Then

1.
$$(xy)^k(\alpha) = \alpha + k = (y^3x)^{-k}(\alpha)$$

2.
$$(yx)^k(\alpha) = \frac{\alpha}{1 - 2k\alpha} = (xy^3)^{-k}(\alpha)$$

3.
$$h^{k}(0) = \alpha_{l} \in \alpha^{H} \Rightarrow h^{-k}(\alpha) = -\overline{\alpha_{l}} \in \alpha^{H}$$

Proof: These results can be verified by Table 1.

From [12], if $p \equiv 3 \pmod 8$ then the set $\{\frac{\pm 1 + \sqrt{p}}{c}, \frac{\pm 1 + \sqrt{p}}{-2}\}$ is contained in $(\frac{\sqrt{p}}{1})^G$ and the set $\{\frac{\pm 1 + \sqrt{p}}{-c}, \frac{\pm 1 + \sqrt{p}}{2}\}$ is contained in $(\frac{\sqrt{p}}{-1})^G$. By Theorems 3.3 and 3.4, the set $\{\frac{\pm 1 + \sqrt{p}}{2}, \frac{\pm 1 + \sqrt{p}}{-2}\}$ is contained in $(\frac{\pm 1 + \sqrt{p}}{2})^H$ or in $(\frac{\pm 1 + \sqrt{p}}{-2})^H$. So it is clear that $(\frac{\sqrt{n}}{1})^H$ and $(\frac{\sqrt{n}}{-1})^H$ are in

$$\mathbb{Q}^{*_{\sim}}(\sqrt{4\,n}\,)\!=\!\left(\mathbb{Q}^*(\sqrt{n}\,)\!\setminus\!\mathbb{Q}^{**}(\sqrt{n}\,)\right)\!\cup\!\mathbb{Q}^{**}(\sqrt{4\,n}\,)\,.$$

Lemma 3.7: Let $p \equiv 3 \pmod 8$ such that $p-2 = q^2$. Then the circuits of $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$ have type

$$(q_0, (\frac{q-1}{2})_2, 1, (q-1)_0, 1, (\frac{q-1}{2})_2, q_0)$$

or

$$(2q_0,(\frac{q-1}{2})_2,l_1,(q-1)_0,l_1,(\frac{q-1}{2})_2)$$

and hence

$$|(\sqrt{p})^{H}|_{amb} = 2(4q) = |(\frac{\sqrt{p}}{-1})^{H}|_{amb}$$

Proof: In order to prove this result, it is sufficient to find the element $h \in H$ such that $(h)(\alpha) = \alpha$ where $\alpha = \frac{\sqrt{p}}{1}$. Using Remark 3.6(1) we obtain, $(xy)^q(\alpha) = \frac{q + \sqrt{p}}{1} = \alpha_1$ (say). Again Remark 3.6(3) gives

$$(xy)^{-q}(\alpha) = \frac{-q + \sqrt{p}}{1} = -\overline{\alpha}_1$$

Now

$$(xy^3)^{\frac{q-1}{2}}(\alpha_1) = \frac{(q-1)(q^2-p)+q+\sqrt{p}}{(q-1)[2q+(q^2-p)(q-1)]+1} = \alpha_2$$

and

$$(xy^3)^{-(\frac{q-1}{2})}(-\overline{\alpha}_1) = \frac{-(q-1)(q^2-p)+q+\sqrt{p}}{(q-1)[2q+(q^2-p)(q-1)]+1} = -\overline{\alpha}_2$$

By Table 1

$$(xy^2)(\alpha_2) = \frac{(q-1)(q^2-p+1) + \sqrt{p}}{-(q^2-p)} = \alpha_3$$

and

$$(xy^2)^{-1}(-\overline{\alpha}_2) = \frac{-(q-1)(q^2-p+1)+\sqrt{p}}{-(q^2-p)} = -\overline{\alpha}_3$$

Finally we have

$$(xy)^{-(q+1)}(-\overline{\alpha}_3) = \frac{-(q-1)(q^2-p+1) + \sqrt{p}}{-(q^2-p)} = \alpha_3$$

Thus

$$(xy)^q (xy^3)^{\frac{q-1}{2}} (xy^2) (xy)^{q-1} (xy^2) (xy^3)^{\frac{q-1}{2}} (xy)^q (\frac{\sqrt{p}}{1}) = \frac{\sqrt{p}}{1}$$

Hence the circuit of $(\frac{\sqrt{p}}{1})^H$ has type $(2q_0, (\frac{q-1}{2})_2, l_1, (q-1)_0, l_1, (\frac{q-1}{2})_2)$ and hence

$$|(\sqrt{p})^{H}|_{amb} = 2(4q) = |(\frac{\sqrt{p}}{-1})^{H}|_{amb}$$

Example 3.8: By Lemma 2.3, $|Q_i^*(\sqrt{227})|=180$ and by lemma 2.4, $|Q_i^{**}(\sqrt{227})|=60$. Hence

$$|Q_1^{*}(\sqrt{4.227})| = 2(|Q(\sqrt{227})| - |Q_1^{*}(\sqrt{227})| = 2(120)$$

Thus the circuits of $(\frac{\sqrt{227}}{1})^H$ and $(\frac{\sqrt{227}}{-1})^H$ have type $(15_0, 7_2, 1, 14_0, 1, 7_2, 15_0)$ or $(30_0, 7_2, 1, 14_0, 1, 7_2)$ and hence $|(\frac{\sqrt{227}}{1})^H|_{amb} = 120 = |(\frac{\sqrt{227}}{-1})^H|_{amb}$. Clearly $o_H^{*-}(4.227) = 2$ and $o_H(227) = 3$.

Lemma 3.9: Let $p \equiv 3 \pmod{4}$ such that $p+1 = q^2$. Then the circuit of $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$ have type (q_0, q_1) and hence

$$|(\sqrt{p})^{H}|_{amb}=2(2q)=|(\sqrt{\frac{p}{-1}})^{H}|_{amb}$$

Proof: Analogous to the proof of Lemma 3.7.

Example 3.10: By Lemma 3.3, $|Q_1^*(\sqrt{3})|=12$ and by 2.4, $|Q_1^{**}(\sqrt{3})|=4$. Thus

$$|Q_1^{*}(\sqrt{4.3})|=2(|Q_1^{*}(\sqrt{3})|-|Q_1^{**}(\sqrt{3})|=16$$

Remark 3.11: Let $p \equiv 3 \pmod{4}$. Then p+1 is a perfect square if and only if p = 3.

The following lemma is concerned with the H orbits $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$ for $p \equiv 7 \pmod{8}$.

Lemma 3.12: Let $p \equiv 7 \pmod{8}$ such that $p+2 = q^2$. Then the circuits of $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$ have type

$$((q-1)_0, 1_1, (\frac{q-1}{2}-1)_0, 1_2, (q-1)_0, 1_2, (\frac{q-1}{2}-1)_0, 1_1, (q-1)_0)$$
 or

$$(2(q-1)_{_{0}},\!1_{_{1}},(\frac{q-1}{2}-1)_{_{0}},1_{_{2}}(q-1)_{_{0}},1_{_{2}},(\frac{q-1}{2}-1)_{_{0}},1_{_{1}})$$

and hence

$$|(\frac{\sqrt{p}}{1})^H|_{lamb} = 2(4q-2) = |(\frac{\sqrt{p}}{-1})^H|_{lamb}$$
.

Proof: To prove this result, it is enough to find an element $h \in H$ such that $(h)(\alpha) = \alpha$, where $\alpha = \frac{\sqrt{p}}{1}$. By Remark 3.6,

$$(xy)^{q-1}(\frac{\sqrt{p}}{1}) = \frac{q-1+\sqrt{p}}{1} = \alpha_1$$

(say). Then

$$(xy)^{-(q+1)}(\frac{\sqrt{p}}{1}) = \frac{-(q-1) + \sqrt{p}}{1} = -\overline{\alpha}_1$$

(say). Now by Table 1,

$$(xy^2)(\alpha_1) = \frac{2(q^2 - p) - q + \sqrt{p}}{(2q^2 - p)} = \alpha_2$$

and

$$(xy^2)^{-1}(\alpha_1) = \frac{-2(q^2 - p) + q + \sqrt{p}}{(2q^2 - p)} = -\overline{\alpha}_2$$

Again by Remark 3.6, we have

$$(xy)^{\frac{q-3}{2}}(\alpha_2) = \frac{(q^2-p)(q-1)-q+\sqrt{p}}{2(q^2-p)} = \alpha_3$$

and

$$(xy)^{-\frac{q-3}{2}}(-\overline{\alpha}_2) = \frac{-(q^2-p)(q-1)+q+\sqrt{p}}{2(q^2-p)} = -\overline{\alpha}_3$$

By Table 1

$$(xy^3)(\alpha_3) = (\frac{q^3 + q(b-3) + 1 + \sqrt{p}}{q^2 - p}) = \alpha_4$$

and

$$(xy)^{-1}(-\overline{\alpha}_3) = \frac{-q^3 + q(p+3) - 1 + \sqrt{p}}{q^2 - p} = -\overline{\alpha}_4$$

Finally

$$(xy)^{q-1}(\alpha_4) = \frac{(2q-1)(q^2-p-1)-q+\sqrt{p}}{q^2-p} = \alpha_5$$

and $\alpha_5 = -\overline{\alpha}_4$. Thus

$$\begin{split} &(xy)^{q-l}\,(xy^2)(xy)^{\frac{q-l}{2}-l}(xy^3)(xy)^{q-l}\\ &(xy^3)(xy)^{\frac{q-l}{2}-l}(xy^2)(xy)^{q-l}(\alpha)=\alpha \end{split}$$

Hence the circuit of $(\frac{\sqrt{p}}{1})^H$ have type

$$(2(q-1)_0, 1_1, (\frac{q-1}{2}-1)_0, 1_2, (q-1)_0, 1_2, (\frac{q-1}{2}-1)_0, 1_1)$$

and

$$|(\frac{\sqrt{p}}{1})^{H}|_{amb} = 2(4q-2) = |(\frac{\sqrt{p}}{-1})^{H}|_{amb}$$

Example 3.13: By Lemma 2.3, $|Q_1^*(\sqrt{79})|=204$ and by Lemma 2.4, $|Q_1^{**}(\sqrt{79})|=64$. Hence

$$|Q_1^{*-}(\sqrt{4.79})|=2(|Q_1^{*}(\sqrt{79})|-|Q_1^{**}(\sqrt{79})|=2(140)$$

The circuits of $(\frac{\sqrt{79}}{1})^{H}$ and $(\frac{\sqrt{79}}{-1})^{H}$ have the type $(16_0, 1, 3, 1, 8, 1, 3, 1)$ and hence

$$|(\sqrt{79})^{H}|_{amb} = 68 = |(\frac{\sqrt{79}}{-1})^{H}|_{amb}$$

Clearly

$$\left|Q^{*\bullet}(\sqrt{4.79})\right| > \left|(\frac{\sqrt{79}}{1})^{H}\right|_{amb} + \left|(\frac{\sqrt{79}}{-1})^{H}\right|_{amb}$$

and hence $o_H^{*-}(4.79)>2$. The remaining H-orbits of $Q^{*-}(\sqrt{4.79})$ will be discussed in the next section.

Example 3.14 $o_{H}^{*_{1}}(4.167)=2$ and $O_{H}(167)=3$. The circuits of $(\frac{\sqrt{167}}{1})^{H}$ and $(\frac{\sqrt{167}}{-1})^{H}$ have type $(12_{0},1_{1},5_{1},1_{2},1_{2},1_{2},5_{1},1_{1},1_{2})$ or $(24_{0},1_{1},5_{0},1_{2},1_{2},1_{2},5_{1},1_{2})$. Hence

$$|(\frac{\sqrt{167}}{1})^{H}|_{amb} = 100 = |(\frac{\sqrt{167}}{-1})^{H}|_{amb}$$

and

$$\left| \left(\frac{1 + \sqrt{167}}{2} \right)^{\text{H}} \right|_{\text{amb}} = 48$$

Since by Lemma 2.3, $|Q_i^*(\sqrt{167})|=148$ and by Lemma 2.4, $|Q_i^{**}(\sqrt{167})|=48$. So

$$|Q_1^{*-}(\sqrt{4.167})|=2(|Q(\sqrt{167})|-|Q_1^{**}(\sqrt{167})|=2(100)$$

H-Orbits of
$$\mathbb{Q}^{(c)}(\sqrt{p})$$
, $p \circ 3 \pmod{4}$

Recall that $H = \langle x,y \colon x^2 = y^4 = 1 \rangle$ is a Möbius group with $x(z) = \frac{-1}{2z}$ and $y(z) = \frac{-1}{2(z+1)}$. One of the main objectives is to determine the complete list of H-orbits (transitive Hsubsets) of $\mathbb{Q}^*(\sqrt{p})$ with $p \equiv 3 \pmod 4$ and $p \le 2011$. We concentrate on the distribution of the elements of $\mathbb{Q}^*(\sqrt{4p})$ in H-orbits and prove that if $p \equiv 3 \pmod 4$ then the number $o_H^*(4p) \equiv 2 \pmod 4$. If

$$\left|\mathbb{Q}^{*_{\sim}}(\sqrt{4p})\right| = \left|\left(\frac{\sqrt{p}}{1}\right)^{H}\right|_{amb} + \left|\left(\frac{\sqrt{p}}{1}\right)^{H}\right|_{amb}$$

then clearly $o_H^{*}(4p)=2$. However if

$$\left|\mathbb{Q}^{*_{\sim}}(\sqrt{4p})\right| > \left|\left(\frac{\sqrt{p}}{1}\right)^{H}\right|_{amb} + \left|\left(\frac{\sqrt{p}}{-1}\right)^{H}\right|_{amb}$$

(for example 3.13) then we have the following lemma which helps us to find the remaining H-orbits of $\mathbb{Q}^{*-}(\sqrt{4p})$.

Lemma 4.1: Let
$$p \equiv 3 \pmod{4}$$
. Then

1. $(\alpha)^{H} \cap (-\alpha)^{H} = \emptyset$ for all
$$\alpha \in Q^{*-}(\sqrt{4p}) \setminus (\frac{\sqrt{p}}{1})^{H} \cup (\frac{\sqrt{p}}{-1})^{H}).$$

2.
$$(\alpha)^{\mathrm{H}} \cap (\overline{\alpha})^{\mathrm{H}} = \emptyset$$
 for all
$$\alpha \in Q^{*-}(\sqrt{4p}) \setminus ((\sqrt{\frac{p}{1}})^{\mathrm{H}} \cup (\sqrt{\frac{p}{-1}})^{\mathrm{H}}).$$

Proof: First part follows by Theorem 2.8 and Lemma 2.6. By [12], we know that $\frac{\pm 1 + \sqrt{p}}{c}, \frac{\pm 1 + \sqrt{p}}{-c}$ are contained in $(\frac{\sqrt{p}}{1})^H$ or $(\frac{\sqrt{p}}{-1})^H$ where $c \not\equiv 0 \pmod{2}$. Hence by Lemma 2.5 we have $(\alpha)^H \cap (\overline{\alpha})^H = \emptyset$ for all $\alpha \in Q^{*-}(\sqrt{4p}) \setminus ((\sqrt{p})^H \cup (\frac{\sqrt{p}}{-1})^H)$.

Here we discuss examples with $O_H(p) = 12$.

Example 4.2: We explore the H-orbits of $\mathbb{Q}'(\sqrt{79})$ in the following algorithm.

Step I: First we write $79-a^2$, $1 \le a \le \lfloor \sqrt{79} \rfloor$ into its prime decomposition in order to find the positive divisors of $79-a^2$:

Step-II: By Remark 3.6(1) and Lemma 3.12,

$$(\sqrt{79})_{amb}^{H} \cup (\frac{\sqrt{79}}{-1})_{amb}^{H} = \{\frac{\pm a + \sqrt{79}}{\pm 1}$$

$$\frac{\pm a + \sqrt{79}}{\pm (p - a^{2})}, \frac{\pm a + \sqrt{79}}{\pm 4}, \frac{\pm a + \sqrt{79}}{\pm 2(p - a^{2})}, \text{where } 0 \le a \le 8\}$$

Step-III: In the remaining divisors of $p-a^2, 1 \le a \le 8$, the smallest odd prime divisors of $p-a^2, 1 \le a \le 8$ is 3. So we take

$$\frac{1+\sqrt{79}}{3} \in Q^{*}(\sqrt{4p}) \setminus ((\sqrt{p})^{H} \cup (\frac{\sqrt{p}}{-1})^{H})$$

and then by Lemma 4.1, we have four more H-orbits of $Q^*(\sqrt{79})$ namely, $(\frac{1+\sqrt{79}}{3})^H$, $(\frac{-1+\sqrt{79}}{-3})^G$, $(\frac{1+\sqrt{79}}{-3})^H$ and $(\frac{-1+\sqrt{79}}{3})^H$.

Step-IV: Now

$$\frac{\pm a + \sqrt{79}}{\pm 3}$$
, $\frac{\pm a + \sqrt{79}}{\pm (c = \frac{p - a^2}{2})}$, $a = 1, 2, 3, 4, 5, 7, 8$

are contained in

$$A = (\frac{1+\sqrt{79}}{3})^H \cup (\frac{-1+\sqrt{79}}{-3})^H \cup (\frac{1+\sqrt{79}}{-3})^H \cup (\frac{-1+\sqrt{79}}{3})^H$$

where c = 3,5,7,9,13,15,18,21,26,25. Since

$$\frac{\pm 4 + \sqrt{79}}{\pm 3}, \frac{\pm 7 + \sqrt{79}}{\pm 3}, \frac{\pm 7 + \sqrt{79}}{\pm 5}, \frac{\pm 8 + \sqrt{79}}{\pm 5}$$

$$\frac{\pm 8 + \sqrt{79}}{\pm 3}, \frac{\pm 2 + \sqrt{79}}{\pm 5}, \frac{\pm 2 + \sqrt{79}}{\pm 3}, \frac{\pm 2 + \sqrt{79}}{\pm 25}$$

$$\frac{\pm 3 + \sqrt{79}}{+5}, \frac{\pm 2 + \sqrt{79}}{+15}, \frac{\pm 1 + \sqrt{79}}{+13} \in A$$

Also

$$\frac{\pm 5 + \sqrt{79}}{\pm 9}, \frac{\pm 4 + \sqrt{79}}{\pm 9}, \frac{\pm 4 + \sqrt{79}}{\pm 7}$$

$$\frac{\pm 4 + \sqrt{79}}{+21}, \frac{\pm 3 + \sqrt{79}}{+7} \text{ and } \frac{\pm 3 + \sqrt{79}}{+14} \in A$$

Hence by step (I) and Lemma 2.3, we have

$$Q_1^{*-}(\sqrt{4.79})\setminus((\sqrt{79})^H\cup(\frac{\sqrt{79}}{-1})^H\cup A)=\emptyset$$

This implies that $o_H^{*}(4p)=6$.

Example 4.3 $Q''(\sqrt{223})$ splits into twelve H-orbits, namely

$$(\frac{\sqrt{223}}{1})^{\mathrm{H}}, (\frac{\sqrt{223}}{-1})^{\mathrm{H}}, (\frac{1+\sqrt{223}}{3})^{\mathrm{H}}, (\frac{1+\sqrt{223}}{-3})^{\mathrm{H}}$$

$$(\frac{-1+\sqrt{223}}{3})^{\mathrm{H}}, (\frac{-1+\sqrt{223}}{-3})^{\mathrm{H}}, (\frac{1+\sqrt{223}}{2})^{\mathrm{H}}$$

$$(\frac{1+\sqrt{223}}{-2})^{\mathrm{H}}, (\frac{1+\sqrt{223}}{6})^{\mathrm{H}}, (\frac{1+\sqrt{223}}{-6})^{\mathrm{H}}$$

$$(\frac{-1+\sqrt{223}}{6})^{\mathrm{H}} \text{ and } (\frac{-1+\sqrt{223}}{-6})$$

The first six orbits are lying in

$$(Q^*(\sqrt{233})\backslash Q^{**}(\sqrt{233})) \cup Q^{**}(\sqrt{4.233})$$

whereas the last six orbits are in $Q^*(\sqrt{233})$. Since

$$(1/223)=(2/223)=(-6/223)=(-3/233)=1$$

and

$$(3/223)=(6/223)=(-1/223)=(-2/223)=-1$$

so

$$\left(\frac{\sqrt{223}}{1}\right)^{\mathrm{H}}, \left(\frac{1+\sqrt{223}}{2}\right)^{\mathrm{H}}, \left(\frac{\pm 1+\sqrt{223}}{-6}\right)$$

and

 $(\frac{\pm 1+\sqrt{223}}{-3})^H$ are in $S_1^{223} \cup x(S_1^{223})$ and the rest of these are in $S_2^{223} \cup x(S_2^{223})$.

Now we state the main theorem of this paper.

Theorem 4.3: Let $p \equiv 3 \pmod{4}$. Then the number $o_H^{*-}(4p)$ is congruent to 2 modulo 4.

Proof: By Theorems 3.3 and 3.5, if $p \equiv 3 \pmod{4}$, then $Q^{*-}(\sqrt{4p})$ splits into at least two H-orbits, namely $(\frac{\sqrt{p}}{1})^H$ and $(\frac{\sqrt{p}}{-1})^H$. So

$$B = Q^{*_{\sim}}(\sqrt{4p}) \setminus ((\sqrt{p})^H \cup (\frac{\sqrt{p}}{-1})^H)$$

may or may not be empty. If $B \neq \emptyset$, then $o_H^{*-}(4p) = 2$. However if $B \neq \emptyset$, then by Lemma 4.1, we get four more H-orbits, namely $(\alpha)^H, (\overline{\alpha})^H, (-\alpha)^H$ and $(-\overline{\alpha})^H$ for some $\alpha \in B$ with the same ambiguous lengths. Again if

 $B\setminus ((\alpha)^H\cup (\overline{\alpha})^H\cup (-\alpha)^H\cup (-\overline{\alpha})^H)=\varnothing$, then $o_H^{*-}(4p)=6$, otherwise we continue this process of forming the orbits, each time adding four more orbits in the previous number of orbits. Since ambiguous numbers are finite, so after a finite number of steps all the ambiguous numbers are exhausted in the closed paths of the H-orbits. We get a finite number of H-orbits of $Q^{*-}(\sqrt{4p})$. Clearly this number is congruent to 2 modulo 4.

We conclude this paper with the following remark.

Remark 4.4: It has been proved in [11] that if $p \equiv 1 \pmod{4}$ then the number $o_H^{*}(4p) \equiv 2 \pmod{4}$ and also Theorem 4.4 gives $o_H^{*}(4p) \equiv 2 \pmod{4}$ for $p \equiv 3 \pmod{4}$. Hence the number $o_H^{*}(4p)$ is even for each odd prime p.

Note: The smallest prime $p \equiv 3 \pmod{4}$ such that $o_H(p)=28$ is 1087 and $o_H(p)=4$ for all primes $p \equiv 3 \pmod{4}$ and $p \le 2011$ other than listed in Example 4.6, Table 2-4.

Table 2: Primes $p \equiv 3 \pmod{8}$ such that $p \le 2011$, $o_H(p) = 9$

p	$\tau^*(p)$	p-1	H-orbits α^H of $Q^*(\sqrt{p})$ with $ \alpha^H _{amb}$
443	388	2(13)(17)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 168 , (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 84 , (\frac{\pm 1+\sqrt{p}}{\pm 13})^{\text{H}} _{\text{lmb}} = 48 , (\frac{\pm 1+\sqrt{p}}{26})^{\text{H}} _{\text{lmb}} = 20$
659	556	2(7)(47)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 216 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 108 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 7})^{\text{H}} _{\text{lmb}} = 80 \text{ , } (\frac{\pm 1+\sqrt{p}}{14})^{\text{H}} _{\text{lmb}} = 36$
1091	612	2(5)(109)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{lmb} = 264 , (\frac{1+\sqrt{p}}{2})^{H} _{lmb} = 132 , (\frac{\pm 1+\sqrt{p}}{\pm 5})^{H} _{lmb} = 72 , (\frac{\pm 1+\sqrt{p}}{10})^{H} _{lmb} = 36$
1171	1356	$2(3^2)(5)(13)$	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 392 , (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 96 , (\frac{\pm 1+\sqrt{p}}{\pm 3})^{\text{H}} _{\text{lmb}} = 264 , (\frac{\pm 1+\sqrt{p}}{6})^{\text{H}} _{\text{lmb}} = 124$
1627	924	2(3)(271)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 336 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 164 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 3})^{\text{H}} _{\text{lmb}} = 144 \text{ , } (\frac{\pm 1+\sqrt{p}}{6})^{\text{H}} _{\text{lmb}} = 68$
1787	876	2(19)(47)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 368 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 172 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 19})^{\text{H}} _{\text{lmb}} = 112 \text{ , } (\frac{\pm 1+\sqrt{p}}{38})^{\text{H}} _{\text{lmb}} = 52$
1811	908	2(5)(181)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 368 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 180 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 5})^{\text{H}} _{\text{lmb}} = 120 \text{ , } (\frac{\pm 1+\sqrt{p}}{10})^{\text{H}} _{\text{lmb}} = 60$
1987	1164	2(3)(331)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 400 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 196 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 3})^{\text{H}} _{\text{lmb}} = 192 \text{ , } (\frac{\pm 1+\sqrt{p}}{6})^{\text{H}} _{\text{lmb}} = 92$
1523	684	7 ² (31)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 312 \text{ , } (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 156 \text{ , } (\frac{\pm 2+\sqrt{p}}{\pm 7})^{\text{H}} _{\text{lmb}} = 72 \text{ , } (\frac{\pm 5+\sqrt{p}}{\pm 14})^{\text{H}} _{\text{lmb}} = 36$
1907	772	11(173)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 360 , (\frac{1+\sqrt{p}}{2})^{\text{H}} _{\text{lmb}} = 180 , (\frac{\pm 2+\sqrt{p}}{\pm 11})^{\text{H}} _{\text{lmb}} = 80 , (\frac{\pm 3+\sqrt{p}}{26})^{\text{H}} _{\text{lmb}} = 360 $

Table 3: Primes $p \equiv 7 \pmod{8}$ such that $p \le 2011$, $o_H(p) = 12$

p	τ*(p)	p-1	H-orbits α^H of $Q^*(\sqrt{p})$ with $ \alpha^H _{amb}$
79	204	2(3)(13)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{lmb} = 68, (\frac{1+\sqrt{p}}{\pm 2})^{H} _{lmb} = 16, (\frac{\pm 1+\sqrt{p}}{\pm 3})^{H} _{lmb} = 36, (\frac{\pm 1+\sqrt{p}}{\pm 6})^{H} _{lmb} = 8$
223	324	2(3)(37)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{lmb} = 116 , (\frac{1+\sqrt{p}}{\pm 2})^{H} _{lmb} = 28 , (\frac{\pm 1+\sqrt{p}}{\pm 3})^{H} _{lmb} = 52 , (\frac{\pm 1+\sqrt{p}}{\pm 6})^{H} _{amb} = 12$
1223	564	2(13)(47)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 276 \text{ , } (\frac{1+\sqrt{p}}{\pm 2})^{\text{H}} _{\text{lmb}} = 68 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 13})^{\text{H}} _{\text{lmb}} = 52 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 26})^{\text{H}} _{\text{lmb}} = 12$
1567	1076	2(3³)(29)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 364 \; , \; (\frac{1+\sqrt{p}}{\pm 2})^{\text{H}} _{\text{lmb}} = 88 \; , \; (\frac{\pm 1+\sqrt{p}}{\pm 3})^{\text{H}} _{\text{lmb}} = 80 \; , \; (\frac{\pm 1+\sqrt{p}}{\pm 6})^{\text{H}} _{\text{lmb}} = 44$
1847	676	2(13)(71)	$ (\frac{\sqrt{p}}{\pm 1})^{\text{H}} _{\text{lmb}} = 340 \text{ , } (\frac{1+\sqrt{p}}{\pm 2})^{\text{H}} _{\text{lmb}} = 84 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 13})^{\text{H}} _{\text{lmb}} = 60 \text{ , } (\frac{\pm 1+\sqrt{p}}{\pm 26})^{\text{H}} _{\text{amb}} = 12$
359	372	5(71)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{\text{lmb}} = 148 \; , \; (\frac{1+\sqrt{p}}{\pm 2})^{H} _{\text{lmb}} = 36 \; , \; (\frac{\pm 2+\sqrt{p}}{\pm 5})^{H} _{\text{lmb}} = 52 \; , \; (\frac{\pm 3+\sqrt{p}}{\pm 10})^{H} _{\text{lmb}} = 12 $
839	540	5(167)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{\text{lmb}} = 228 \text{ , } (\frac{1+\sqrt{p}}{\pm 2})^{H} _{\text{lmb}} = 56 \text{ , } (\frac{\pm 2+\sqrt{p}}{\pm 5})^{H} _{\text{lmb}} = 68 \text{ , } (\frac{\pm 3+\sqrt{p}}{\pm 10})^{H} _{\text{lmb}} = 16$
1367	636	29(47)	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{\text{lmb}} = 292 \; , \; (\frac{1+\sqrt{p}}{\pm 2})^{H} _{\text{lmb}} = 72 \; , \; (\frac{\pm 2+\sqrt{p}}{\pm 29})^{H} _{\text{lmb}} = 68 \; , \; (\frac{\pm 3+\sqrt{p}}{\pm 14})^{H} _{\text{lmb}} = 16$

Table 4: Primes $p \equiv 7 \pmod{8}$ such that $p \le 2011$, $o_H(p) = 20$

p	$\tau^*(p)$	$p-a^2$, $a = 1,2$	H-orbits α^H of $Q^*(\sqrt{p})$ with $ \alpha^H _{amb}$
439	596	438 = 2.3.73	$\left \left(\frac{\sqrt{p}}{\pm 1} \right)^{\text{H}} \right _{\text{lmb}} = 164 , \left \left(\frac{1 + \sqrt{p}}{\pm 2} \right)^{\text{H}} \right _{\text{lmb}} = 40 , \left \left(\frac{\pm 1 + \sqrt{p}}{\pm 3} \right)^{\text{H}} \right _{\text{lmb}} = 68 ,$
		435 = 3.5.29	$ (\frac{\pm 1 + \sqrt{p}}{\pm 6})^{\rm H} _{\text{arab}} = 16 \; , \; (\frac{\pm 2 + \sqrt{p}}{\pm 5})^{\rm H} _{\text{drab}} = 52 \; , \; (\frac{\pm 3 + \sqrt{p}}{\pm 10})^{\rm H} _{\text{arab}} = 12$
499	748	498 = 2.3.83	$ (\frac{\sqrt{p}}{\pm 1})^{\rm H} _{\rm lmb} = 192 \ , \ (\frac{1+\sqrt{p}}{2})^{\rm H} _{\rm lmb} = 92 \ , \ (\frac{\pm 1+\sqrt{p}}{\pm 3})^{\rm H} _{\rm lmb} = 96 \ ,$
		$495 = 3^2.5.11$	$ (\frac{\pm 1 + \sqrt{p}}{6})^{H} _{lmb} = 44, (\frac{\pm 2 + \sqrt{p}}{\pm 9})^{H} _{lmb} = 64, (\frac{\pm 3 + \sqrt{p}}{14})^{H} _{lmb} = 28$
727	716	2.3.11 ²	$ (\frac{\sqrt{p}}{\pm 1})^{H} _{anb} = 212 , (\frac{1+\sqrt{p}}{\pm 2})^{H} _{anb} = 52 , (\frac{\pm 1+\sqrt{p}}{\pm 3})^{H} _{anb} = 84 ,$
			$ (\frac{\pm 1 + \sqrt{p}}{\pm 6})^{H} _{lmb} = 20, (\frac{\pm 1 + \sqrt{p}}{\pm 11})^{H} _{lmb} = 52, (\frac{\pm 1 + \sqrt{p}}{\pm 22})^{H} _{amb} = 12$
1327	1156	1326 = 2.3.13.17	$\left \left(\frac{\sqrt{p}}{\pm 1} \right)^{H} \right _{lmb} = , \left \left(\frac{1 + \sqrt{p}}{\pm 2} \right)^{H} \right _{lmb} = 316 , \left \left(\frac{\pm 1 + \sqrt{p}}{\pm 3} \right)^{H} \right _{lmb} = 148 ,$
			$ (\frac{\pm 1 + \sqrt{p}}{\pm 6})^{H} _{lmb} = 36, (\frac{\pm 1 + \sqrt{p}}{\pm 13})^{H} _{lmb} = 84, (\frac{\pm 1 + \sqrt{p}}{\pm 26})^{H} _{lmb} = 20$

REFERENCES

- 1. Mushtaq, Q., 1988. Modular Group acting on Real Quadratic Fields. Bull. Austral. Math. Soc., 3 (7): 303-309, 89e: 11065.
- 2. Husnine, S.M., M.A. Malik and A. Majeed, 2005. On Ambiguous Numbers of an invariant subset $\mathbb{Q}^*(\sqrt{k^2m})$ of $\mathbb{Q}(\sqrt{m})$ under the action of the Modular Group $PSL_2(\mathbb{Z})$. Studia Scientiarum Mathematicarum Hungarica 42 (4): 401-412.
- 3. Farkhanda, A., Q. Afzal and M.A. Malik, 2012. A Classification of the Real Quadratic Irrational Numbers $\frac{a+\sqrt{n}}{c}$ of $\mathbb{Q}^*(\sqrt{n})$ w.r.t Modulo 3^r . International Mathematical Forum, 7 (39): 1915-1924.
- 4. Malik, M.A. and M.A. Zafar, 2011. Real Quadratic Irrational Numbers and Modular Group Action. Southeast Asian Bulletin of Mathematics, 35 (3): 439-445.

- 5. Sahin, R. and O. Bizim, 2003. Some subgroups of the extended Hecke groups $\overline{H}(\lambda_q)$. Mathematica Acta Scientia, 23B (4): 497-502.
- 6. Malik, M.A., S.M. Husnine and A. Majeed, 2005. Properties of Real Quadratic Irrational Numbers under the action of group H = ⟨x,y: x² = y⁴ = 1⟩. Studia Scientiarum Mathematicarum Hungarica, 42 (4): 371-386.
- 7. Malik, M.A., S.M. Husnine and M.A. Zafar, 2012. Certain H-subsets of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$ under the action of $H = \langle x,y \colon x^2 = y^4 = 1 \rangle$. Pakistan Journal of Science, 64 (1): 67-74.
- 8. Zia, T.J. and G.Q. Abbasi, 2006. Action of Subgroups of $H = \langle x,y : \vec{x} = y^4 = 1 \rangle$ on $\mathbb{Q}^*(\sqrt{n})$. Journal of Applied Sciences, 6 (8): 1720-1724.

- Mushtaq, Q. and M. Aslam, 1997. Transitive Action of a Two Generator group on rational Projective Line. Southeast Asian Bulletin of Mathematics, 1: 203-207.
- 10. Malik, M.A. and M.A. Zafar, (submitted). Classification of H-orbits of $\mathbb{Q}(\sqrt{m})\setminus\mathbb{Q}$, where $H=\langle x,y:x^2=y^4=1\rangle$.
- 11. Malik, M.A., S.M. Husnine and A. Majeed, 2005. Intrasitive Action of the Modular Group $PSL_2(\mathbb{Z})$ on a subset $\mathbb{Q}^*(\sqrt{k^2m})$ of $Q(\sqrt{m})$. PUJM, 37: 31-38.
- 12. Malik, M.A., S.M. Husnine and A. Majeed, 2003-04. The Orbits of $\mathbb{Q}^*(\sqrt{p}), p \equiv 3 \pmod{4}$ under the action of Modular Group $G = \langle x, y : \vec{x} = y^3 = 1 \rangle$. PUJM, 36: 1-14.