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Abstract: We are interested in the natural action (as Mobius transformations) of hecke group HH?2)=H
on the elements of quadratic number field over the rational numbers. The objective of this study is to find
the transitive H-subsets of some H-sets of Q(«/ﬁ )\ Q with the help of the structure of circuits of ambiguous

numbers. For p © 3(mod 4), the number o;;(4p) of H-orbits of Q“(\/4—p):(Q*(«/ﬁ)\Q“(\/ﬁ))EQ" (f4n)

has been determined for each prime p£2011.
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INTRODUCTION

Throughout this paper we take m as a square free
positive integer. Since every element of Q(Wm)\Q can

at4/n

C
2

be expressed uniquely as , with n = ¥m, k is

any positive integer and a, 2" andcare relatively

prime integers and we denote it by a(a,b,c), the set

2. ~
a+(:/ﬁ:a,c1 O,b:a c nI Z and (a,b,c)=1}

Q (Wn)={

is the set of all roots of primitive second degree
equations cx?+ 2ax+b=0 with reduced discriminant
D=a’- bc equal to n (an equation cx’+2ax+b=0 is
said to be primitive if (ab,c) = 1). If n and n¢are two
distinct non sguare positive integers then
Q' (Wn)CQ (W ¥ = £ henceit is easy to see to see that
QWM)\Q is the disjoint union of Q" (vk’m) for all
ki N.If a(ab,c)T Q' (v/n) and its conjugate a have
opposite signs then a is called an ambiguous number
[1]. The actua number of ambiguous numbers in
Q'(/n) has been discussed in [2] as a function of n.
The classification of the elements of Q'(v/n) with

respect to modulo 3 and modulo p has been
exploredin[3, 4].

A non-empty set W with an action of the group G
on it, is said to be a Gset. We say that Wisatransitive

Gset if, for any p,q in W there exists ag in G such that
pY = g. In 1936, Erich Hecke [5], introduced the groups

H(1) generated by two linear-fractional transformations
x(z)='—z1 and y(z):%. Hecke showed that H(l) is

discrete if and only if | =1 =2cos(2), qi N, F3or
g

132. Hecke group H(lg) is isomorphic to the free
product of two finite cyclic group of order 2 and g and
it has a presentation

H(l ) =&,y:x* =y? =1i@c,* C,

The first few of these groups are H(l ;)=PSL(2,7Z),
the modular group,

H( 4):H(\/E):<x,y:x2: y :1>

where
_- 1 -_— -
X(Z)_Z and y(z)—2(2+1)
Ho)=nEE)
and

H(l ) =H\3)=&,y:x? =y° =1
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An action of H and its proper subgroups on
Q&m)E{ ¥} hasbeen discussedin [6-9].
In[10], the H-orbits of

Q'(Wn)= @' Wn)E G*W4n)

where
Q" Wan)=(0 WM\ Q" W) E Q" (an)

have been found for p © 1 (mod 4). This paper is a

continuation of paper [10] for p © 3 (mod 4). The main
objective of this paper is to explore the structure of the

circuits formed by the elements of Q) (f4p), p © 3

(mod 4). We find some proper Hsubsets of Q“(+/n)

and define the types of H-orbits to obtain ambiguous
lengths of H-orbits with various properties of

these orbits of @"‘(JE).In Section 4, we discuss
the H-orbits of Q" (,f4p) for o};(4p)>4 and have been
able to prove that (a)",(@)",(-a)" and (-a)" are
distinct  orbits  of Q" (/4p) for  each
al~ Q'"(‘/H))\((@)H E(_ii)H) . The complete list of

H-orbits of Q%/p), p ° 3 (mod 4), has been
determined for al prime p£2011.
PRELIMINARIES

We quote from [2, 6, 7, 11] the following results
for later reference. Let

a+~n

2
a= with =21
C

We tabulate the actions on a(a,b,c)T Q“(wn) of x,y
and their combinationsy?, xy, yx and y?x in Table 1.

Theorem 2.1: [6] Q"‘(«/ﬁ):{%:ai Q W), t=1,2} is

invariant under the action of H.

Theorem 2.2: [6] Let n® 1,2 or 3(mod 4). Then
Q" (n)={a(ab,o)l Q'(n):2lc}

isan H-subset of Q“w&/h) .

Lemma 23: [2] Let m be a sguare-free positive
integer. Then

Table 1: The action of elements of H on al Q‘(+n)

a= L\Iﬁ a b c
c
_ -1
X@ = — -a c/2 2b
2a
-1
= -aC cl2 2(2atb+c
ya 2a +2 ( )
=221 3a2bc 2atbic datdbte
2a +1
2a+1 da+4b+c
= 3at+2b+c 2(2at+b+c
Xy (9 oo > ( )
yX (3 = 2+l 3a2bhc  _datab+c 2(-2a+b+c)
2a-2 2
Xy (@) = —2 at+2b b dat+dbt+c
2a+1
0xy)(a =a+k at+ke katbtk’c ¢
¥ @)=—2— a2kb b -4kat+ak2bHbc
-2ka +1
(Yx)(a =a-k akc 2kat+b+k2c c

@ (Wm)I=t (m)=2t(m)+48 "t (m- a?)

Lemma 2.4: [2] Let n be square free positive integer.
Then

|} () =2t ¢n) + 48 Mg - o)

where t'¢u) denotes those divisors of u, which are
divisibleby 2.

Lemma 25: [6] Let al Q%/n). Then a" =a if and
only if there exists an element b in a" such that

x(H =b .

It is well known that G=a&,y:x*=y=1#d
represents the modular group, where
x(z):'—zl,y(z)=Z'T1 are  linear  fractiona

transformations.

Lemma 2.6: [7] Letn °© 1,2 or 3 (mod 4). Let Y be any
Gsubset of Q" (v4n). Then YEX(Y) is an H-subset of

Q" (W4n).

Lemma 2.7: [2] Let p © 3 (mod 4). Then Q'(/p) splits
into at least two Gorbits, namely, (@)G and (_£E)G
under the action of G.
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Theorem 2.8: [11] If n® 0 or 3 (mod 4), then

s={al Q (v/n):bor c® 1(mod 4)}
and

-S={al Q (Wn):borc® - 1(mod 4)}

are exactly two disjoint G-subsets of Q'(vn) depending
upon classes [a,b,c] modulo 4.

Theorem 2.9: [4] Let p be an odd prime factor of n.
Then both of

s ={al Q ¢/n):(b/p) or (c/p)=1}
and
S;={al Q &/n):(b/p) or (c/p)=- 1}

are Gsubsets of Q*(Jﬁ). In particular, these are the

only Gsubsets of Q*(Jﬁ) depending upon classes
[a,b,c] modulo p.

AMBIGUOUSLENGTHSOF
THE H-ORBITSOF Q“(/p)

We start this section with the following definition.

Definition 3.1: By a circuit, we shall mean closed path
of edges and squares in the coset diagram for H-orbit

a"where al Q' (/n).
If n,n,ngn,,..,n,
integers and

is a sequence of positive

i=0,1,2,i T, (1I51,2,....k- 1),i, 1y )

Then by a circuit of the  type
(Mg, Mg, N Ny, Ny ) WE shall mean the circuit
(counter clockwise) in which n,j=1,2,3,...
havei; vertices outside the circuit.

,k squares

Remarks 3.2

1. Since it is immateria with which ambiguous

number of a" the circuit begins, we can express
type (1) by any of the following k-equivalent forms

(nljl1nzzv"'vnkik):(n2i27n3i3""’nkik7nljl)
= (M oMy ey )
2. Thetype (ny,n,, .y, Ny, .-..Ny, ) can be described

3y

by the equations (1) or more briefly by

' =012i* t+l(modk) (]

3. This circuit induces an element
g=(xy" )™ (xy2")2(xyt )+ of H and fixes a
particular vertex of a square lying on the circuit
and hence the ambiguous length of this circuit is
given by 2(n, + n,+ ng ..+ n,)

4. All of the 2(n,+n,+ ..+n,) numbers lies in the
same orbit and hence each of them has the
same type.

For example, by the circuit of the type
(6,,3,1,2,1,1) we mean the circuit (Fig. 1)

induces an element
h=(xy){xyy(xyj(xy){xyf(xy)ixy)?

Vil i

of H which fixes vertex ES asfollows. Let k,=——

1
o= 2 o iy = 2y
(xy?)(ky) = 22 ‘/_—k4.(xy)(k4) 2+‘/_1 “k,
(xy )(k5)_1+ﬂ Ko+ (Xy*)(k) = 3”_1 K,

and (xy)*(k, = k,. The ambiguous length of this circuit
iS2(6+1+1+2+1+1).
We now find the H-subsets of
QWn)= @ Wn)E U (V4n)
where

Q" Wan)=(0 W\ Q" (W) E Q" Wan)

Fig. 1: Orbit of k;@ and h(ky) = ky
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Also we explore the action of H by finding

H-orbits of Q' ~(¥/4n) and discuss the ambiguous
cardinalities of these H-orbits.

Theorem 3.3 Let p © 3 (mod 8). Then Q°(/n) splits
Jn «/_

into three Hsubsets. In particular (—)

1 J_) are at least three H-orbits of Q“(/n) .

Before giving the proof we need the following crucial
remark.

Remark 3.4: Let p© 3 (mod 4). Then a”- n9 0(mod 4)
foral al {0,1,2...6/nG .

Proof of Theorem 3.3 Since p © 3 (mod 8) and
Q'Wn)= @' WnEQ (4n), by Theorem 22
Q" (/n) is an H-subset of Q*(y/n), by Theorem 2.8 and
Lemma 26, Q~(+/4n) splits into two H-subsets. Thus,
by Remark 3.2, it is clear that Q“(+/n) splitsinto three

«/_ «/_ 1++4/n

H-subsets. Clearly ( and (T)H are at

least three H-orbits of Q' (\/ﬁ). This completes the
proof.

Theorem 3.5: Let p © 7 (mod 8). Then Q°(/n) splits
i A

into three H-subsets. In particular (—) (—)

(1+2«/H)H and (1_Jt‘2/ﬁ)H are at least four Horbits of
Q'Wn).

We now determine the ambiguous lengths of these
H-orbits as a function of p, which help us to determine
the remaining H-orbits of Q'“(JE ) and henceto classify

them as well. The following lemma is concerned with
the Horbits (@)H and (‘/—E)H for p © 3 (mod 8).

Before thiswe have the following
Remark 3.6: Let a(a,b,c)T Q' (vn) and ki N. Then

L (xy)k(a>=a+k=(y&>'k(a>
2 (0 @=5==0) @)

3 h@=ala"p h¥a)=-a] a"

Proof: These results can be verified by Table 1.

From [12], if p ©
+1+

{‘ b 1+ ‘/_} is contained in (‘/_)G and the set

{+1+Cp,+1+‘/_ is contained in (‘/—E)G. By

3 (mod 8) then the set

Theorems 3.3 and 3.4, the set {ﬂJer,#} is

contained in (ﬂ+_2\/5)H orin (11+—2,\/B)H
Jn, Jn

that (T) and (_—1)H arein

. Soitisclear

Q" (Wan)=(Q WM\ Q" Wn))E 0" Wan).
Lemma 3.7: Let p© 3 (mod 8) such that p-2 = ¢°. Then
the circuits of (‘/_) and (‘/_) have type

(@, (= )z,ll(q 1,4, (== )27 o)

or
q-1 q-
(ZQO'(T)Z‘]ll(q - 1)0! 111 (T)z)

and hence

/P |amb=2(4q):|(_£‘1’)“ s
Proof: In order to prove this result, it is sufficient
to find the element HH such that (h)(a)=a

where a=@. Using Remark 3.6(1) we obtain,

(xy)'(@) =3 +1‘/5 =a, (say). Again Remark 3.6(3) gives

) =2

Now
@- D@ - p+ g+ _

q-1
0V @) = G D2g+ (@ pa- 071

and

W& = @)@ -ptarfp =
(xy7) * (-au) (- D2a+(F-pa- )+ o

By Table1

p+)+p_

-(oP- p)

(9- (@’ -

xy)(a,) =

and
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2y Ty @ D@ - p) +p
(xy")(-a2) yre
Finaly we have
a5y 2@ D@ -p)
(xy) (- as) @D

Thus
(Xy)“(xsf) (xy Yy (xy Ay’ 2 o (xy) (‘/_ =3= ‘/_

Hence the circuit of (@)H has type

(290, (5, 4.0+ 1, 3,59),) and hence

)" |amb:2(4q):|(_£2)“ s

Example 3.8: By Lemma 2.3, |Q*1(~/227)|=180 and by
lemma24, |Q; (J227)|=60 . Hence

1Q,"(V4.227) |=2(1QW227)| - | Q| /227)|=2(120)
227

Thus the circuits of (T)

N 227

and (—l)H have

type (15,7,1,14,%,%,13) or (30,7,1,14,1,7) and

2y | r20-i 2y,

0.7(4.227)=2 and 0,,(227)=3.

hence Clearly

Lemma 39 Let p © 3 (mod 4) such that p+1 = df.
Then the circuit of (@)H and (‘/—E)H have type
(9o, 1) and hence

1p)" |amb:2(2q):|(_£‘i)“ oo

Proof: Analogous to the proof of Lemma3.7.

Example 3.10: By Lemma 33, |Q(+/3)[=12 and by
24,1Q (/3 )|=4. Thus

1Q; (v/4.3)|=2(I3(V3) |- 1 Q" (v/3)|=16

A3 V3

The circuits of (T)H and (_—1) have type

3 3

(20,22). Hence |(—) |m:8:|(_—)”|anb.Thecircuitof

(#) have the type (10,1) and |(i) s

So04(3)=3.

Remark 3.11: Let p © 3 (mod 4). Then p+1 is a perfect
squareif and only if p=3.
The following lemma is concerned with the H

orbits (J_) and (J_) for p° 7 (mod 8).

Lemma 3.12: Let p © 7 (mod 8) such that p+2 = cf.
Then the circuits of (‘/_) and (‘/_) have type

(@- 1)L, (

or

1)01 (9- 1)012(—-1)031((1 1))

(2(9- 1)L, (—- 1pL(a- 1), L ( 1)0 1)

and hence
I(J_) lw=2(49- 2)= I(J_) Jas -

Proof: To prove this result, it is enough to find an
element hl H such that (h)(a) = a, where a :@. By
Remark 3.6,

(xy)“’l(@) = ﬂ =a,

1
(say). Then

(g o @y o@D

(say). Now by Table 1,

20°- p)- a+p _

() (a,) = 2B
and
“yiay = 2L P atyp _
(xy")(a) = 2 - 7)

Again by Remark 3.6, we have
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@ - P-1- g+p _

o) 7 (a)= BN o,

and

(@ - P@-D+a+yfp _
27~ )

L
(xy) 2 (-az)=
By Table1

o +q(b- 3)+1+4/p

(Xy“)(@as) = ¢ C-p ) a,
and
) (g =T AR 1+\p _
od-p
Finaly

(29- 1)@

- p-D-ardp
— 95

(xy)"(@,) = o

and a, =-a.. Thus

L]',l
2

(xy*)(xy)**

a1,
(xy*)(xy) 2 (xy*)(xy)*(a)=a

(

(xy)** (xy?)(xy)

Hence the circuit of (X=)" havetype

(2@~ 1)o.1, (—- 1% L(a- 1), Jz( 1)0 iy

and

I(J—) lw=2(49- 2)= I(J—) lavo

Example 3.13: By Lemma 2.3, |Q,(\/79)[=204 and by
Lemma24, |Q; (\[79)|=64 . Hence

1Q,"(4.79)|=2(1QW79)| - 1Q; (J79)|=2(140)
V79 V79

The circuits of (T) and (_—1)H have the type
(16,,1.3,1.8.1,3,1) and hence

/79)" |m=68=|(_£19>“ L

Clearly

N

R BN TC A

and hence o, (4.79)>2. The remaining H-orbits of
Q "(+/4.79) will be discussed in the next section.

Example 3.14 0,;(4.167)=2 and Oy(167) = 3. The
V167 V167

P H
circuits of (T) and (_—1)

(12,1,%,1,12,1,8,1,18) or (24,,1,58,1,12,1,3.1).
Hence

have type

ATy =100-1 2 e,

and

I( )" Ly =48

1 +«/167
2

Since by Lemma 23, |Q(+167)[=148 and by
Lemma24, |Q; (4167 )|=48 . So
Q" (J4.167 ) |=2(IQWI67)| - |Q (167)[=2(100)

H-Orbitsof Q“(\/p),p° 3(mod 4)

Recall that H=(x, y:XZ:y4:1> is a M&bius group

with x(z)=-2—z1 and y(z)= o ).

objectives is to determine the complete list of H-orbits
(transitive Hsubsets) of Q"’(JE) with p © 3 (mod 4)

and p£2011. We concentrate on the distribution of
the elements of Q" (/4p) in H-orbits and prove that if

p° 3 (mod 4) then the number o,; (4p)° 2(mod 4) . If
0" W/ap) 4(@)“ oo + |(_£§)“ o
then clearly o,; (4p)=2. However if

o~ (J_)|>|( ) Lo * |(I) b

(for example 3.13) then we have the following lemma
which helps us to find the remaining H-orbits of

Q" (4p).

Lemmad4.l: Let p° 3 (mod 4). Then
1. @"Cc(-a)'=£ for al

al Q“(J4_p)\(@)“ E (_iﬁ)“) .
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2 @"C@)=£ for al
al Q“(JTp)\((@)“ E (_ii)H) .

Proof: First part follows by Theorem 2.8 and Lemma

+1+4p £1+4p
c ' -c

26. By [12], we know that

contained in (@)H or (_ﬂi)H where ¢ ¢ 0(mod 2) . Hence
by Lemma 25 we have (a)"C () =4& for al

al Q" (W2p\ ()" E(_ii’)“)

Here we discuss examples with Oy (p) = 12.

Example 4.2 We explore the Horbits of Q°(/79) in
the following algorithm.

Step |: First we write 79-a%, 1£a£&/790 into its prime
decomposition in order to find the positive divisors of
79-:

79-1=78=2.3.13, 79- 4=75=3.5%, 79- 9=70=2.5.7
79-16=63=3%7, 79- 25=54=2.3%, 79- 36=43,
79- 49=30=2.3.5 and 79- 64=15=3.5

Step-1l: By Remark 3.6(1) and Lemma 3.12,

NI +a+4/79
(N79)as E () =3
+a+79 ta+[79 +a+ 79

#(p- a2’ #  £2p- &)

where O£ af 8}

Step-lll: In the remaining divisors of p- &,1£ af 8,
the smallest odd prime divisors of p- &,1£ af 8 is 3.
So wetake

LI o Wam ey ey

and then by Lemma 4.1, we have four more H-orbits of

Q W/79) namely, (“J_ , ('1fg_ , (“_43_
and (2179
3
Step-1V: Now
17 tar® 4,50
+3 +(c= p- : 2)

are contained in

A=<1+347_9)“‘('“J_ L9y (14T

-3 -3 3

wherec = 3,5,7,9,13,15,18,21,26,25. Since

+4+4[79 +7+[79 +7+79 +8+\79
£33 ' #8345

+8+79 12+479 2+479 +2+479
+3 5 ' 3 ' 425
+3+4/79 +2+479 11+«/7_T A

5 ' #15 ' +13

Also

15470 +4+79 +4+4/79

+9 9 +7

+4+479 £3+4[79 and ¢3+J7_T A

21 ' 7 +14

Hence by step (1) and Lemma 2.3, we have

Q. (V4. 79\ (W79)" E(

)EA)/E

Thisimpliesthat o,;(4p)=6.

Example 43 Q°&223) splits into twelve H-orbits,
namely

(‘\/@)H '\/f (1""\/5 ( ‘\/_3)H
1 ) ) )

) 3 -3
-1+\/223H -1+\1223H 1+4/223
(3 5
1+«/22 1+/223 1+«/22
-2 6 -6

)" ( ) (
-1+4223 -1++/223
Y ()

and (
Thefirst six orbitsarelyingin
(Q W233)\Q" (V233)) E Q" (+/4.233)

whereas the last six orbitsarein Q" (v/233). Since

(1/223)=(2/223)=(- 6/223)=(- 3/233)=1

and
(3/223)=(6/223)=(- 1/223)=C 2/223)=- 1
so
J223.,, 1+223, +1+«/E
By oy (E
and
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(¢1+«/f

— 3)H arein SZ E x($2) and the rest of these

arein SZE x(S$%) .
Now we state the main theorem of this paper.

Theorem 4.3: Let p © 3 (mod 4). Then the number
0,, (4p) iscongruent to 2 modulo 4.

Proof: By Theorems 3.3 and 3.5, if p© 3 (mod 4), then
Q" (\4p) splits into at least two H-orbits, namely
(@)“ and (Q)“.%

B=Q’"(x/4_p)\((J5)HE(_£|;)”)

may or may not be empty. If B! /&, then o, (4p)=2.
However if B! A&, then by Lemma 4.1, we get four
more H-orbits, namely (a)",(@)", (- a)" and(-a)" for
some al B with the same ambiguous lengths. Again if

Table 2: Primes p © 3 (mod 8) such that p£2011, ou(p) =9

B\((a)"E (@)"E (-a)" E(-a)")= &, then o} (4p)=6,
otherwise we continue this process of forming the
orbits, each time adding four more orbits in the
previous number of orbits. Since ambiguous numbers
are finite, so after a finite number of steps al the
ambiguous numbers are exhausted in the closed paths
of the Horbits. We get a finite number of Horbits of

Q" (\4p). Clearly this number is congruent to 2
modulo 4.

We conclude this paper with the following remark.

Remark 4.4: It has been proved in [11] that if p° 1
(mod 4) then the number 0o,;(4p)° 2(mod4) and also

Theorem 4.4 gives o,;(4p)° 2(mod 4) for p© 3 (mod 4).
Hence the number o}; (4p) is even for each odd prime p.

Note: The smallest prime p ° 3 (mod 4) such that
0,(p)=28 is 1087 and o,(p)=4 for al primesp ° 3

(mod 4) and E2011 other than listed in Example 4.6,
Table 2-4.

p t'(p) p-1 H-orbitsa" of Q*¢fp) with 2"
\/5 H = l+\lﬁ H - il+"/6 H — i1+\/6 H —

443 388 2(13)(17) Q2 =168 130" |, =84, 13D =48, |0y |, =20

659 556 2(7)(47) (R p, =216, | ENRy | 08, 1 EEPy | o | EES | g6
+1 2 +7 14

1091 612 2(5)(109) |(J_5)H |, =264, |(M)H |,=132, |(ﬂ)H |,=72, |(ﬂ)H |,,=36
+1 2 +5 10

1171 1356 2(3%)(5)(13) |({_§_’)H l,=392, |(#)H =96 |(¥)H |y =264 |(#)H |,,=124

1627 924 2(3)(271) |({_‘1;)H |, =336, |(_1+2\/5)H |, =164, |(_11:§/5)H | =144, |(_ﬂ:3‘/5)H | =68
\/5 H = l+\/6 H = i1+\/5 H - il+\/5 H -

1787 876 2(19)(47) Q)" £, =368, 120" | =172, |(Fo¥D)" |,=112, (YD) | =52

1811 908 2(5)(181) @Ry, =68, 1Py | 2180, 1EE Ry | 10, 1 EEPY ) 6o
+1 2 +5 10

1987 1164 2(3)(33) 1Py a0, 1ENRy | =106, 1Ry 102, 1Ry o

2 \/5 o 1+J[_JH B 1—2+JBH _ ¢5+JBH _

1523 634 7(31) By =312, 1EX | =156, 12Ny |, =72, 12Ny | =36
\/5 H - l+‘\/5 H - i2+\/5 H — i3+-\/6 H _

1907 772 11(173) 1O 4, =360, 130" |, =180, |(—¥Py |, =80, [Py |, =36
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Table 3: Primesp © 7 (mod 8) such that p£2011, ox(p) = 12

p t"(p) p-1 H-orbits a" of Q*¢fp) with [a"Jars
JF_) H - 1+'\IB H - il+JE H = _1 'J_
79 204 2(3)(13) IR ) =68, 130" Lo =16, 1D 1,236, 11D, =8
\/5 Ho o= 1+\IB H| = i1+\/5 Hp — il"‘\/B Hl o —
223 324 2(3)(37) KH) b =116 , l(T) b =28, KT) b=52 , HT) |y =12
\/5 H - l+‘\/5 H = i1+'\/’3 H — i:I-""\IB H —
1223 564 2(13)(47) ICE ) b =276 165" =68 13" ™52 1) e =12
1567 1076 2(3%(29) |(£)H |,=364, |(ﬂ)a |,=88 , |(i1+\/5)a .,=80, |(‘—f1+«/5)H | =44
+1 +2 +3 +6
1847 676 2(13)(72) '({_E)H |, =340, |(l++_~/5)H L=84, 1AL ~/_ ) 1,260 , |(ﬂ++«/5)H =12
359 3r2 5(71) by =148 , ‘/_ " =36, |(ﬂ)m=52, ‘3+‘/_)“;m =12
+1 +5 +10
839 540 5(167) |<‘+/—‘17)H b =228, |(¥)H =56 , 12 *’— Y |, =68, |(i3++~/5)H 1, =16
\/F_) H = l+\/’_) H = +2+‘I_ —3+'\l_ H
1367 636 29(47) IG5 b =292, 130" =72, 135 i i LIRSS

Table 4: Primes p © 7 (mod 8) such that p£2011, on(p) =

On Ambiguous Numbers of an invariant subset
@ <k?m) of QWm) under the action of the
Modular Group PSL,{). Studia Scientiarum
M athematicarum Hungarica 42 (4): 401-412.

1649

P t'(p) p-a, a=1.2 H-orbits a" of Q*(/P) With [a s
_ P - R N N NV
439 506 438=2373 QB =164, 130 =40, 120y | =68,
435=3.5.29 |(#)” oo =16, |(@)“ L,=52, |(#>“ L, =12
499 748 498 =2.3.83 |(‘{_2_ ¥ |,=102, |(#)H |,=92, |(#)H =96,
495 = 3511 |(¥)H | =44, |(#)H |, =64, |(#)H =28
727 716 2.3.112 1Py },=212, (&P |,=52, |(ﬂ)H |.,=84
+1 +2 +3
Py 20 1 ERy s AR 1o
1327 1156 1326 = 2.3.13.17 |(\+/_f ¥l=, |(%)H |, =316 , |(*1++_\/5)H =148,
|(#)H 1s=36 |<*1++13J‘_’)H =84, 12 J_ ¥ L,=20
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