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Abstract: In the open disc u,, ={z :|z — w|<1} centered at w with radius 1 some generalizations of subclasses of
analytic functions f'within the differential operator VE 75y = F5 D ()4 (2= w) £ () ATE introduced. Coefficient

bounds of w-p-valent uniformly subclasses within the linear operator v are calculated. Some properties of
the growth and distortion are discussed. Results of Hadmard product and generalized Hadmard product are
obtained.
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INTRODUCTION

Let A(p) be the class of all analytic functions which are defined in the unit disc # = {z :|z |[<1} and can be written in
the form

0
fz)=zF+ Zan+p P, a,,,20 and pneN={1,234, .}
n=1
Among the last century several authors have studied many valuable and interesting results of univalent functions,
even with various generalizations as appeared in many literatures and articles. For a fixed point w in the unit disc u,
Kanas and Ronning [1] introduced a more generalization form of analytic functions in the unit disc u of the form

0
f(z)=(z—w)+2ak(z—w)k, a,€C

k=2
which are denoted by I'(w) ST(w) and CV(w) and they obtained some results related to the other univalent functions.
Acu and Owa [2] introduced bounds for classes of w-close-to-convex functions, w-a-convex functions and other further
studies of these classes. Al-Kasasbeh and Darus [3, 4, 5] introduced classes of analytic univalent functions that are
defined in the open disc u, ={z :|z — w|<l} and they proved corresponding results to these classes. The concept of
uniformly convexness for analytic and univalent functions was introduced by Goodman [6, 7] and investigated by several
authors (e.g see Ronning [8], Bharati et al. [9] and Ma and Minda [10]. The classes of uniformly convex functions are
defined by

+v,zelU,6 20,7 <[0,1)},

(Zf’(Z))’J sl @@
s@ ) e

CD@S,y)={f € A(p): Re[
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and lately, Nishiwaki and Owa [12] studied the classes of p-valent uniformly starlike and univalent functions which are
defined by

(Zf’(Z))’] SNICKG) .

, Uu,5 =0, 0, .
@ ) e PTrEE velopi

CD,(6.7)= {feA(p)IRe[

In the recent article, for any complex number w in the open disc u,, ={z :|z — w|<1}, the class 4,(p) is defined to be
w-p-valent analytic functions

f(Z):(Z—w)p+Zan+p (z=w)"7?, a,,,€C and pneN,

n=1

and denote T, (p) subclass of 4,(p) of all functions with the negative coefficients

0

f(z)=(z—w)p—2an+p (z—w)""?, an+p20 and p,neN.

n=1

Also in the open disc u,, for 6=0 and 0< y<p the subclasses DY @.7) of T,(p) are defined to be all w-p-valently
uniformly convex functions

(- W)f’(Z))’] _slCeomreyJ

CD,(8,7)= 7,(p):R ; z
p (0,1)= 1 €Tu(p) e[ ) )

For a nonnegative parameter  and k€R, Al-Kasasbeh and Darus [3, 4] defined the linear differential operator v
for an analytic function fin the open disc u, ={z :lz = w|<1} to be v& r(;)= rk=D ;)1 g (z = w) f®)(z) - The differential operator
vk within the class of w-p-valently uniformly convex functions is introduced as follows.

Definition 1.1:. Let (z) € T,(p). Then y(zyecovk p.y.5.p) if and only if

L GVl 1

Viro-e BT

k+1
Re[1+—(2_w)vw /() —i]>5 -p

Vir@ - B

for u € u,, 6=0 and 0< y<p.

The class ¢pv¥,(p.y.6.p) is a generalization of various subclasses of univalent functions, it is easy to note that if
k=1, w=0andp=1, then cpv%](l’y,g,ﬁ)gcp(g’y) due to Shams et al. [11] in the unit disc u,. Also, if k=1, w=0and
p € N, then cpvlo(p’y,g,ﬁ)chp(&y) due to Nishiwaki and Owa [12] in the unit disc u,.

The Main Results: The coefficient bounds for a function f'in the class ¢pv¥,,.y,5,p) Which is analytic in the open disc
u,, are estimated.

Theorem 2.1: A function f(z) € T,(p) is belonging to the class cpv¥,p.y.s,p) if and only if

k
[T +1-dlp-y-266-1)
iy < =1 : (2.1)

k
n=l [[@+n+1-ilp+n+1-y-8n+2)]
i=1

0
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Proof: Since 7()ccpvk p.y.5,p) - for 620, 0<y<p and z € u then

D D\
Vi@~ B

>’}/’

k+1
R{HM_L]_ L

Vire - B

and
| 7O+ fE D@ |=6la-prPE+c-w (D@ >y 1P

Assume that (z — w) approaches to 1, since it is observed that |z — w|<I in the disc u,, then

00

k k
D anp [ [(p+n+1-dDin+p+1-y-8m+21<[p-y-26-DI] J(p+1-0.

n=1 i=1 i=1

So that for 0< y<p and 6=0

k
[T +1-dip-y-266-1)

a i=1

’H'PS k

H(p+n+1—i)[p+n+1—y—6(n+2)]
i=1

Conversely, in the view of definition,

=%
—

z-wVilri) 1 z-wVE ey 1
T w Sl Re| 14— w S
Vii@-re B Y e[ Viro-re B)S T

which is equivalent to

=%

Vi@ B Vir@-re B
Therefor

k+1 k+1
L4 (z=-w\V,, f(2) —l—p —Re[1+ (z=w)Vy," f(2) _l_ljgl_y'

C-wVEri) 1 (z-wVE ey 1
14T WVw JU2) 2 Rl ETWVw JE2) 2
‘+V'fvf(2)—fk_l(2) B p‘ e[ TV @-re) B

k+1
S(M)[Hw_i_ J

Vi@ - B

k e k
[T@+1-D(p(-28)+2)=> |, , [[ [(p+n+1-D(1+5(n+2)
< (5 +1)) i=1 n=1 i=1

k o0 k
[Te+1-0-D 1w, [ [(p+n+1-0)
i=1 n=1 i=1
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k
o [ +1-blp-y-26 -DI1+8(n+2)

k
[ +1-d(p1-26)+2) Z =1

<(5+1))| =L =

[p+n+1-y—-56(n+2)]

. H(p+1 DIp-y-2(6-1)]

_ i=1
H(p+1 0= z [p+n+1-y—-06(n+2)]

i=1 n=1

Since there is y € [0, p] and 6 >0 such that

. H(p+1—z)[p —y=2(8 ~DI(1+8(n +2))

H(p+1—l)(p(1—26)+2) > =

P ~ [p+n+1-y-06(n+2)]

IN

1-y

k
L o [[e+1-dlp-y-26-1)]
_ i=1
g(pH -2 (prn+l—y—8(n+2)]

n=1

Then

Vhf(z) - f" (z)

Re[ RECE G 1]
Vif@ -z B

3(5+1)[:{T’;j—1—y.

Which is equivalent to

S cwviie 1

(Vi r(2)- s D) B

Thus f(;)espvk (p.y.5.p) and the result is sharp for

-wVifim 1
-R —— <y
e[V’alf(z)—ﬂ“)(z) ﬁ} 4

k
[T +1-dlp-r-26-1)]
(@) =(z-w)P -————H (z-w)P™" [0

[[@+n+1-dip+n+1-y-6(n+2)]
i=1

Next corollary discusses the distortion and growth properties.

Theorem 2.2:Let r(zyccpv (p.y.6,p) . for z € u, = {z 1 r=lz —w|<1}. Then

P M |f(z)|< Py 3-(26+y) Pt
2(3-(36 +7)) 2(3-(36 +7))

and
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-1 3-(26+7) » , P 3-26+7) »
pr [—2(3_(36+y))](p+1)r S|f(z)|§pr +(—2(3_(36+y))j(p+1)r

with equality for

3-26+7)

_ p+l
206G

f@=@Ez-w?’-

Proof: Forp =n=11in (2.1), we have

0

Sy, s 32D
2(3-(36 +7))

n=1

Thus,

N i < 3-Q647) pu
VRS s Rt SO - W

n=1 n=1

and

0

1 N 3-(26+7y) 1
N2 =Yty 2t 7 Y2t = B

n=1 n=1

Also, from (2.2) and Theorem 2.1, it follows that

= 3-(25+7)
nZ:;(p+n)an+pS 2(3—(36+'y))

For r =|z —w|<1, we have

0 0
' -1 -1 1
|f(z)|£p|z—w\p +Z(p+1)an+p|z—w\pSprp +(p+1)rP* Zanﬁ,

n=l1 n=1

p-1 +L6+y)(p+1)rp,

=Pt G Go1y)

and

0

o0
| F@zplz=wl =Y (p+Day,lz=wl 2 pr’™ ~(p+1)r D a,,,

n=1 n=1

3-26+7) »
2(3—(35+y))(p+1)r '

>prPt -

This complete the proof of the theorem. O
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Theorem 2.3: Suppose that f,(z) = (z — wY and for each positive integer n=0

k
[T +1-dp-y-266-1]
fu(@)=(z-w?’ - A =l z-wW"P, for zel,,.

H(p+n+1—i)[p+n+l—’y—5(n+2)]

i=1

Then f(z)ecpvk (p.y.s,p) if and only if f'can be expressed in the form

S(Z)= Y Hyer fys1 (2) where g1, > 0 and g1, =1.
n=0

n=0

0
Proof: Assume that (.- Z””“ Fur1 ()
n=0

=(z- W)p - Z:unﬂ an+p(z - W)ner

n=1
Since
k k
. [{e+1-dip—y-26-1) [p+n+1-idlp+n+1-y-5(n+2)
D et (— ) )
= T+ 1-dip+n+l-y=8(n+2)] [[e+1-dip-r-26-1)1
i=1 i=1

0
S RES EYTESE
n=1

By Theorem 2.1 < cpvk (p.7.6.8).
Conversely, let 7 ccpvk p,y.6,5). Then

k
[T +1-dlp-y-26-1)
Upyp S =l , for n+p=2.

[ +n+1-dip+n+1-y-8n+2)]
i=1

Without any loss of generality, assume that

k
[T +1-dlp-y-26-1]

- i=1
Hpy1 = % : Antp> Jor n+p=2,

[[@+n+1-ip+n+1-y-6(n+2)]
i=1
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o0
and ;-1 Z:“n+l ~ Then

n=1

F@=E=W) =D 1Oy (2= )P

n=1

k
. [+1-dip—r-266-1)
=W’ =Y (z=w)"*?

o T rnr1-olp+n+1-y-8(n+2)]
i=1

= (=W =Y G = ()]

n=1

== D )= 4D ()

n=1 n=1

=ty (2= W)+ Dty f1(2)

n=1

= 1A+ D it Frt ()= D iy f(2).0
n=1 n=1

Let f(z) € T,(p) for i = 1,2,...,m be given by

[@= =W =Dy (2 =)™

n=1

Then the Hadamard product is defined by
h*h@* L@ * [ @D = F A5 S [)(2)
==’ =D ([ [@ip.) z=W)"*7,

n=1 i=1

and the generalized Hadamard product is defined by

1
n=1 i=1

m
where ZL=1, and ¢,> 1 fori =1,2,....m.
qi

n=1
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Next the Hadmard product results are presented as follows.

Theorem 2.4: Suppose that j.(zyccpvk p.y.5.p), for eachi=1,2,...m . Then

(i* fo** [,,)(2) € CDVL($,7,6. B),

1
where p= max((H(L‘”’)) 2y.

Proof: To show the result is true for the positive integer m+1, assume the result is true for the positive integer m and
fi(z)eCcDVE(p.y.6.) » folr each i = 1,2,...,m. Then

k
[Ip+n+Dip+n+1-y-56(n+2)]

)y = % (Haner,i)Sl 2.1
= [e+1-dlp-y-26-1]

i=1

So that

k
H(p+n+l—1)[p+n+l —y=8(n+)] |

Z = k (H n+p,i)S
= [le+t-dlp-y-26 -1 -

i=1

k k
- H(p+n+1—l')[p+n+1—’y—5(n+2)] " H(p+n+1—i)[p+n+1—y—6(n+2)]
max{z =1 T an+p’1,....,z =1 T Api pom
= T +1-olp-y-266 -1 = T +1-0lp-y-266-1)

i=1 i=1

[ +n+1-iip+n+1-y=8(n+2)]

z = k n+p,m+l} <
= T +1-dlp-y-266-1)

i=1

k
H(p+n+l—i)[p+n+l—’y—5(n+2)]
S plp+n+l—y—8(n+2 o
max{zp[p Y ( )]an+p,iazl 1 - an+p,m+l}gl

261
[p—v-2(0-1)] =l H(p+1_i)[p—y—2(6—l)]
i=1

n=1

1

k
Our assumption is completed by 72p such that ﬁ:max((H prnt1-i,75y and apply the Cauchy-Schwarz inequality
p+1-i
i=1

on (2.1) to get
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oL [prn+l-y=8(n+2)] |1+ . o [p+n+l—y—58(n+2)]
;p [p—7—26-1)] (li:llaﬁp’i)sllfandonlyﬁ p [p—7-26-1)] <l1.

k
[Je+1-ntp-r-26-11
It is observed that 4, - - i=1 is a decreasing quantity, since

H(p+n+1—i)[p+n+1—y—6(n+2)]
i=1

k
[Tw+1-dlp-y-266-1
0(n)=— =1 <@(2).

[[@+n+1-idip+n+1-y-5(n+2)
i=1

Therefore, by mathematical induction, the result is true for any positive integer m. Hence (f + f,.... £,,)(z) e €DV (5,7.6, )0

Theorem 2.5: Suppose that (e cpvk (p,y.8,p), for eachi=12,...,m. Then

(fi® /19 f2® . £,)(2) € CDVE (,7.6.,B),

1

k _—
where ., _ prnt+l—i s q;. .

p max((l I( Sl ) )
i=1

Proof: Assume that f.(;)ccpvi (p,y,5,5) » for each i=1,2,3,...,m. Then

k
. (p+n+l=-id[p+n+l1-y-38(n+2)]
Zi=l % an_,,p’lél.
i (p+1-)p-y=-26-1)]
i=1
And
1

k 4; 4q;
ol H(p+n+l—i)[p+n+l—)/—5(n+2)]i 1
12— ) @y p )" <1
i=l| n=

: [[e+1-dip-r-26-1)1

i=1

By using the Holder inequality, we have

. m
H(p+n+l—i)[p+n+1—)’_5(”+2)] " L

H i=1 - (an+p,i)qi
i-1 [[+1-dip-y-26-1)]

i=1

s
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k
[@+n+1-dip+n+1-y-6(+2) 1

0

[T 2 = ) )

e [T+1-dlp-r-26-1]

i=1

So that

k
H(p+n+l—i)[p+n+1—’)/—5(n+2)]

1

o0 m
2= —= (@)™ |1

n=1| i=1 H(p+l—i)[p—)/—2(5—1)]

i=1

1
. k o
Now, if p:mM((H( p+n+1—z)) 9y s then
i=1

p+1-i
1
|| plp+n+1-y-8(n+2)] |1 4
(an i)l Sl‘
21 [p-y-26-1] H ”

which is completed our proof.0
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