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Application of Quintic B-Spline Collocation Method for
Solving the Coupled-BBM System

Shadan Sadigh Behzadi and Ahmet Yildirim1 2

Department of Mathematics, Islamic Azad University, Qazvin Branch, Qazvin, Iran1

Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey2

Abstract: In this work, Quintic B-spline collocation technique for the coupled BBM-system of Boussinesq type
has been presented. The technique is based on the Crank-Nicolson formulation for time integration and quintic
B-spline functions for space integration. The accuracy of the proposed method is illustrated by studying a
solitary wave motion. The interaction of two solitary waves is used to discuss the effect of the behavior of the
solitary waves after the interaction . The results are presented and compared against analytic solution of the
system.

Key words: Coupled BBM-system  Solitary waves  Quintic B-spline

INTRODUCTION v(x, 0) = f(x), u(x, 0) = g(x) (3)

In this paper, we  consider  the  Coupled-BBM The theoretical results like existence of line solitary
system, which belongs to the class of Boussinesq waves, line cnoidal waves symmetric and asymmetric
systems,   modeling   two-way  propagation  of  long periodic  wave  pattern  have  been  discussed   in  [2-5].
waves   of    small   amplitude   on   the   surface  of water We refer the reader to Chen et al. [6] who derived the
in a  channel. The system is a good candidate for existence  of  periodic  traveling-wave  solutions (v(x, t),
modeling    long   waves   of  small  to  moderate u(x, t)) the form.
amplitude. The Coupled BBM-system is given by Bona
and Chen [1],

(1)

where x corresponds to distance along the channel and t speed, respectively.
is the elapsed time, v(x, t) is a dimensionless deviation of Rigorous errors estimate for Bona-Smith and
the water surface from its undisturbed position and u(x, t) Coupled-BBM   type   systems   were   proved   in   [7].
is the dimensionless horizontal velocity above the bottom The solution of (1) approximates the solution of Euler’s
of the channel. equation with the order of accuracy of the equation,

The boundary conditions are chosen from: 0 large enough, there exists a unique solution (v, u) of

v(0, t) = , v(L, t) = , u(0, t) = , u(L, t) = 1 2 1 2

v (0, t) = 0, v (L, t) = 0, u  (0, t) = 0, u (L, t) = 0 (2)x x x x

and the initial conditions are

where l and w connote the half-period and the phase

namely, for any initial value (v , u ) H  ( )  with s0 0
2

Euler equations, such that, Bona et al. [8].
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One of the advantages that (1) has over alternative The   structure     of    the  paper     is    as   follows.
Boussinesq-type systems is the easiness with which it In section 2, quintic  B-spline  collocation  method   is
may be integrated numerically [9]. Furthermore, it was designed for the  numerical  solution  of  the   Coupled
proved  in  [9,  10]  that the initial value problem either for BBM-system.   In    section    3,   the   method  is applied
x  or with boundary conditions (x  [a, b]) for (1) is to the time-split Coupled BBM-system. The results and
well posed in certain natural function classes. discussions are presented in section 4. In the last section,

The initial-boundary value problem of the form (1) a summary of the main conclusions is given at the end of
posed on a bounded smooth plane domain with the paper.
homogenous Dirichlet or Neumann or reflective (mixed)
boundary conditions which is locally well-posed [11]. Quintic  B-Spline   Collocation   Method:  Consider a

The existence and uniqueness of the system have mesh  a  =  x x x ··· x   =  b  as  a  uniform  partition
been proved in Bona et al. [10]. They investigated the of  the  solution  domain a  x   b,   with  h = x  – x ,
solution of the system as integral equation, while Chen in i = 1,2,,,,, N. Our numerical treatment for solving
[12] established the existence of solitary waves for several equation(1)    using    collocation    method   with quintic
Boussinesq types, including the Coupled-BBM system. B-spline  function  is   to  find  an  approximate  solution

Various numerical techniques including the finite U  (x, t), V  (x, t) to the exact solution u(x, t), v(x, t) in the
element  method  have  been  used  for the solution of form:
Bona-Smith system of Boussinesq type in Antonopoulos
et al. [13]. Numerical schemes using B-spline methods
have been successfully applied to solve various nonlinear
partial differential equations. For instance, a numerical (4)
solution  based  on  the  collocation  method with quintic
B-spline function was set up to obtain the solution of
Korteweg-de  Vries  Burgers  equation  by El-Danaf [14]
and  Extended  Fisher-Kolmogorov  equation   by  Mittal where  and  are time dependent quantities to be
and Arora [15]. Soliman and Raslan in [16] solved RLW determined from the collocation form of the Coupled
equation by collocation method using quadratic B-spline BBM-system. The Quintic B-spline B (x) at the notes x
as element shape function. defined by:

0 1 2 n

i i–1

N N

i i

i i

(5)

where {B , B , B , B ,...,B , B } forms a basis over the interval [a, b] [17]. The values of B (x) and its derivatives are–2 –1 0 1 N+1 N+2 i

tabulated in Table 1.

Numerical Solution of Coupled BBM-System Using Collocation Quintic B-Spline Method: Discritization of (1) is carried
out by interpolating u,u , u , v, v , v  using Crank- Nicolson rule and the usual finite difference method for timex xx x xx

derivatives.
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Table 1: Values of B (x) and its derivatives at the knots pointsi

x x x x x x x xi–3 i–2 i–1 i i+1 i+2 i+3

B (x) 0 1 26 66 26 1 0i

B' (x) 0 0 0i

B'' (x) 0 0i

(6)

Taking t = k, then equation (1) becomes,

Last equation can be written in the form:

(7)

After using (4) with the values given in the table 1, we get
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(8)

where,

Equation (8) can be rewritten in the simple form:

(9)
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The system in the equation (9) consists of 2N + 2 equation in 2N + 10 unknowns. To get a unique solution to the
system, eight additional constraints are required. These are obtained from the boundary conditions (2). Application the
boundary conditions enables us to eliminate the parameters  and  from the

system (9), so the linear system (9) is solved by the Gauss elimination method. To solve the system we apply first the
initial conditions to determine:

When t=0,equation (4) takes the formula,

The approximate solution must satisfy the following:

It must agree with the initial conditions at the knots x .i
The derivatives of the approximate initial condition agree with the exact initial  conditions at both ends of the range.
Eliminating  and  with the help of boundary and initial conditions, we

obtain the following systems:

A  = B (10)0

A  = D0

where A is N + 1 × N + 1 square matrix given by:

And
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The system (10) can be solved by a variant form of
Thomas algorithm to get the initial values:

Numerical Results: To illustrate the efficiency of the
method, we compute the L  and L  error norms;2

To show the well behavior of the numerical procedure.

Single Solitary Wave Motion: The motion of solitary
waves is considered in this section. It is well known that
system (1) posses analytical solution of the form Chen
[18].

(11)

where g, x  and c are real constants. To compare our0

results against (11), equation (11) is taken as the initial
condition and all computations in the following
simulations assume x  = 0, g = 6 and , for – 20 x0

40 so that the solitary wave has an amplitude of 1.
Our simulations have been executed up to a time t=20.

In  Tables  2,  3,  4  and  5,  we  show  the   errors  L ,  L  at2

t = 0.005 with  various   time  and  space  sizes.  For  the

Table 2: The error norms at t = 5, t = 0.005, – 20 x 40
x L L2

0.2 0.00404152 0.0043186
0.1 0.00397593 0.0043748
0.066667 0.0039735 0.0043801
0.05 0.00397311 0.0043740
0.04 0.0039730 0.0043806

Table 3: The error norms at t = 10, t = 0.005, – 20 x 40
x L L2

0.2 0.011984 0.0125292
0.1 0.01185354 0.012491
0.066667 0.01184844 0.0124897
0.05 0.01184763 0.0124895
0.04 0.01184742 0.0124894

Table 4: The error norms at t = 15, t = 0.005, – 20 x 40
x L L2

0.2 0.0243414 0.0238525
0.1 0.024165 0.0241988
0.066667 0.024158 0.0242127
0.05 0.024157 0.0241965
0.04 0.024156 0.024223

Table 5: The error norms at t = 20, t = 0.005, – 20 x 40
x L L2

0.2 0.0410763 0.039347
0.1 0.0408625 0.0392898
0.066667 0.0408543 0.0395297
0.05 0.040853 0.0395526
0.04 0.040852 0.0395369

present simulations at t=20 and x = 0.04, – 20 x  40,
the error norms are L  =  0.040852,  L   =  0.03953. In2

Tables 6, 7, 8 and 9 the L , L  error norms is repeated at t2

= 0.001 with various time and space sizes and it is found
that L  = 0.00825, L  = 0.0079923, at t = 20, x = 0.04.2

Solitary wave profiles at time t=0 and t=20 and the error
distributions of the Quintic B-spline method and analytic
solution at t=20 for t = 0.005, t = 0.001 and x = 0.05
with the range – 20 x  40 are shown in Figure 1.



-20 -10 0 10 20 30 40
-
0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

U

t=0 t=20

-20 -10 0 10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

X

er
ro

r

-20 -10 0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

X

U

t=0 t=20

-20 -10 0 10 20 30 40
0

1

2

3

4

5

6

7

8
x 10

-3

X

er
ro

r

Middle-East J. Sci. Res., 15 (11): 1478-1486, 2013

1484

(a) (b)

(c) (d)
Fig. 1: Solitary wave profiles at t=0, t=20 and the error at t=20

Table 6: The error norms at t = 5, t = 0.001, – 20 x 40 Table 9: The error norms at t = 20, t = 0.001, – 20 x 40

x L L2

0.2 0.000885111 0.000897762
0.1 0.000799452 0.000877474
0.066667 0.000796925 0.000878055
0.05 0.000796532 0.000876852
0.04 0.000796427 0.000878022

Table 7: The error norms at t = 10, t = 0.001, – 20 x 40

x L L2

0.2 0.00252858 0.0025546
0.1 0.00238702 0.0025111
0.066667 0.00238174 0.0025095
0.05 0.00238091 0.00250932
0.04 0.00238068 0.00250926

Table 8: The error norms at t = 15, t = 0.001, – 20 x 40

x L L2

0.2 0.0050641 0.0048636
0.1 0.0048755 0.00488177
0.066667 0.00486836 0.00487511
0.05 0.00486722 0.00487899
0.04 0.00486691 0.00487991

x L L2

0.2 0.00849606 0.00806194
0.1 0.008264322 0.00796505
0.066667 0.008255465 0.00797436
0.05 0.008254057 0.00798933
0.04 0.008253663 0.00799238

The traveling waves are graphed at t=0 and t=20 in
Figure 1(a). At t=20, both the analytical and numerical
solutions  are   graphed  at  time  t=20  and t  =  0.005,
the  plots   of   those   solutions   are  indistinguishable.
For t = 0.005 the maximum error is about 0.0395369
(Figure  1(b)).  On  the other  hand  the  observed  error  at
the peak of the wave is 0.0091586636 corresponding to the
exact solution at t=20. For t = 0.001, the profiles of the
solitary waves are graphed at t=0 and t=20 (Figure 1(c)).
Again  at  t=20,  the  analytic  and   numerical  solutions
are plotted at t=20. Also the solutions are
indistinguishable. For t = 0.001, the maximum error is
about 0.00799238 (Figure 1(d)). The observed error at the
peak of the wave is 0.0015514679 corresponding to exact
solution at t=20.
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Fig. 2: The motion of two solitary waves at different times

The Interaction of Two Solitary Waves: The interaction of CONCLUSIONS
two solitary waves for the coupled BBM-system with the
initial condition given by the equations [8] is reported in
this section.

(12)

where g , c  and x i = 1,2 are real constants. Our system isi i i

solved over –20 x 40 with x  = 0, x  = – 10, c  = 11 2 1

, t = 0.001 and x = 0.05. The

simulations are executed up to time t=15. In Figure 2, the
interaction of two solitary waves is shown, the larger
amplitude is 4 at x=0 is on the left of the smaller amplitude
is 1 at x=10. After the interaction is finished with complete
separation at t=15 the amplitude of the larger wave is
3.9186617884 at x=20.30 whereas the amplitude of the
second peak is 0.9912061095 at x=12.15.

In this paper, a numerical scheme for the nonlinear
Coupled BBM-system is presented using Quintic B-spline
collocation method. The method has been tested on the
motion of single solitary wave and the evolution of two
solitary wave interaction. The accuracy of the method was
measured using the L  and L  error norms. Results2

reported in this paper revealed that the simulation
provides small error. The authors believe that this method
is an efficient technique for solving nonlinear partial
differential systems.
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