Solution of Fourth Order Singularly Perturbed Boundary Value Problem Using Septic Spline

Ghazala Akram and Afia Naheed

Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan

Abstract

In this paper the fourth order singularly perturbed boundary value problem is solved using septic spline. The given method is proved to be fourth order convergent. To illustrate the efficiency of the method two examples are considered. The method is also compared with the existing method and it is evident that the method is better than the existing one.

MSC: 65L10
Key words: Singular perturbation • Septic spline • Fourth-order ordinary differential equation • Boundary layer \cdot Self adjoint

INTRODUCTION

Perturbation theory is a well-known and important theory in these days. For two basic reasons singular perturbed problems have gained importance. Firstly, they appear in many areas of science and engineering, for instance fluid mechanics, combustion, nuclear engineering, elasticity, quantum mechanics, chemical reactor theory, convention-diffusion process, control theory, etc. A few good examples are the modelling of steady and unsteady viscous flow problems with large Reynolds number, WKB Theory, boundary layer problems and convective-heat transport problems with large Peclet number.

Secondly, the formation of sharp boundary layers in numerical methods when ε, the coefficient of highest derivative, approaches to zero creates problem. Both the analytical and numerical handling of these problems is becoming interesting for researchers. Since, in general, the classical numerical methods fail to produce good approximations for these equations. Hence one has to search for the non-classical methods. For analytical discussion on singular perturbation problems, one can refer to, Kevorkian and Cole [1], Bender and Orsazag [2], Mally [3], Nayfeh [4, 5], Van Dyke [6]. From last 20 years a large
number of articles have been appearing on nonclassical methods, with mostly second order equations such as [7-11]. Only few researchers have developed higher order singularly perturbed problems such as [10, 12-14]. A survey article by Patidar and Kadalbajoo [15] is considerable in this respect.

The solution of singularly perturbed boundary value problems is described by slowly and rapidly varying parts. So there are thin transition layers where the solution can jump suddenly, while away from the layers the solution varies slowly and behaves regularly. Ghazala [16] solved the third order singularly perturbed boundary value problem using quartic spline and the method is proved to be second order convergent.

Ghazala and Nadia [17] solved the fourth order singularly perturbed boundary value problem using quintic spline and the method is proved to be second order convergent.

There are three standard approaches to solve singularly perturbed boundary value problems numerically, the finite difference method [14, 18, 19], the finite element method [20] and spline approximation methods $[9,10,11]$. In the present paper the third technique, i.e., spline approximation method has been used to solve singularly perturbed self adjoint boundary value problem arising in the study of chemical reactor theory, of the form:

Corresponding Author: Ghazala Akram, Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan.

$$
\left.\begin{array}{rl}
L u(x) & =-\varepsilon u^{(4)}(x)+p(x) u(x)=f(x), p(x) \geq p \geq 0, a \leq x \leq b, \\
u(a) & =\alpha_{0}, u(b)=\alpha_{1}, u^{(1)}(a)=\alpha_{2}, u^{(1)}(b)=\alpha_{3}, \tag{1.1}
\end{array}\right\}
$$

or

$$
\left.\begin{array}{rl}
L u(x) & =-\varepsilon u^{(4)}(x)+p(x) u(x)=f(x), p(x) \geq p \geq 0, a \leq x \leq b, \tag{1.2}\\
u(a) & =\alpha_{0}, u(b)=\alpha_{1}, u^{(2)}(a)=\alpha_{4}, u^{(2)}(b)=\alpha_{5},
\end{array}\right\}
$$

where $\alpha_{i}, i=0,1,2, \ldots, 5$ are finite real constants and ε, is a small positive parameter $(0<\varepsilon \leq 1)$. Further functions $f(x)$ and $p(x)$ are smooth functions and $p(x)=p=$ constant. It is known that the most classical methods fail when ε is small relative to the mesh width h. Our target is to develop a method to give accurate numerical approximation of (1.1) when ε is either small or large as compared to h.

This paper is organized in five sections. In Section 2, the consistency relations in terms of values of spline and its six derivatives at knots are determined using derivatives continuities at knots. Consistent end conditions are determined in Section 3. In Section 4, it is proved that the septic spline solution for the fourth order singularly perturbed differential equation is of $O\left(h^{4}\right)$. In Section 5 , two examples are considered to show the accuracy of the method developed.

Septic Spline and its Consistency Relations: To develop the consistency relations the following seventh degree spline is considered:

$$
\begin{align*}
S_{i}(x)= & a_{i}\left(x-x_{i}\right)^{7}+b_{i}\left(x-x_{i}\right)^{6}+c_{i}\left(x-x_{i}\right)^{5}+d_{i}\left(x-x_{i}\right)^{4}+e_{i}\left(x-x_{i}\right)^{3} \\
& +q_{i}\left(x-x_{i}\right)^{2}+g_{i}(x-x i)+l_{i} \tag{2.1}
\end{align*}
$$

defined on $[a, b]$, where $x \in\left[x_{i}, x_{i+1}\right]$ with equally spaced knots, $x_{i}=a+i h, i=0,1,2, \ldots N$,
$h=(b-a) / N$ and $S(x) \in C^{6}[a, b]$.
To determine the eight coefficients introduced in Eq. (2.1), the eight conditions are required. These conditions can be defined in many ways such as in terms of second, fourth and sixth derivatives at both ends of each subinterval.
Let

$$
\left.\begin{array}{l}
S_{i}\left(x_{i}\right)=u_{i}, \quad S_{i}\left(x_{i+1}\right)=u_{i+1}, \\
S_{i}^{(2)}\left(x_{i}\right)=m_{i}, \quad S_{i}^{(2)}\left(x_{i+1}\right)=m_{i+1} \\
S_{i}^{(4)}\left(x_{i}\right)=M_{i}, \quad S_{i}^{(4)}\left(x_{i+1}\right)=M_{i+1}, \\
S_{i}^{(6)}\left(x_{i}\right)=F_{i}, \quad S_{i}^{(6)}\left(x_{i+1}\right)=F_{i+1},
\end{array}\right\}
$$

The coefficients determined are as follows:
$a_{i}=\frac{F_{i+1}-F_{i}}{5040 h}$,
$b_{i}=\frac{F_{i}}{720}$,
$c_{i}=\frac{-h F_{i}}{360}-\frac{h F_{i+1}}{720}-\frac{M_{i}}{120 h}+\frac{M_{i+1}}{120 h}$,
$d_{i}=\frac{M_{i}}{24}$,
$e_{i}=\frac{h^{3} F_{i}}{270}+\frac{7 h^{3} F_{i+1}}{2160}-\frac{m_{i}}{6 h}+\frac{m_{i+1}}{6 h}-\frac{h M_{i}}{18}-\frac{h M_{i+1}}{36}$,
$q_{i}=\frac{m_{i}}{2}$,
$g_{i}=\frac{-2 h^{5} F_{i}}{945}-\frac{31 h^{5} F_{i+1}}{15120}-\frac{h m_{i}}{3}-\frac{h m_{i+1}}{6}+\frac{h^{3} M_{i}}{45}+\frac{7 h^{3} M_{i+1}}{360}-\frac{u_{i}}{h}+\frac{u_{i+1}}{h}$,
$l_{i}=u_{i}$.
From the continuity of the first, third and fifth derivative at the point $x=x_{i}$ the following relations are derived

$$
\begin{align*}
& \frac{31 h^{5} F_{i-1}}{15120}+\frac{4 h^{5} F_{i}}{945}+\frac{31 h^{5} F_{i+1}}{15120}+\frac{h m_{i-1}}{6}+\frac{2 h m_{i}}{3}+\frac{h m_{i+1}}{6} \\
& -\frac{7 h^{3} M_{i-1}}{360}-\frac{2 h^{3} M_{i}}{45}-\frac{7 h^{3} M_{i+1}}{360}-\frac{u_{i-1}}{h}+\frac{2 u_{i}}{h}-\frac{u_{i+1}}{h}=0 \tag{2.2}
\end{align*}
$$

$$
7 h^{4} F_{i-1}+16 h^{4} F_{i}+7 h^{4} F_{i+1}+360 m_{i-1}-720 m_{i}+360 m_{i+1}-60 h^{2} M_{i-1}
$$

$$
\begin{equation*}
-240 h^{2} M_{i}-60 h^{2} M_{i+1}=0 \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
h^{2} F_{i-1}+4 h^{2} F_{i}+h^{2} F_{i+1}-6 M_{i-1}+12 M_{i}-6 M_{i+1}=0 \tag{2.4}
\end{equation*}
$$

which leads to the following consistency relation in terms of M_{i} and u_{i}

$$
\begin{align*}
& h^{4} M_{i-3}+120 h^{4} M_{i-2}+1191 h^{4} M_{i-1}+2416 h^{4} M_{i}+1191 h^{4} M_{i+1}+120 h^{4} M_{i+2} \\
&+h^{4} M_{i+3}-840 u_{i-3}+7560 u_{i-1}-13440 u_{i}+7560 u_{i+1}-840 u_{i+3}=0 \\
& i=3,4, \ldots, N-3 . \tag{2.5}
\end{align*}
$$

Using Eq. (1.1), the Eq. (2.5) can be written as

$$
\begin{array}{r}
\left(p h^{4}-840 \varepsilon\right) u_{i-3}+120 p h^{4} u_{i-2}+\left(1191 p h^{4}+7560 \varepsilon\right) u_{i-1}+\left(2416 p h^{4}-13440 \varepsilon\right) u_{i} \\
+\left(1191 h^{4}+7560 \varepsilon\right) u_{i+1}+120 p h^{4} u_{i+2}+\left(p h^{4}-840 \varepsilon\right) u_{i+3}-h^{4}\left(f_{i-3}+120 f_{i-2}\right. \\
\left.+1191 f_{i-1}+2416 f_{i}+1191 f_{i+1}+120 f_{i+2}+f_{i+3}\right)=0 \tag{2.6}\\
i=3,4, \ldots, N-3 .
\end{array}
$$

End Conditions: Since the system (2.6) consists of ($N-5$) equations in ($N-1$) unknowns, so four more equations are required, as the end conditions. Consider the end conditions for the system (1.1), in the following form

$$
\begin{equation*}
\sum_{l=0}^{6} a_{k+l} M_{k+l}=\frac{1}{h^{4}}\left[\sum_{j=k}^{k+5} b_{j} u_{j}+h c_{0} u_{0}^{(1)}\right], k=0,1, N-3, N-2, \tag{3.1}
\end{equation*}
$$

where all the coefficients $a_{t} s, i=0,1, \ldots 6, b_{t} ; i=0,1, \ldots, 5$ and c_{0} are to be determined using the method of undetermined coefficients. The value of coefficients for $k=0$ can be calculated, as

$$
\begin{aligned}
& a_{0}=1, \quad a_{1}=-\frac{84847}{1280}, \quad a_{2}=\frac{5312349}{5440}, \quad a_{3}=\frac{42625923}{10880}, \\
& a_{4}=\frac{5830349}{5440}, \quad a_{5}=-\frac{444639}{21760}, \quad a_{6}=0, \quad b_{0}=\frac{54915}{544}, \\
& b_{1}=\frac{1685061}{272}, \quad b_{2}=-\frac{3371697}{136}, \quad b_{3}=\frac{5000583}{136}, \quad b_{4}=-\frac{778239}{32}, \\
& b_{5}=\frac{1644741}{272}, \quad c_{0}=\frac{17325}{136} .
\end{aligned}
$$

Substituting the values of $a_{m} s, b_{n} s$ for $m=0,1, \ldots, 6, n=0,1, \ldots, 5$ and c_{0} in Eq. (3.1) the required end condition for $i=1$ is determined, as

$$
\begin{align*}
& -\left(1442399 p h^{4}+134804880 \varepsilon\right) u_{1}+\left(21249396 p h^{4}+539471520 \varepsilon\right) u_{2}+\left(85251846 p h^{4}\right. \\
& -800093280 \varepsilon) u_{3}+\left(23321396 p h^{4}+529202520 \varepsilon\right) u_{4}-\left(444639 p h^{4}+131579280 \varepsilon\right) u_{5} \\
& +43520 p h^{4} u_{6}-h^{4}\left(-1442399 f_{1}+21249396 f_{2}+85251846 f_{3}+23321396 f_{4}\right. \\
& \left.-444639 f_{5}+43520 f_{6}\right) \\
= & 2772000 h \alpha_{2} \varepsilon-\left(21760 p h^{4}-2196600 \varepsilon\right) \alpha_{0}+21760 h^{4} f_{0}+O\left(h^{8}\right) . \tag{3.2}
\end{align*}
$$

Again, using the Taylor's series for the Eq. (3.1), the values of coefficients for $k=1$ can be calculated, as

$$
\begin{array}{llll}
a_{1}=1, & a_{2}=-\frac{248348494}{15737335}, & a_{3}=\frac{17249030576}{15737335}, & a_{4}=\frac{62123692776}{15737335}, \\
a_{5}=\frac{16858368451}{15737335}, & a_{6}=-\frac{320824034}{15737335}, & a_{7}=2, & b_{1}=\frac{145913040}{3147467}, \\
b_{2}=\frac{18491263056}{3147467}, & b_{3}=-\frac{75355806624}{3147467}, & b_{4}=\frac{113691203136}{3147467}, & b_{5}=-\frac{76004059824}{3147467}, \\
b_{6}=\frac{19031487216}{3147467}, & c_{0}=\frac{5544000}{3147467} . & &
\end{array}
$$

Substituting the values of $a_{m} s, b_{n t} s$ for $m=1,2, \ldots, 7, n=1,2, \ldots, 6$ and c_{0} in Eq. (3.1) the required end condition for $i=2$ is determined, as

$$
\begin{align*}
& \left(15737335 p h^{4}-729565200 \varepsilon\right) u_{1}-\left(248348494 p h^{4}+92456315280 \varepsilon\right) u_{2} \\
& \quad+\left(17249030576 p h^{4}+376779033120 \varepsilon\right) u_{3}+\left(62123692776 p h^{4}-568456015680 \varepsilon\right) u_{4} \\
& \quad+\left(16858368451 p h^{4}+380020299120 \varepsilon\right) u_{5}-\left(320824034 p h^{4}+95157436080\right) u_{6} \\
& \quad+31474670 p h^{4} u_{7}-h^{4}\left(15737335 f_{1}-248348494 f_{2}+17249030576 f_{3}+62123692776 f_{4}\right. \\
& \left.\quad+16858368451 f_{5}-320824034 f_{6}+31474670 f_{7}\right) \\
& =27720000 h \alpha_{2} \varepsilon+O\left(h^{8}\right) \tag{3.3}
\end{align*}
$$

Similarly, the end condition for $i=N-2$ is:

$$
\begin{align*}
& 31474670 p h^{4} u_{N-7}-\left(320824034 p h^{4}+95157436080\right) u_{N-6}+\left(16858368451 p h^{4}\right. \\
& +380020299120 \varepsilon) u_{N-5}+\left(62123692776 p h^{4}-568456015680 \varepsilon\right) u_{N-4} \\
& +\left(17249030576 p h^{4}+376779033120 \varepsilon\right) u_{N-3}-\left(248348494 p h^{4}+92456315280 \varepsilon\right) u_{N-2} \\
& +\left(15737335 p h^{4}-729565200 \varepsilon\right) u_{N-1}-h^{4}\left(31474670 f_{N-7}-320824034 f_{N-6}\right. \\
& +16858368451 f_{N-5}+62123692776 f_{N-4}+17249030576 f_{N-3}-248348494 f_{N-2} \\
& \left.+15737335 f_{N-1}\right) \\
& =-27720000 h \alpha_{3} \varepsilon+O\left(h^{8}\right) \tag{3.4}
\end{align*}
$$

and for $i=N-1$, the end condition is:

$$
\begin{align*}
& 43520 p h^{4} u_{N-6}-\left(444639 p h^{4}+131579280 \varepsilon\right) u_{N-5}+\left(23321396 p h^{4}+529202520 \varepsilon\right) u_{N-4} \\
& +\left(85251846 p h^{4}-800093280 \varepsilon\right) u_{N-3}+\left(21249396 p h^{4}+539471520 \varepsilon\right) u_{N-2}-\left(1442399 p h^{4}\right. \\
& \\
& +134804880 \varepsilon) u_{N-1}-h^{4}\left(43520 f_{N-6}-444639 f_{N-5}+23321396 f_{N-4}+85251846 f_{N-3}\right. \\
& \tag{3.5}\\
& \left.+21249396 f_{N-2}-1442399 f_{N-1}\right) \\
& = \\
& -2772000 h \alpha_{3} \varepsilon-\left(21760 p h^{4}-2196600 \varepsilon\right) \alpha_{1}+21760 h^{4} f_{N}+O\left(h^{8}\right) .
\end{align*}
$$

The end conditions for the solution of the system (1.2) can be calculated in the same manner and are given as follows: for $i=1$

$$
\begin{align*}
& -\left(25554553 p h^{4}+2865285360 \varepsilon\right) u_{1}+\left(424736812 p h^{4}+10931185440 \varepsilon\right) u_{2} \\
& +\left(1710601962 p h^{4}-16109120160 \varepsilon\right) u_{3}+\left(468560812 p h^{4}+10635967440 \varepsilon\right) u_{4} \\
& -\left(8963833 p h^{4}+2642718960 \varepsilon\right) u_{5}+877440 p h^{4} u_{6}-h^{4}\left(-25554553 f_{1}\right. \\
& \left.+424736812 f_{2}+1710601962 f_{3}+468560812 f_{4}-8963833 f_{5}+877440 f_{6}\right) \\
= & -\left(438720 p h^{4}+49971600 \varepsilon\right) \alpha_{0}+438720 f_{0} h^{4}-7560000 h^{2} \alpha_{4} \varepsilon \tag{3.6}
\end{align*}
$$

for $i=2$

$$
\begin{align*}
& \left(6521255 p h^{4}-724323600 \varepsilon\right) u_{1}-\left(11796622 p h^{4}+36583361640 \varepsilon\right) u_{2} \\
& +\left(7455263088 p h^{4}+153557782560 \varepsilon\right) u_{3}+\left(25847327688 p h^{4}-233933721840 \varepsilon\right) u_{4} \\
& +\left(6989950963 p h^{4}+157149160560 \varepsilon\right) u_{5}-\left(132814242 p h^{4}+39465536040 \varepsilon\right) u_{6} \\
& +13042510 p h^{4} u_{7}-h^{4}\left(6521255 f_{1}-11796622 f_{2}+7455263088 f_{3}+25847327688 f_{4}\right. \\
& \left.+6989950963 f_{5}-132814242 f_{6}+13042510 f_{7}\right) \\
= & -3780000 h^{2} \alpha_{4} \varepsilon, \tag{3.7}
\end{align*}
$$

for $i=N-2$

$$
\begin{align*}
& 13042510 p h^{4} u_{N-7}-\left(132814242 p h^{4}+39465536040 \varepsilon\right) u_{N-6}+\left(6989950963 p h^{4}\right. \\
& +157149160560 \varepsilon) u_{N-5}+\left(25847327688 p h^{4}-233933721840 \varepsilon\right) u_{N-4} \\
& +\left(7455263088 p h^{4}+153557782560 \varepsilon\right) u_{N-3}-\left(11796622 p h^{4}+36583361640 \varepsilon\right) u_{N-2} \\
& +\left(6521255 p h^{4}-724323600 \varepsilon\right) u_{N-1}-h^{4}\left(13042510 f_{N-7}-132814242 f_{N-6}\right. \\
& +6989950963 f_{N-5}+25847327688 f_{N-4}+7455263088 f_{N-3}-11796622 f_{N-2}+6521255 f_{N-1} \\
& = \tag{3.8}\\
& -3780000 \alpha_{5} h^{2}
\end{align*}
$$

and for $i=N-1$

$$
\begin{align*}
& 877440 p h^{4} u_{N-6}-\left(8963833 p h^{4}+2642718960 \varepsilon\right) u_{N-5}+\left(468560812 p h^{4}\right. \\
& +10635967440 \varepsilon) u_{N-4}+\left(1710601962 p h^{4}-16109120160 \varepsilon\right) u_{N-3} \\
& +\left(424736812 p h^{4}+10931185440 \varepsilon\right) u_{N-2}-\left(25554553 p h^{4}+2865285360 \varepsilon\right) u_{N-1} \\
& -h^{4}\left(877440 f_{N-6}-8963833 f_{N-5}+468560812 f_{N-4}+1710601962 f_{N-3}\right. \\
& \left.+424736812 f_{N-2}-25554553 f_{N-1}\right) \\
& =-7560000 \alpha_{5} h^{2} \varepsilon-\left(438720 p h^{4}+49971600 \varepsilon\right) \alpha_{1}+438720 h^{4} f_{N} . \tag{3.9}
\end{align*}
$$

Convergence of the Method: The system of Eqns. (3.2), (3.3), (2.6), (3.4) and (3.5), provides the required solution of BVP (1.1) which can be written in matrix form, as

$$
\begin{equation*}
A U-h^{4} D F=C, \tag{4.1}
\end{equation*}
$$

where $U=u_{i}, C=c_{i}$ and $F=f_{i}$ are the $(N-1)$ dimensional column vectors. A and D are $(N-1) \times(N-1)$ matrices, where $A=a_{i j}$ and $a_{i j} s$ are the coefficients of u_{j} and

$$
D=\left[\begin{array}{lll}
D 1 & D 2 \tag{4.2}
\end{array}\right]
$$

$D_{1}=\left[\begin{array}{ccccc}-1442399 & 21249396 & 85251846 & 23321396 & -444639 \\ 15737335 & -248348494 & 17249030576 & 62123692776 & 16858368451 \\ 120 & 1191 & 2416 & 1191 & 120 \\ & \ddots & \ddots & \ddots & \\ & & & 1 & 120 \\ & & & 0 & 1 \\ & & & 31474670 & -320824034 \\ & & & 0 & 43520\end{array}\right]$
$D_{2}=\left[\begin{array}{ccccc}43520 & 0 & & & \\ -320824034 & 31474670 & & & \\ 1 & 0 & \ddots & \ddots & \\ & \ddots & 1191 & 120 & 1 \\ 1191 & 2416 & 2416 & 1191 & 120 \\ 120 & 1191 & 62123692776 & 17249030576 & -248348494 \\ 15737335 \\ 1685368451 & 625969 & 21249396 & -1442399\end{array}\right]$

Also,
$c_{1}=21760 h^{4} f_{0}-\left(21760 p h^{4}-2196600 \varepsilon\right) \alpha_{0}+2772000 h \alpha_{2} \varepsilon$,
$c_{2}=277720000 \alpha_{2} h \varepsilon$,
$c_{3}=h^{4} f_{0}-\left(p h^{4}-840 \varepsilon\right) \alpha_{0}$,
$c_{i}=0, \quad i=4,5, \ldots, N-4$,
$c_{N-3}=h^{4} f_{N}-\left(p h^{4}-840 \varepsilon\right) \alpha_{1}$,
$c_{N-2}=277720000 \alpha_{3} h \varepsilon$,
$c_{N-1}=21760 h^{4} f_{N}-\left(21760 p h^{4}-2196600 \varepsilon\right) \alpha_{1}+2772000 h \alpha_{3} \varepsilon$.

Let \bar{U} be the exact solution of BVP (1.1) and U be the approximate solution then Eq. (4.1) can be rewritten as,

$$
\begin{equation*}
A \bar{U}-h^{4} D F=T(h)+C \tag{4.3}
\end{equation*}
$$

where

$$
\bar{U}=\left(u\left(x_{1}\right), u\left(x_{2}\right), \ldots, u\left(x_{N-1}\right)\right)^{T}
$$

and

$$
T(h)=\left(t_{1}(h), t_{2}(h), \ldots, t_{N-1}(h)\right)^{T},
$$

while $T(h)$ denotes the truncation error and $t_{i}(h)$ are calculated, as
$t_{1}(h)=\frac{1056377}{3133440} \varepsilon h^{8} u^{(12)}\left(\xi_{1}\right), \quad x_{0} \leq \xi_{1} \leq x_{6}$,
$t_{2}(h)=\frac{259927729}{755392080} \varepsilon h^{8} u^{(12)}\left(\xi_{2}\right), \quad x_{1} \leq \xi_{2} \leq x_{7}$,
$\left.t_{i}(h)=7 \varepsilon h^{8} u^{(12)}\left(\xi_{i}\right), \quad x_{i-3} \leq \xi_{i} \leq x_{i+3}, \quad i=3,4, \ldots, N-3,\right\}$
$t_{N-2}(h)=\frac{259927729}{755392080} \varepsilon h^{8} u^{(12)}\left(\xi_{N-2}\right), \quad \quad x_{N-7} \leq \xi_{N-2} \leq x_{N-1}$,
$t_{N-1}(h)=\frac{1056377}{3133440} \varepsilon h^{8} u^{(12)}\left(\xi_{N-1}\right), \quad x_{N-6} \leq \xi_{N-1} \leq x_{N}$.

From Eq. (4.1) and Eq. (4.3), it follows that:

$$
\begin{equation*}
A(\bar{U}-U)=A E=T(h) \tag{4.5}
\end{equation*}
$$

where

$$
E=\bar{U}-U=\left(e_{1}, e_{2}, \ldots, e_{N-2}, e_{N-1}\right)^{T}
$$

To determine the error bound, the row sums $S_{1,} S_{2, \ldots,}, S_{N-2}, S_{N-1}$ of matrix A are calculated as
$S_{1}=\sum_{j} a_{1, j}=667450640 p h^{4}+2196600 \varepsilon$,
$S_{2}=\sum_{j} a_{2, j}=95709131280 p h^{4}$,
$S_{3}=\sum_{j} a_{3, j}=5039 p h^{4}+840 \varepsilon$,
$\left.S_{i}=\sum_{j} a_{i, j}=5040 p h^{4}, \quad i=4,5, \ldots, N-4,\right\}$
$S_{N-3}=\sum_{j} a_{N-3, j}=5039 p h^{4}+840 \varepsilon$,
$S_{N-2}=\sum_{j} a_{N-2, j}=95709131280 p h^{4}$,
$S_{N-1}=\sum_{j} a_{N-1, j}=667450640 p h^{4}+2196600 \varepsilon$.
Since the matrix A is observed to be irreducible and monotone. It follows that, A^{-1} exists and its elements are nonnegative. Using this result the Eq. (4.5) can be written as
$E=A^{-1} T(h)$.
Also, from the theory of matrices it can be written as

$$
\begin{equation*}
\sum_{i=1}^{N-1} a_{k, i}^{-1} S_{i}=1, \quad k=1,2, \ldots, N-1 \tag{4.8}
\end{equation*}
$$

where $a_{k, i}^{-1}$ is the (k, i) th element of the matrix A^{-1}.
From Eq. (4.6), it follows that

$$
\begin{equation*}
\sum_{i=1}^{N-1} a_{k, i}^{-1} \leq 1 / \min S_{i}=1 /\left(h^{4} B_{i 0}\right) \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{i 0}=\left(1 / h^{4}\right) \min S_{i}>0, \tag{4.10}
\end{equation*}
$$

for some i_{0} between 1 and $N-1$.
From Eq. (4.7), it can be written as
$e_{k}=\sum_{i=1}^{N-1} a_{k, i}^{-1} T_{i}(h) \quad k=1,2, \ldots, N-1$.
Using Eq. (4.4) in Eq. (4.11) the following result is obtained,

$$
\begin{equation*}
\left|e_{k}\right| \leq \frac{l h^{4}}{B_{i 0}}, \quad k=1,2, \ldots, N-1 \tag{4.12}
\end{equation*}
$$

where l is a constant independent of h. From Eq. (4.12) it follows that,

$$
\begin{equation*}
\|E\|=O\left(h^{4}\right) \tag{4.13}
\end{equation*}
$$

Similarly, the method developed for the system of Eqns. (3.6), (3.7), (2.6), (3.8) and (3.9), preserves fourth order convergence. The results can be summarized in the following theorems

Theorem 4.1: The method given by system (3.2), (3.3), (2.6), (3.4) and (3.5) for solving the boundary value problem (1.1) for sufficiently small h gives a fourth order convergent solution.

Theorem 4.2: The method given by system (3.6), (3.7), (2.6), (3.8) and (3.9) for solving the boundary value problem (1.2) for sufficiently small h gives a fourth order convergent solution.

Numerical Results

Example1: For $x \in[0,1]$, consider the differential system:

$$
\begin{aligned}
&-\varepsilon u^{(4)}(x)+p u(x)=(x-1)^{4} x^{8} \sin (\varepsilon x)-\varepsilon x^{4}\left(-16 \varepsilon^{3}(x-1)^{3} x^{3}(3 x-2) \cos (\varepsilon x)\right. \\
&+96 \varepsilon x\left(14-84 x+180 x^{2}-165 x^{3}+55 x^{4}\right) \cos (\varepsilon x) \\
&+\varepsilon^{4}(x-1)^{4} x^{4} \sin (\varepsilon x)-24 \varepsilon^{2}(x-1)^{2} x^{2}\left(14-44 x+33 x^{2}\right) \sin (\varepsilon x) \\
&\left.+24\left(70-504 x+1260 x^{2}-1320 x^{3}+495 x^{4}\right) \sin (\varepsilon x)\right), \\
& \text { with } \quad u(0)=0, u(1)=0, u^{(1)}(0)=0, u^{(1)}(1)=0 .
\end{aligned}
$$

The exact solution of the above system is,

Middle-East J. Sci. Res., 15 (2): 302-311, 2013
Table 1: The results developed by the method

ε	$h=1 / 16$	$h=1 / 32$	$h=1 / 64$	$h=1 / 128$
$1 / 16$	$1.666 e-006$	$1.31 e-007$	$2.614 e-009$	$6.716 e-011$
$1 / 32$	$8.537 e-007$	$6.736 e-008$	$1.344 e-009$	$3.452 e-011$
$1 / 64$	$4.520 e-007$	$3.569 e-008$	$7.128 e-010$	$1.829 e-011$
$1 / 128$	$2.60 \mathrm{e}-007$	$2.049 \mathrm{e}-008$	$4.092 e-010$	$1.05 \mathrm{e}-011$

Table 2: The results developed by Ghazala and Nadia [17]

ε	$h=1 / 16$	$h=1 / 32$	$h=1 / 64$	$h=1 / 128$
$1 / 16$	$1.315 e-006$	$1.617 e-007$	$2.853 e-008$	$6.682 e-009$
$1 / 32$	$6.703 e-007$	$8.170 e-008$	$1.434 e-008$	$3.355 e-009$
$1 / 64$	$3.489 e-007$	$4.177 e-008$	$7.249 e-009$	$1.692 e-009$
$1 / 128$	$1.915 e-007$	$2.201 \mathrm{e}-008$	$3.717 e-009$	$8.619 \mathrm{e}-010$

Table 3: The results developed by the method

ε	$h=1 / 10$	$h=1 / 20$	$h=1 / 40$	$h=1 / 80$
$1 / 16$	$8.6 e-003$	$1.506 e-004$	$2.951 e-006$	$8.053 e-008$
$1 / 32$	$2.5 e-003$	$4.772 e-005$	$9.202 e-007$	$2.246 e-008$
$1 / 64$	$1.7 e-003$	$3.397 e-005$	$6.468 e-007$	$1.425 e-008$
$1 / 128$	$8.653 e-004$	$1.792 e-005$	$3.387 e-007$	7.199 e-009

Table 4: The results developed by Ghazala and Nadia [17]

ε	$h=1 / 10$	$h=1 / 20$	$h=1 / 40$	$h=1 / 80$
$1 / 16$	$1.191 e-001$	$3.18 e-002$	$8.1 e-003$	$2.0 e-003$
$1 / 32$	$2.88 e-002$	$7.7 e-003$	$2.0 e-003$	$4.950 e-004$
$1 / 64$	$1.47 e-002$	$4.0 e-003$	$1.0 e-003$	$2.595 e-004$
$1 / 128$	7.2 e-003	1.9 e-003	$4.929 e-004$	$1.239 \mathrm{e}-004$

$u(x)=(1-x)^{4} x^{8} \sin (\varepsilon x)$.
The observed maximum errors associated with $u_{t} s$ for Example 1, corresponding to different values of ε are tabulated in Table 1. The absolute errors determined, using method developed by Ghazala and Nadia in [17] are shown in Table 2, which shows that the method presented in this paper is better than Ghazala and Nadia [17]. It is also confirmed from the Table 1 that if h is reduced by factor $1 / 2$, then $\|E\|$ is reduced by a factor $1 / 16$, which indicates that the present method gives fourth order results.

Example 2: For $x \in[-1,1]$, consider the following boundary value problem:
$-\varepsilon u^{(4)}(x)+p u(x)=\varepsilon x\left((x-1)^{4} x^{4}-24 \varepsilon\left(5-60 x+210 x^{2}-280 x^{3}+126 x^{4}\right)\right)$,
with $\quad u(-1)=-16 \varepsilon, u(1)=0, u^{(2)}(-1)=-688 \varepsilon, u^{(2)}(1)=0$.
The exact solution of the above system is,
$u(x)=\varepsilon x^{5}(1-x)^{4}$.

The observed maximum errors associated with $u_{i} s$ for Example 2, corresponding to different values of ε are tabulated in Table 3. The absolute errors determined, using method developed by Ghazala and Nadia in [17] are shown in Table 4, which shows that the method presented in this paper is better than Ghazala and Nadia [17]. It is also confirmed from the Table 3 that if h is reduced by factor $1 / 2$, then $\square E \square$ is reduced by a factor $1 / 16$, which indicates that the present method gives fourth order results.

CONCLUSION

In this paper fourth order singularly perturbed boundary value problem is solved using septic spline, which is computationally effective. The method has been examined for convergence and proved that the order of convergence is $O\left(h^{4}\right)$. Two examples are presented which support the order of convergence. Comparison with the existing method shows that the present method is better.

REFERENCES

1. Kevorkian, J. and J.D. Cole, 1981. Perturbation Methods in Applied Mathematics, Springer Verlag, New York.
2. Carl M. Bender and Steven A. Orsazag, 1978. Introduction to Singular Perturbations, McGraw-Hill, New York.
3. Malley, R.E.O., 1974. Introduction to Singular Perturbations, Academic Press, New York.
4. Nayfeh, A.H., 1979. Perturbation Methods, Wiley, New York.
5. Nayfeh, A.H., 1981. Introduction to Perturbation Techniques, Wiley, New York.
6. Van Dyke, M., 1964. The Perturbation Methods in Fluid Mechanics, Academic Press, New York.
7. Mohan K. Kadalbajoo and Kailash C. Patidar, 2002. Numerical Solution of Singularly Perturbed Two-Point Boundary Value Problems by Spline in Tension, Applied Mathematics and Computation, 131: 299-320.
8. Valanarasu, T. and N. Ramanujam, 2004. An Asymptotic Initial Value Method for Boundary Value Problems for a System of Singularly Perturbed Second Order Ordinary Differential Equations, Applied Mathematics and Computation, 147: 227-240.
9. Reddy, Y.N. and P. Pramod Chakravarthy, 2004. Numerical Patching Method for Singularly Perturbed Two-Point Boundary Value Problems using Cubic Splines, Applied Mathematics and Computation, 149: 441-468.
10. Rajesh K. Bawa, 2005. Spline Based Computational Technique for Linear Singularly Perturbed Boundary Value Problems, Applied Mathematics and Computation, 167: 225-236.
11. Rashidinia, J., M. Ghasemi and Z. Mahmoodi, 2007. Spline Approach to the Solution of a Singularly Pperturbed Boundary Value Problems, Applied Mathematics and Computation, 189: 72-78.
12. Shanthi, V. and N. Ramanujam, 2002. A Numarical Method for Boundary Value Problems for Singularly Perturbed Fourth Order Ordinary Differential Equaitions, Applied Mathematics and Computation, 129: 269-294.
13. Shanthi, V. and N. Ramanujam, 2003. Asymptotic Numerical Methods for Singularly Perturbed Fourth Order Ordinary Differential Equation for Reaction Diffusion Type, Computer and Mathematics with Applications, 6: 463-478.
14. Awoke Andargie and Y.N. Reddy, 2007. Fitted Fourth Order Tridiagonal Finite Difference Method for Singular Perturbation Problems, Applied Mathematics and Computation, 192: 90-100.
15. Kadalbajoo, M.K. and K.C. Patidar, 2002. A Servey of Numarical Techniques for Solving Singularly Perturbed Differential Equaitions, Applied Mathematics and Computation, 130: 457-510.
16. Ghazala Akram, 2011. Quartic Spline Solution of a Third Order Singularly Perturbed Boundary Value Problem, ANZIAM, 53: E44-E58.
17. Ghazala Akram and Nadia Amin, 2012. Solution of a Fourth Order Singularly Perturbed Boundary Value Problem using Quintic Spline, International Mathematical Forum, 7(44): 2179-2190.
18. Abrahamson, L.R., H.B. Keller and H.O. Kreiss, 1974. Difference Approximations for Singular Perturbations of the System of Ordinary Differential Equaitions, Numerische Mathematik, 22(5): 367-391.
19. Kreiss, B. and H.O. Kreiss, 1982. Numarical Methods for Singular Perturbation Problems, SIAM Journal of Numerical Analysis, 46: 138-165.
20. Chin, R.C. and R. Krasnay, 1983. A Hybird Asymptotic Finite Element Method for Stiff Two Point Boundary Value Problems, SIAM Journal on Scientific and Statistical Computing, 4(2): 229-243.
