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Abstract: The statistical graphics play an important role in providing the insights about data in the process 
of data analysis. The main objective of this paper is to provide a comprehensive review of the methods for 
checking the normality assumption. Multivariate normality is one of the basic assumptions in multivariate 
data analysis. Univariate normality is essential for the data to be multivariate normal. This paper reviews 
graphical methods for evaluating univariate and multivariate normality. These methods are applied on a 
real life data set and the normality is investigated. 
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INTRODUCTION

The use of visual analysis of the data in research is strongly backed by the advancement in other associated 
fields as: graphical methodologies for graphical representation of complex data sets, psychology of graphical 
perception and advancement in computer technology alongwith development and dissemination of appropriate
software [1].

In statistical modeling, it is often crucial to verify if the data at hand satisfy the underlying distributional 
assumptions. Many times such an examination may be needed for the residuals after fitting various models. For most 
multivariate analyses, it is very important that the data indeed follow the multivariate normal or if not exactly at 
least approximately. If the answer to such a query is affirmative, it can often reduce the burden of searching for 
procedures which are robust to departure from multivariate normality.

Normality of a data refers to the situation where the data are drawn from a population that has a normal 
distribution. This distribution is inarguably the most important and the most frequently used distribution in both the 
theory and application of Statistics. A random variable X is said to be distributed normally with mean µ and 
variance s 2 if it assumes the probability density function 

2
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1 1P(x) exp (x )
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 = − µ σ πσ

on the domain x∈(-∞,∞). While statisticians and mathematicians uniformly use the term "normal distribution" for 
this distribution, physicists sometimes call it a Gaussian distribution. Because of its curved flaring shape, social 
scientists refer to it as the "bell curve." Feller [2] uses the symbol ϕ(x) for P(x) in the above equation, but then 
switched to η(x) in Feller [3]. De Moivre developed the normal distribution as an approximation to the binomial 
distribution and it was subsequently used by Laplace in 1783 to study measurement errors and by Gauss in 1809 in 
the analysis of astronomical data [4].
There are several things that can cause the data to appear non-normal, such as: 

• The data come from two or more different sources. This type of data will often have a multi-modal distribution. 
This can be solved by identifying the reason for the multiple sets of data and analyzing the data separately. 

• The data come from an unstable process. This type of data is nearly impossible to analyze because the results of 
the analysis will have no credibility due to changing nature of the process. 
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• The data were generated by a stable, yet fundamentally non-normal mechanism. For example, particle counts 
are non-normal by the varying nature of the particle generation process. Data of this type can be handled using
transformations.

Statistical methods are based on various assumptions that uphold the methods. One of them is normality, which 
is commonly assumed. Thus, statistical models often require checking the normality of variables. Otherwise, 
interpretations and inferences based on the models are not reliable. This paper illustrates some visual methods for 
testing the assumption of normality in the univariate and multivariate data. 

The rest of this paper is organized as follows. A brief detail of the graphical methods for checking normality is 
presented in Section 2. In Section 3 all the methods are applied on real data and the results are discussed and 
compared with each other. Conclusions reached in Section 2 and Section 3, are presented in Section 4. Section 5 
concludes the discussion with throwing some light on merits and demerits of the use of graphical techniques 
discussed in the text for assessing multivariate normality.

METHODOLOGY

The statistical procedures and parametric tests are based on certain  assumptions. These procedures are valid 
only if the assumptions hold. If a parametric test is applied on a nonparametric data, the results are likely to be 
inaccurate. Most statistical procedures are based on the assumption of normality. The assumption of normality 
implies that the population from which data are drawn follows normal distribution. Here is a brief introduction of 
some graphical methods for assessing the assumption of normality.

Assessing univariate normality: The assumption of normality underlies many statistical techniques. By univariate 
normality (UVN) or simply normality means the data at hand is drawn from a normal distribution. This assumption 
plays a significant role in multivariate analysis, e.g., discriminant analysis, although the awareness of multivariate 
tests is limited. 

The assumption of univariate normality can be investigated graphically in several ways like Histogram with a 
normal curve overlay, Box-Whisker plot, Stem & leaf plot, Matrix plot, Dot plot, Q-Q plot and Normal probability
plot etc.

Histogram: Histogram is a very simple and important graph of the frequency distribution. It was introduced by 
Pearson [5]. The data is presented in the form of adjacent rectangles with height of rectangle proportional to the 
frequency. A normal curve is drawn over the histogram to examine if the data follows normal pattern. 

Stem & leaf plot: Another technique used to present and visualize quantitative data is stem and leaf plot. The most 
attractive feature of this display is that the original data or information is not lost after the formation of the graph. 
The data values are divided into two portions; a stem and a leaf. Then the leaves for each stem are shown separately 
in a display.

Box-whisker plot: The box-whisker plot or box plot introduced by Chambers et al. [6] is another summarized 
picture of the data. This plot uses the quartiles and extreme values of the data as a summary measure. The five-
number summary is used to prepare the box plot, that is, smallest value, lower quartile Q1, median Q2, upper quartile 
Q3 and the largest value. The plot consists of a rectangle (the box) in the central part of the observed data and 
whiskers are drawn to the lowest and highest values from the rectangle. The limits of the box are lower and upper
quartiles and the middle line is the median. 

Dot plot: The main purpose of this plot is the detection of any outliers or extreme values in the data. The 
observations are plotted simply on a real line. If there is any value that is far away from the rest of data, it appears on 
the graph significantly far away from other data values.

Normal probability plot: Probability plots are most commonly used for examining whether the data follows a 
specific distribution or not. The normal distribution is the mo st desirous property of certain statistical procedures. So
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the most widely used probability plot is normal probability plot Chambers [6]. The data is plotted against the 
corresponding expected values from the normal distribution. The resulting plot should look like a straight line at 450,
if  the  data  is  drawn  from  a  normal distribution. If the graph deviates from a straight line, it indicates departure 
from  normality. An  interesting  feature  of  normal  probability plot is that it screens out outliers or extreme values 
in the data. 

Quantile-quantile (Q-Q) plot: This plot is used for the same purpose as the probability plot. The quantiles of the 
data are plotted against the expected values of desired distribution. This plot should look like a straight line. A
quantile plot is a visual display that provides a lot of information about a univariate distribution (Chambers et al.,
[6], Gnanadesikan [7]). The quantiles of a distribution are a set of summary statistics that locate at relative positions 
within the complete ordered array of data values. Specifically, the pth qunantile of a distribution, X, is defined as the 
value xp' such that approximately p% of the empirical observations have values lower than xp.

Assessing multivariate normality: To assess multivariate normality, several visual procedures have been suggested 
in literature. These procedures use the properties of multivariate normal distribution for their application. Thode [8] 
has categorized these multivariate plotting procedures as Scatter plots of the component data, Probability plots of the 
marginal data and Probability plots of reduced data. As a first approach to assessing multivariate normality, 
univariate probability plots are used to independently assess each of the marginal variables. Healy [9] also proposed 
using scatter plots of all variables taken two at a time; although this is a more effective way of identifying outliers, it 
also allows identification of other nonlinear relationships between variables. Another approach includes ordering the 
marginal observations independently and plotting the ordered observations against each other taking the variates two 
at a time. Under the hypothesis of normality, these plots are equivalent to normal probability plots and should follow 
a linear pattern.

Chi-square plot of squared Mahalanobis distance: A widely used graphical procedure is based on the distribution 
of the ordered squared Mahalanobis distances of the individual sample points from their mean. A plot of the ordered 
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 quantiles of the chi-square distribution with p degrees of freedom is called a 

chi-square plot. Where 2
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i ix x ) S ( x x  and X1,…,Xn are the sample observations each measured 
on p variables. When the population is multivariate normal and both n and n-p are greater than 30, each of the 
squared distances should behave like a chi-square random variable. 
The following procedure illustrates the method to construct a chi-square plot.
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 to obtain a chi-square plot.

For p variables and a large sample size, the squared mahalanobis distances of the observations to the mean 
vector are distributed as chi-square with p degrees of freedom. However, the sample size must be quite large to have 
a chi-square distribution other than the situation where p is very small. This plot should resemble a straight line 
through the origin. A systematic curved pattern suggests lack of normality. This plot is sensitive to the presence of 
outliers and should be cautiously used as a rough indicator of multivariate normality.

Beta probability plot of squared mahalanobis distances: Another graphical approach to test multivariate
normality is a QQ plot of the ordered squared Mahalanobis distances 2

id  statistics against the quantiles of the beta 
distribution with parameters p/2 and (n-p-1)/2 as suggested by Gnanadesikan and Kettenring [10]. If the data have 
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suggested to use the probability plots of the 2
id with beta order statistics using general plotting position i

n 1
−α

− α− β +

for (p 2)/2pα = − and -1 0.5-(n-p-1)β = .

Detecting multivariate normality using characteristic function: Holgerson [12] suggested a different criterion 
than the previously discussed methods for detecting multivariate normality. The suggested method can be described 
as follows.
Let X1, …, Xn be n i.i.d. random variables in pℜ such that E(Xj) = µ and cov(Xj) = Σ. If 
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n n

T
j

j 1 j 1

1 1
 and 

n n
= =

= = − −∑ ∑ j jX X S X X X X

be the sample version of µ and Σ respectively, we define the characteristic function of X as i T X
X( ) E(e )′φ =T . The 

normal distribution then can be characterized by i / 2
S XX,S X( , ) ( ) ( ) ( )  e ′ ′−φ = φ φ ⇔ φ = L U L SLT U T U L , where T, U and L 

are fixed vectors in pℜ  with finite and non-null elements. The characteristic function given in (1) relates to the 
normal distribution if and only if T T and L X L SL  are independent. 

To detect normality for a multivariate data with this approach, B independent bootstrap samples X1
*, …, XB

* of 
size n with replacement are drawn from the original sample of size n which is denoted by X = {X1, …, Xn}. For a 
general discussion of the nonparametric bootstrap see Efron and Tibshirani [13]. Each of B pairs of statistics 

T * T *
b b{ , } ; b 1, ...., B=L X L S L , are plotted in two-dimensional space. If graph displays a correlation pattern, the data 

will violate the assumption of normality of X. There are several possible choices for the constant vector L. To detect 
the normality for the full multivariate data set, all elements of L need to be non-zero. To exclude some variable in 
the normality detection process, the corresponding element in L is set to zero.

DATA AND APPLICATION

The data used by Johnson [14] is being used in this section for the application of all methods discussed in 
Section 2 and comparing the conclusions reached with these different methods. The data is of a firm who is 
attempting to evaluate the quality of its sales staff by selecting a random sample of 50 employees. Each individual is 
evaluated on two measures of performance: sales growth and sales profitability. Sales performance by taking a series 
of tests for each selected employee. Each employee receives four exams designed to measure their creativity, 
mechanical reasoning, abstract reasoning and mathematical ability. 

To check if the sales person data follows multivariate normal distribution, the first step is to check the data for 
univariate  normality. Different  graphical  approaches  discussed  in  Section 2 are applied to this data. Figure 1 
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Fig. 1: Histogram
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Fig. 2: Box plot
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Fig. 4: Dot plot

shows the histogram of all the six variables with a normal curve overlay. None of the variables show a clear
symmetric pattern. Therefore the box-whisker plots for all the variables are constructed and are shown in Fig. 2. The 
box  plot  for  sales  profitability  and  math  test  seem  to  be  symmetrical. While creativity, mechanical reasoning 
and  abstract  reasoning  have  smaller  variation  as  compared  to  others. The similar conclusion can be made from 
the stem and leaf plot.
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Fig. 5: Normal probability plots

The matrix plot is shown in Fig. 3. The variables are plotted in the form of pairs with each other on a scatter 
plot. If the underlying distribution is normal then this plot must show ellipses. But the graph shows that the sales 
growth and sales profitability have a linear relationship. Therefore this data cannot be regarded as drawn from the 
multivariate normal distribution. Another use of this graph is the detection of outliers. No outliers are present in the 
data as shown by Fig. 4 since there are no points far away from rest of the data.

For detection of outliers in multivariate data, another graphical display is dot plot. The dot plot for our data is 
shown in Fig. 4. This graph shows that no outliers are likely to present in the data. This is further confirmed by 
making the normal probability plots for all the variables shown in Fig. 5.

The QQ-plot of the data are shown in Fig. 6. Although a considerable amount of the data in the QQ-plots for 
Mathematical ability and Sales Profitability appears to fall on a straight line, it is obvious that taken as a whole, the
data does not appear to be normally distributed. Therefore we must assess the hypothesis of normality by calculating 
the straightness of these QQ-plots using the correlation coefficient for each plot.

The straightness of the QQ-plots can be measured by calculating the correlation coefficient of the points in the 
plot. The correlation coefficient for QQ-plot is defined by
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where x(i) are ordered observations and q(i) are the quantiles of the standard normal distribution. To calculate the 
values of rQ,p, the standard normal quantiles are given in Table 2. The correlation coefficient for the first variable 
that is sales growth is calculated as
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Fig. 6: Quantile quantile plot

Similarly, the values of rQ,p for all six variables are as under:

p 1 2 3 4 5 6

rQ,p 0.0227 0.0998 0.1054 0.0417 0.0372 0.0239

We examine the normality of the data by referring to the table of the critical points of QQ-plot correlation 
coefficient for Normality. At the 10% level of significance, rtab = 0.9809, corresponding to n = 50, α = 0.10. Since 
rQ,p<0.9809, we reject the hypothesis of normality. Similarly we reject the hypothesis of normality at 5% and 1% 
levels of significance since rQ,p<0.9768 and rQ,p<0.9671 respectively. 
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Fig. 8: Beta probability plot

We now test the normality of this data using multivariate techniques. First step in checking whether the data 
follows a multivariate normal distribution is that all the variables should be normally distributed. But converse is not 
generally true, that is, univariate normality does not necessarily imply multivariate normality. As the variables are 
not distributed normally at individual levels, multivariate normality cannot be assumed for this data. To confirm 
whether the data is chosen from a multivariate normal distribution, the chi-square and beta probability plots are 
constructed.

The mahalanobis distances for the data are calculated and are shown in Table 1. The corresponding chi-square
percentiles, that is, (i-0.5)/50 are required to construct the chi-square plot. These percentiles are also reported in 
Table 1. The chi-square percentiles are plotted against the ordered mahalanobis distances to obtain the required chi-
square plot. The resulting plot is shown in Fig. 7. This plot shows that the points do not follow a straight line pattern. 
Therefore the data do not follow a multivariate normal distribution. Another useful information which can be 
obtained from this plot is the presence of a multivariate outlier. The Beta probability plot is constructed for 
salesperson data and plotted against ß (3, 21.5) with a = 0.33 and ß =0.48 shown in Fig. 8. Clearly, all the points do 
not fall on a straight line. Thus the data do not support the assumption of multivariate normality. However, the point 
that lies far above the line indicates a large distance, or an outlying observation and may require further attention.

To detect normality for the data under consideration using the characteristic function approach suggested by 
Holgerson [12], we have drawn B=5000 independent bootstrap samples X1

*, …, X*
5000 of size n=50 with 

replacement from the original sample. We plotted each of B=5000 pairs of statistics T * T *
b b{ , } ; b 1, ...., B=L X L S L , in 

two-dimensional space. All elements of the constant vector L = (L, L,....,L) are set as L = 1/p. The graph of the said 
paired statistics is shown in Fig. 9(a), which shows a correlation pattern suggesting non-normality of the data. The 
same   result   is   also   achieved   with   the   quantile-quantile   (Q-Q)  plot,  when  ordered  Mahalanobis  distances
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Table 1: Ordered squared distances and Chi-square quantiles and Beta quantiles for the salesperson data

i d2
(i) c,6

i 1/2
q

50
− 

 
 

Beta quantiles i d2
(i) c,6

i 1/2
q

50
− 

 
 

Beta quantiles

1 1.4732 0.8721 0.0192 26 4.6419 5.4296 0.1138
2 1.5500 1.3296 0.0291 27 4.7384 5.5954 0.1170
3 1.9307 1.6354 0.0357 28 5.1658 5.7652 0.1204
4 1.9821 1.8846 0.0410 29 5.3078 5.9395 0.1238
5 2.1328 2.1029 0.0457 30 5.3103 6.1189 0.1273
6 2.6985 2.3014 0.0499 31 5.3840 6.3041 0.1309
7 2.7677 2.4863 0.0538 32 5.6100 6.4958 0.1346
8 2.8756 2.6613 0.0575 33 6.4176 6.6948 0.1384
9 2.9901 2.8289 0.0610 34 7.3386 6.9021 0.1424
10 3.0133 2.9908 0.0644 35 7.4561 7.1188 0.1465
11 3.0547 3.1484 0.0676 36 7.6792 7.3464 0.1508
12 3.165 3.3028 0.0708 37 7.7913 7.5864 0.1553
13 3.2106 3.4546 0.0740 38 8.1381 7.8408 0.1601
14 3.2264 3.6046 0.0771 39 8.8763 8.1122 0.1652
15 3.4826 3.7535 0.0801 40 8.9253 8.4036 0.1706
16 3.5295 3.9015 0.0831 41 9.0035 8.7191 0.1764
17 3.6013 4.0493 0.0861 42 9.1458 9.0642 0.1827
18 3.6983 4.1973 0.0891 43 9.3033 9.4461 0.1896
19 3.8106 4.3457 0.0921 44 9.5216 9.8754 0.1973
20 3.8539 4.4951 0.0952 45 9.8024 10.3676 0.2061
21 4.4629 4.6456 0.0982 46 10.0361 10.9479 0.2163
22 4.5232 4.7978 0.1012 47 10.3209 11.6599 0.2286
23 4.5577 4.9519 0.1043 48 12.4992 12.5916 0.2444
24 4.568 5.1083 0.1074 49 13.6269 13.9676 0.2673
25 4.6301 5.2674 0.1106 50 21.1708 16.8119 0.3123
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 shown in Fig. 9(b) is not a fairly straight line indicating non-normality of the data.

CONCLUSION

The normality of the data, which is a key assumption for making valid inferences, can be tested using various 
statistical tests or visual inspection. According to Chambers et al. [6], there is no single statistical tool to assess the 
normality that is as powerful as a well-chosen graph. Assessing the normality using graphical methods do lack 
objectivity (the analysts make use of their experience in visualizing the graph to make a subjective judgement about 
the data) which is not the case when dealing with statistical tests. However, the assessment of normality using 
statistical tests is sensitive to the sample size. In case of small samples, the null hypothesis of normality is often not 
rejected and conversely for large samples where the inferences are relatively robust to the large samples, hypothesis 
of normality is rejected even for small violations. So, the graphical methods should be used to analyze the violation 
of normality in the light of sample size. In sum, combining graphical methods and test statistics will definitely 
improve our judgement on the normality of the data.
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