Mode of Action of Some Molluscicides on Neurons of Biomphalaria alexandrina Snail

T. Ahmed Sharaf El-Din, A. Kamelia El-Sayed, Hoda Abdel Hamid and B. Moemna Mahmoud

Medical Malacology Laboratory, Theodor Bilharz Research Institute, P.O. Box: 30 Imbaba, Egypt

Abstract: The present study was designed to evaluate the mode of action and neuropathological effect of Selecron, Bayluscide and ethanolic extract of Anagalis arvensis on the neurons of the cerebral ganglia in the freshwater snail B. alexandrina. The snails were subjected to lethal concentration (LC₉₀) of each compound (3.468 ppm for Selecron, 0.082 ppm for Bayluscide and 38.129 ppm for ethanolic extract of A. arvensis) till death of snails after 90 minutes. Then the snails were dissected and the cerebral ganglia were removed. Electron microscopical examination of treated animals revealed severe ultrastructural alterations in the cerebral ganglia. These alterations included hyperchromatic, pyknotic or highly shrunken nuclei, extreme indentation of plasma membrane, atrophy of the perikarya of some neurons, margination of nucleoli, fragmentation or dilation of rough endoplasmic reticulum, damage of mitochondria and vacuolation and destruction of cytoplasm. In addition, degenerated synaptic vesicles and increased number of autophagosomes and myelin figures were frequently observed. In the present study the acetylcholinesterase enzyme (AchE) activities was measured in B. alexandrina snails exposed to the same concentration of the tested compounds. The AchE activities in B. alexandrina showed wide variation along the treated snails and control snails, The AchE activities in B. alexandrina decreased significantly at Bayluscide (55.3% reduction) followed by Selecron (49.2% reduction) and A. arvensis (39.9% reduction).

Key words: Biomphalaria - Molluscicides - Neuron - Snails

INTRODUCTION

The use of molluscicides is one of the procedures recognized by the World Health Organization against schistosomiasis [1].

Selecron® 500 EC is an emulsifiable concentrate insecticide and acaricide with contact, stomach and translaminar action for the control of various insects on cotton, table and wine grapes, citrus, tomatoes, cruciferae, potatoes and onions. This insecticide finds its way to the habitat of freshwater snails through the drainage system [2].

Bayluscide (5, 2’-dichloro-4’-nitrosalicylanilide) has been used to control several invasive and nuisance aquatic organisms. It was originally developed as a molluscicide in tropical regions to control the snail host of schistosomiasis and has been used as a synergist with other chemicals as a lampricide in the tributaries of the Great Lakes [3]. Bayluscide has also been used in the Florida aquaculture industry to control the freshwater snail host of the digenetic trematode responsible for metacercarial infections in fish [4].

Anagallis arvensis (Family: Agavaceae) is a scarlet pimpernel annual plant. The aqueous and ethanolic extracts of this plant have been investigated for molluscicidal activity against vector snails of schistosomiasis and fascioliasis [5, 6].

The acetylcholinesterase (AchE) plays a significant role in nerve conduction processes. The measurement of AchE activity is used worldwide as a biomarker of environmental contamination due to neurotoxic substances. In the present study the AchE activities was measured in B. alexandrina snails exposed to LC₉₀ concentration of the tested compounds.

Central nervous system of snails are suitable models for various types of fundamental neurobiological research because they contain relatively few, yet very large, readily identifiable neurons [7]. So, the aim of this study is to
investigate the effect of Selectron, Bayluscide and ethanolic extract of A. arvensis leaves on nervous system of B. alexandrina snails and to shed light on the possible use of this snail as a bioindicator for environmental perturbation.

MATERIALS AND METHODS

The experiment was conducted using B. alexandrina snails collected from different water courses at Qalubiya Governorate, Egypt, during spring season and transferred in plastic bags to the laboratory. They were kept in plastic aquaria (40x30x30 cm, with 100 snails per aquarium), allowed to feed on fresh leaves of lettuce and kept to acclimatize under laboratory conditions (24-26°C) over two weeks prior to the experiment.

The dry powder of Anagallis arvensis leaves were extracted by soaking at ethanol alcohol (0.5 kg/liter) for seven days. Then the solvent was filtered and distilled under vacuum and the crude extract residues were used in preparing series of concentrations in terms of weight/volume.

Experimental Design: Preliminary experiments were carried out to determine the lethal concentration of three tested compounds. For each compound, a series of concentrations, that permits the computation of LC$_{50}$ and LC$_{90}$ values according to Litchfield and Wilcoxon [8] and WHO [9] procedures. The exposure and recovery periods were 24 hours each at room temperature (25±1°C).

In order to study the toxic effect of the tested compounds on the cerebral ganglia of B. alexandrina, the snails were exposed to the lethal concentration of the tested compounds (LC$_{90}$) till death of snails.

Group I: Snails of this group received no treatment and used as negative control.

Group II: Snails of this group exposed to LC$_{50}$ of Selectron.

Group III: Snails of this group exposed to LC$_{90}$ of Bayluscide.

Group IV: Snails of this group exposed to LC$_{90}$ of ethanolic extract of A. arvensis.

Dissection and Electron Microscopical Studies: After death of snails, a definite number of snails from each group were randomly chosen and dissected for ultrastructural studies. Cerebral ganglia of tested snails were dissected out with the help of a Zeiss binocular microscope and immediately dropped in the appropriate fixative. The ganglia were fixed in formalin-glutaraldehyde fixative (4f1g) in phosphate buffer. Specimens were then postfixed in 2% oso4 in the same buffer at 4°C for 2 h. Samples were washed in the buffer and dehydrated at 4°C through a graded series of ethanol. Specimens were embedded in epon-araldite mixture. Lkb ultramicrotome was used to cut ultrathin sections which were picked upon 200 mesh naked copper grids and double stained with uranyl acetate and lead citrate. Scoping the grids was achieved by using jeol 100 cx tem.

Determination of AChE Activity: After sonication of cerebral ganglia, samples were centrifuged at 1700g for 3 min at 4°C. The obtained supernatant was immediately assayed for AChE activity according to Ellman et al. technique [10] adapted to the microplate [11]. The enzyme activity is expressed as unit (U) per mg of protein. A unit corresponds to an n mol of substrate hydrolyzed per minute, using a molar extinction coefficient of 1.36 × 10$^{-3}$ M$^{-1}$ cm$^{-1}$.

RESULTS

Ultrastructural Pattern of Cerebral Ganglia in Control Snails: At the ultrastructural level, there are two types of procerebral neurons. The cells of the first type are neurosecretory cells mainly found at the boundary of the perikaryal layer and appeared elongated with a large eccentric nucleus and a relatively small amount of cytoplasm containing abundant electron-dense neurosecretory granules. The second type of cells was smaller in size with large nucleus and thin cytoplasm containing few cytoplasmic organelles. The nuclei contained a thin layer of heterochromatin along the nuclear envelope and few large blocks of heterochromatin scattered in the central area.

Electron micrographs showed that, the mesocerebrum contained large-sized neurons with large centrally located nuclei containing one or more nucleoli and small patches of dispersed heterochromatin.

In the metacerebrum the neurons were variable in size and shape. They have polymorphic nuclei with dense heterochromatin strip along the nuclear envelope and some patches of heterochromatin dispersing all over the euchromatin. The cytoplasm contains numerous cisternae of rough endoplasmic reticulum, Golgi complex, free ribosomes and secretory granules.
Fig. 1: Electron micrographs showing parts of horizontal sections of control cerebral ganglia of *Biomphalaria alexandrina* (a-f)

(a) Four different shaped metacerebral neurons. Arrows point at fat droplets, arrowheads indicate dense bodies and double arrows show glial processes extending in the extracellular space (asterisks). (x8000),
(b) Magnified procerebral neurosecretory cell with large nucleus, peripherally located nucleolus and large number of neurosecretory granules. (x15000),
(c) Enlarged part of neurosecretory cell with part of the nucleus, Golgi complex, mitochondria, rough endoplasmic reticulum and secretory granules. Arrows indicate nuclear pores. (x26000),
(d) Part of the neuropile containing axon profiles packed with large electron-dense vesicles (thick arrows) and clear vesicles (thin arrows). Double arrows pointed at synaptic membranes (x26000).
(e) A large sized mesocerebral neuron showing large nucleus with prominent nucleolus. (x3000),
(f) Magnified part of metacerebral neuron showing part of the nucleus and different cytoplasmic organelles. (x40000)
Ultrastructurally, the neuropile in the cerebral ganglia of B. alexandrina is composed of a complex network of nerve fibers, some of which contain in addition to mitochondria, dark and light synaptic vesicles.

Fig. 1 (a-f) showed groups of small procerebral neurons. Thin arrows indicate marginal neurosecretory cells, thick arrow points at perineurium, arrowheads indicate glial processes and asterisks point at extracellular space.

Ultrastructural Pattern of Cerebral Ganglia in Treated Snails: Electron microscopic examination of the cerebral ganglia post exposure to lethal concentration (LC₅₀) of Selecron, Bayluscide and ethanolic extract of Anagalis arvensis exhibited many interesting ultrastructural changes.

Fig. 2 (A-C) showed groups of altered (arrows) and completely degenerated (headarrows) procerebral neurons. Note degenerated glial cells (double arrows) and destructed extracellular tissue (*)

Table 1: Acetylcholine esterase activity in homogenates of Biomphalaria alexandrina exposed to bayluscide, Selecron and A. arvensis

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
<th>Activity ±S.D.</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayluscide (0.082)</td>
<td>56.8±8.8</td>
<td>-55.3</td>
</tr>
<tr>
<td>Selecron (3.468)</td>
<td>64.6±10.2</td>
<td>-49.2</td>
</tr>
<tr>
<td>A. arvensis (38.129)</td>
<td>76.4±12.8</td>
<td>-39.9</td>
</tr>
<tr>
<td>Control (0)</td>
<td>127.1±23.4</td>
<td></td>
</tr>
</tbody>
</table>

The measurement of acetylcholinesterase (AChE) activity is used worldwide as a biomarker of environmental contamination due to neurotoxic substances. The AChE activities in B. alexandrina showed wide variation along the treated snails and control snails. The AChE activities (Table 1) in B. alexandrina decreased significantly at bayluscide (-55.3% reduction) followed by Selecron (-49.2% reduction) and A. arvensis (-39.9% reduction).
DISCUSSION

The present investigation was designed to evaluate the mode of action of Selectron, Bayluscide and ethanolic extract of Anagalis arvensis on nervous system of the pulmonate snail Biomphalaria alexandrina, the intermediate host of Schistosoma mansoni in Egypt and to shed light on the possible use of this snail as a bioindicator for environmental perturbation.

The present study revealed impact of the tested compounds on the ultrastructure of neurons and neurosecretory cells in the cerebral ganglia of B. alexandrina and provided more precise information about the structural alterations induced in these cells. The nuclei of both neurons and neurosecretory cells revealed severe pathological changes. They appeared eccentric, hyperchromatic, pyknotic or highly shrunken with irregular contour and peripherally located nucleoli. Similar changes were reported in the cerebral ganglia neurosecretory cells of Biomphalaria glabrata treated with the herbicide Atrazine [12] and in the neurons of buccal ganglia treated with methomyl and methiocarb [13].

In a study on the cytotoxicity of TBT, Mizuhashi et al. [14] observed dead or damaged neurons with chromatin condensation which is one of the morphological characteristics of apoptosis. The authors reported that the TBT provokes apoptosis-like neuronal cell death which might be mediated by intracellular Ca²⁺ and free radical generation via non-NMDA receptor activation. Also Reader et al. [15] demonstrated a role of Ca²⁺, protein kinase C and proteases in the induction of apoptosis in the hepatocytes of rainbow trout treated with TBT.

According to Mcllwain and Hoke [16], changes in the size and position of the nucleus and nucleolus could be attributed to the effect of the neurotoxin on the cytoskeleton of the affected neurons. Moreover, segregation of nucleolar components was noticed in some neurons of metacerebrum of B. alexandrina treated with these compounds. Nucleolar segregation could be due to the inhibition of RNA synthesis resulting from a decrease in the activity of RNA polymerase which catalyzes the synthesis of RNA [17].

The neurotoxic effect of these compounds on the cerebral neurons also appears from the observations on the cytoplasmic organelles. The primary change was the fragmentation and degranulation of rough endoplasmic reticulum accompanied with an increased number of free ribosomes. Similar changes were described in the buccal ganglia of Eobania vermiculata treated with carbamate molluscicides [13]. The degranulation and dilatation of rER are discussed as general changes of the cell in response to toxicants [18]. Most of these reactions are attributed to membrane destabilization and increased membrane permeability to ions under the influence of toxicants, followed by osmotic effect and finally cell death.

On the other hand, the present results clearly indicated that, treatment with selecrone, bayluscide or plant extract induced damage and loss of the cristae of mitochondria in the perikarya of the neurons as well as in the axons of the neuropile. These alterations resemble those described in snails, slugs and vertebrates as cellular stress symptoms after intoxication [19, 20, 21].

In addition, the most obvious alterations observed in the present results were the presence of large dense lysosomes and autophagosomes in the cytoplasm of treated neurons. In this respect, Muller et al. [22] stated that L. stagnalis, lysosomes are prominent after experimental inactivation of neuronal secretory activity by incubation of cerebral ganglia in Vinca antitumor agents. Autophagy is normally a cellular degradation pathway particularly important during development stages and under certain environmental stress conditions [23]. This phenomenon may be related to an autophagic degeneration of the cells or to a disruption of the regulatory mechanisms of autophagy described by Klionsky and Emr [23].

The remarkable feature of the treated neurosecretory cells is the disappearance of neurosecretory granules and formation of large vacuoles in the cytoplasm that resulted in destruction of the cytoplasmic organelles. Vacuolation of neurosecretory cells was also noticed in the cerebral ganglia of B. glabrata treated with Atrazine [12].

Degenerated synaptic vesicles, mitochondria and synaptic membranes were the most frequent changes in the neuropile of treated cerebral ganglia. Degradation of the synaptic vesicles could be attributed to the interruption of axonal transport which may promote degradation of synaptic terminals. Similarly, Tsunoda et al. [24] showed that, TBT-induced modulations of neurotransmitters and their metabolites in discrete brain regions of mice.

The measurement of acetylcholinesterase (AChE) activity is used worldwide as a biomarker of environmental contamination due to neurotoxic substances. The AChE activities in B. alexandrina showed wide variation along the treated snails and
control snails, The AChE activities in B. alexandrina decreased significantly at Bayluscide (55.3% reduction) followed by Selecron (49.2% reduction) and A. arvensis (39.9% reduction). Such a significant variation of AChE activities along the treated snails can be attributed to neurotoxic substances present in these compounds.

The inhibition of AChE by neurotoxic substances such as cadmium, copper, lead, organophosphorous, carbamate pesticides, polyaromatic hydrocarbons have been well established [25, 26, 27, 28, 29, 30] at myoneural junction of the nerve ending of muscle tissue. A ChE is the enzyme that is usually located in membranes of vertebrates and non-vertebrates animals [31]. Cholinesterase enzymes (ChE) are often highly polymorphic enzymes in invertebrates.

According to the mechanism of action, the AChE is released at the myoneural junction in organisms if an action potential is developed at the nerve ending and diffuses through the gap between the nerve and the muscle (the gap is about 100 Å wide). Anticholinesterases such as organophosphate, carbamate pesticides, toxic elements (Cd, Pb, Cu etc) bind to the catalytic site of the AChE enzyme thus preventing the physiological inactivation of acetylcholine leading to an anomalous protraction of neurotransmission. The AChE activity was used as a biomarker of neurotoxic contaminants in copepods (Tigriopus brevicornis) from the Vilaine River estuary of France [32]. Methiocarb acts upon the central nervous system inhibiting acetylcholinesterase (AChE), which can cause overstimulation of the nervous system and ultimately the death of the animal [33].

REFERENCES

