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Abstract: Prediction of time dependent swelling behavior of weak rock in wetting and drying cycles is quite
important for investigating the life time of structures in contact with these layers in arid and semi arid
conditions. Previously proposed methods use information of previous cycles to predict the swelling behavior
in the current cycle. This paper presents a new method which uses the information of the first wetting cycle in
combination with Adaptive Network-Based Fuzzy Inference System (ANFIS) to predict the cyclic swelling
pressure of mudstone. This facilitates the swelling pressure prediction in some wetting periods ahead. The data
from laboratory tests on mudstone samples were used to calibrate and test the model. The ANFIS proves to
be more effective in modeling the cyclic swelling pressure as opposed to the artificial neural networks (ANN)
and multiple regression approach (MRA).
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INTRODUCTION 3 previous cycles to predict the swelling pressure of the

Swelling prediction of weak rocks is an essential behavior of swallable rock is estimated using the
criterion in the design of structures resting against such information of instantaneous previous cycles and
rocks. It is more complicated when the weak rock predictions of  more  than  1  new  cycle  is  impossible.
experiences wetting and drying periods which is The first objective of the present study is to predict the
pronounced in arid climates. The swelling strain and swelling behavior of mudstone in some future cycles
pressure of weak rock is increased in cycles gradually as without considering the information of instantaneous
reported by Pejon and Zuquette, Moosavi et al. and previous cycles.
Doostmohammadi et al. [1-4]. Over years, consistent and ANFIS is used to predict results in some engineering
accurate prediction of cyclic swelling behavior has not problems. However, its application to the geotechnical
been achieved by using variety of methods ranging from related studies are very limited. For instance, Ni et al.
MRA to ANN methods [5]. used the ANFIS for evaluating slope failure potential [7].

Huang et al. used regression approach to predict the The mapping of cone penetration test (CPT) values into
maximum swelling behavior of shale in the second wetting soil dynamic properties was performed by Romo and
period [6]. The maximum swelling strain of mudstone in Garcia [8]. Shahin et al. predicted the settlement of
various cycles was modeled by Pejon and Zuquette [1]. shallow foundations on granular soils [9]. ANFIS as a new
They fit a straight line to maximum axial swelling strain and powerful method to predict the cyclic swelling
versus number of cycles. Moosavi  et  al.  modeled  the behavior of mudstone is introduced as a second objective
cyclic swelling behavior of mudstone using artificial of the current study.
neural networks [2]. In this model, the duration of a
swelling cycle is divided to twelve equal points. The swell Development of a Model for Cyclic Swelling Pressure:
pressure of a desired point is predicted according to its One of the most important steps in the model
four previous points. In a recent research, the time development for estimation of cyclic swelling behavior of
dependent swelling pressure of mudstone was predicted weak rocks is identification of input parameters. The time,
by Doostmohammadi et al. [5]. They used information of in  which swelling pressure is determined, is introduced as

current cycle using ANN. In all the research, the swelling
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the first input variable. Clay content, bulk density, specific
gravity, dry density, texture, structure, initial moisture
content, initial void ratio, porosity, degree of saturation,
blue of methylene value, cataion exchange capacity, clay
activity index, carbonate content and mercury porosity, as
influencing parameters for swelling potential
characterization, are required for introducing a reliable
model. Determining all of these effective parameters is a
difficult task and requires a lot of time and laboratory Fig. 1: The general structure of the fuzzy Inference
facilities. In the current research, the time dependent System.
swelling pressure of mudstone in the first cycle (SP ) isini

used as a representative of all mentioned parameters in (also consequents in fuzzy modeling) specify the
the second input location. The last input parameter, corresponding output. Hence, the efficiency of the FIS
number of wetting periods (CN), is considered to extract depends on the estimated parameters. The rule structure
the dynamic variation of swelling in cycles. The output of a FIS makes it possible to incorporate human expertise
parameter is time dependent swelling pressure (SP ). about the system being modeled directly  into  thef

These input/output arrangement improves the previous process  to  decide  on  the  relevant  inputs, the number
methods [2, 5] and allows determining the cyclic swelling of membership functions (MFs) for each input, etc. and
pressure of mudstone without considering the information the corresponding numerical data for parameter
of former cycles. estimation.

Concept of ANFIS: The fuzzy logic approach is based on procedure for the FIS that uses a neural network learning
the linguistic of uncertain expression rather than algorithm for constructing a set of fuzzy if–then rules with
numerical uncertainty. Since Zadeh proposed the fuzzy appropriate membership functions from the stipulated
logic approach to describe complicated systems [10], it input–output pairs [11]. This procedure of developing a
has since become popular and has been successfully FIS using the framework of adaptive neural networks is
applied in various engineering problems. Nonetheless, the called an adaptive network-based fuzzy inference system.
main problem with this approach is that there is no
systematic procedure for design of a fuzzy controller. ANFIS Architecture: ANFIS is a Sugeno-type FIS. The

Basically a fuzzy inference system (FIS) is composed general structure of the ANFIS is presented in Figure 2.
of five functional blocks (Figure 1). It is assumed that the FIS has two inputs x and y and

A rulebase containing a number of fuzzy if-then fuzzy if-then rules of Takagi and sugeno’s type [12]:
rules;
A database which defines the membership functions Rule 1: If x is A  and y is B  Then f =p .x+q .y+r (1)
of the fuzzy sets used in the fuzzy rules; Rule 2: If x is A  and y is B  Then f =p .x+q .y+r (2)
A decision-making unit which performs the
inference operation on the rules; Where A , A  and B , B  are the membership functions for
A fuzzification inference which transforms the crisp inputs x and y, respectively; p , q , r  and p , q , r  are the
inputs into degrees of match with linguistic values; parameters of the output function. Figure 2(a) illustrates
A defuzzification interface which transforms the the fuzzy reasoning mechanism for this Sugeno model to
fuzzy results of the inference into a crisp output. derive an output function (f) from a given input vector

FIS implements a nonlinear mapping from its input is presented in Figure 2(b), where nodes of the same layer
space to the output space. This mapping is accomplished have similar functions. The functioning of the ANFIS is as
by a number of fuzzy if–then rules, each of which follows:
describes   the     local    behavior    of    the   mapping.
The  parameters of  the  if–then  rules   (referred   to   as Layer 1: Each node in this layer generates membership
antecedents or premises in fuzzy modeling) define a fuzzy grades of an input variable. The node output OP  is
region of the input   space   and  the   output   parameters defined by

Jang introduced a novel architecture and learning

one output z. suppose that the rule base contains two
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Fig. 2: Schematic of fuzzy and neurofuzzy paradigm: (a) fuzzy inference system and (b) equivalent ANFIS architecture

Op  = µ        for i=1, 2 or (3) Op  = w  = µ i(x). µ i(y) i=1, 2. (6)i Ai
1

Op  = µ        for i=3, 4 (4)i A(i–2)
1

Where x (or y) is the input to the node; A  (or B ) is ai i-2

fuzzy set associated with this node, characterized by the
shape of the MFs in this node and can be any appropriate
functions that are continuous and piecewise differentiable
such as Gaussian, generalized bell, trapezoidal and
triangular shaped functions. Assuming a generalized bell
function as the MF, The output Op  can be computed as:i

1

(5)

Where {a , b , c } is the parameter set that changes thei i i

shape of the membership function with maximum equal to
1 and minimum equal to 0.

Layer 2: Every node in this layer multiplies the incoming
signals, denoted as  and the output Op  that representsi

2

the firing strength of a rule is computed as:

i i Ai Bi
2

Layer 3: The i  node of this layer, labeled as N, computesth

the normalized firing strengths as:

(7)

Layer 4: Node i in this layer computes the contribution of
the i  rule towards the model output, with the followingth

node function:

(8)

Where  is the output of layer 3 and {p , q , r } is thei i i

parameter set.

Layer 5: The single node in this layer computes the
overall output of the ANFIS as:

(9)
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Fig. 3: Swelling pressure of specimen MS.1 in different Fig. 5: Swelling pressure of specimen MS.3in different
cycles cycles.

Fig. 4: Swelling pressure of specimen MS.2 in different Fig. 6: Swelling pressure of specimen MS.4 in different
cycles. cycles.

Estimation of Parameters: The parameters for Total  data   base   includes   325   data   points
optimization  in  an  ANFIS  are  the premise parameters (Figures   3,    4,    5    and    6)    are   used   for  training
{a , b , c }, which describe the shape of the MFs and the (218  data  points),  checking  (55  data  points)  andi i i

consequent parameters {p , q , r }, which describe the testing (52 data points) the ANFIS model. The training,i i i

overall output of the system. The basic learning rule of an checking and testing data points include 67%, 17% and
adaptive network, the back propagation algorithm [13], 16% of the total data points are selected randomly from
which is based on the gradient descent rule, can be the total data.
successfully applied to estimate these parameters. The basic idea behind using a checking data set for
However, Jang argues that the gradient descent method model validation is that after a certain point in the training,
is generally slow and is likely to get trapped in local the model begins overfitting the training data set. In
minima [11]. Jang has proposed a faster learning principle, the model error for the checking data set tends
algorithm, which combines the gradient descent method to decrease as the training takes place up to the point that
and the least squares estimate to identify parameters. A overfitting begins and then the model error for the
detailed description of the method can be found in Jang checking data suddenly increases.
and Sun [14].

The   Data    Used    for    Model    Development:   The time dependent cyclic swelling pressure prediction is
cyclic   swell   pressure   tests in   oedometric  condition developed  following  the  procedure  described in
were  performed  to  develop  and  assess  the  ANFIS Section  3.  The  FIS  used  in  developing  the ANFIS
model.  The  results  of  these  tests  on  4  mudstone model, can be viewed as a partition in the
samples   taken   across   the  Masjed-Soleiman multidimensional   feature    space,    where    the   number
Underground Hydro Electric Power Plant are shown in of    partitions       in      each      dimension     corresponds
Figures 3, 4, 5 and 6. to   the  number   of   fuzzy  sets  and   the   corresponding

ANFIS  Model  Development:  The   ANFIS   model  for
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Table 1: Linguistic names of input variables

Input variables Linguistic names

T Low and high

SPini Low and high

CN Low and high

Fig. 7: The membership functions before training.

membership function that is defined in that dimension.
Consequently, the input space partitioning plays a major
role in the optimal architecture of the model. The number
of MFs associated with each input variable is fixed by trial
and error. In the present study, two triangular membership
functions have been assigned to each input variable. Each
input variable is classified into two fuzzy categories with
linguistic attributes as given in Table 1. The initial values
of the premise parameters are set in such a way that the
centers of the MF are equally spaced along the range of
each input variable. The model structure is implemented
using the fuzzy logic toolbox of MATLAB software
package.

The hybrid algorithm used in the present study for
optimizing the parameters allows fast identification of
parameters and substantially reduces the time needed to
reach convergence. The minimum checking error is used
as the stopping criterion to avoid overfitting. The ANFIS
model has 50 parameters (32 linear and 18 nonlinear) and
8 fuzzy rules.

Fig. 8: The membership functions after training.

Performance Analysis and Testing the ANFIS Model:
Figures 7 and 8 show the initial and final MFs before and
after training, from which it can be seen that significant
modifications have been done to the shapes of initial MFs
through the learning process.

Comparison  with   the   Real   Swell   Pressure    Data:
To test  the  ANFIS  model, a matrix was used involving
4 swelling pressure signals in different wetting periods,
randomly. The total test data points are 52 input/output
pairs. These samples were not used in the training stage
of the ANFIS model. Figures 9, 10, 11 and 12 show the real
signal of swelling pressure and predicted amounts by
ANFIS in different wetting periods. It can be observed
that there is a good correspondence between them and
the ANFIS is capable of modeling the swelling behavior
in cycles.

Statistical      comparisons      between     predicted
and monitored   swelling   pressures   were  also
performed. The root-mean-squared error (RMSE) and
correlation   coefficient   (Corr)   between   the  predicted
and   the monitored    pressures    are    presented   in
Table  2.  The  RMSE  of  the  ANFIS  model  for  all  data
did not exceed 0.0994, which proves an accurate
prediction.
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Fig. 9: The real and predicted trend of swelling behavior Fig. 11: The real and predicted trend of swelling
of specimen (MS.1) in the second cycle. behavior of specimen (MS.3) in the forth cycle.

Fig. 10: The real and predicted trend of swelling behavior Fig. 12: The real and predicted trend of swelling
of specimen (MS.2) in the third cycle. behavior of specimen (MS.4) in the fifth cycle.

Table 2: Root mean square error (RMSE) and Correlation coefficient
(Corr) between the measured pressure and those predicted by the
ANFIS, MRA and ANN.

RMSE Corr

ANFIS Training data 0.0885 0.9850
Testing data 0.1450 0.9574
All data 0.0994 0.9797

ANN Training data 0.1396 0.9624
Testing data 0.1701 0.9411
All data 0.1455 0.9583

MR Training data 0.2085 0.9134
Testing data 0.1999 0.9174
All data 0.2068 0.9142

It can be observed that except for the third cycle in
specimen MS.2 (Figure 10), the fitting and testing errors
for all the other specimens are very small. It should not be
expected that the ANFIS produce very good results for all
the training and testing samples particularly in the case
that  there  might  be  conflicting  data  in  the  training  or

testing datasets. Looking  into  the  training  dataset
(figure 4), we find that the difference of the second and
the third cycles is much bigger than that of the first and
the second cycles. Pejon and Zuquette have reported that
the biggest difference of swelling potential is occurred
between the first and the second cycles [1]. In our case,
a sudden dissagregation and then a stress relief or easy
access of water to the sample in the third cycle is
supposed to be the reason for the unexpected increase in
swelling pressure.

Comparison with Traditional Approaches: As described
in introduction, using MRA and ANN have been so far
the common methods for modeling cyclic swelling
behavior of swelling rocks. Consequently, the real
swelling pressure data was also compared with the
swelling pressure that is predicted by MRA and ANN. 

Comparison with MRA: MRA is usually used to
summarize  data and to study relations between variables.
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The RMSE between the MRA results and the recorded 2. Moosavi,     M.,   M.J.         Yazdanpanah      and
pressures are presented in table 2. It can be noted that R. Doostmohammadi, 2006. Modeling the cyclic
ANFIS model provides significant improvements in swelling pressure of mudrock using artificial neural
modeling the cyclic swelling behavior over MRA. network. Engineering Geology, 87: 178-194.

Comparison with ANN: The feed-forward multilayer and C. Osan, 2007. Swelling pressure of mudstone
perceptron (MLP) is used in the present study. One under cyclic wetting and drying. 11  Congress of the
hidden layer is used and two nodes are used in the hidden International Society for Rock Mechanics, Lisbon,
layer. A Levenberg-Marquardt training combined with a Portugal, pp: 443-446.
Bayesian regularization is used as a learning rule for 4. Doostmohammadi, R., M. Moosavi, T.H. Mutschler
modeling the cyclic swelling behavior of mudstone as and C. Osan, 2009. Influence of Cyclic Wetting and
proposed by Moosavi et al.  [2]  and  Doostmohammadi Drying on Swelling Behavior of Mudstone in South
et al. [5]. A detailed algorithm of training stage has been West of Iran. Environmental Geology, 58: 999-1009.
discussed by MacKay, Hagan and Menhaj and also 5. Doostmohammadi, R., M. Moosavi and B.N. Araabi,
Foresee and Hagan [15-17].  The  sigmoidal  transfer 2008. A Model for Determining the Cyclic Swell-
function  is  used  for  the  hidden   and  output layers. Shrink Behavior of Argillaceous Rock. Applied clay
The output variables need to be scaled so that they Science, 42: 81-89.
remain within the range of sigmoidal function (-1, +1). 6. Huang, S.L., R.C. Speck and Z. Wang, 1995. The
Since it is desirable to do input scaling to allow the temperature effect on swelling of shales under cyclic
connection weights to have the same order of magnitude, wetting and drying. International J. Rock Mechanics
each input is scaled to the range of -1 and +1 [18, 19]. and Mining Sciences and Geomechanics Abstracts,

The performance capability of the ANN model was 32: 227-236.
examined based on the RMSE and Corr indexes. The result 7. Ni, S.H., P.C. Lu and C.H. Juang, 1996. A fuzzy neural
is shown in table 2. This comparison shows that the network approach to evaluation of slope failure
ANFIS model is an effective way of modeling the cyclic potential.  Microcomputers   in   Civil  Engineering,
swelling pressure of mudstone with more accuracy. 11: 59-66.

CONCLUSIONS mapping of CPT values into soil dynamic properties.

Modeling cyclic swelling behavior of swellable rocks 23: 473-82.
is a challenging  job  facing  geotechnical  engineers 9. Shahin, M.A., H.R. Maier and M.B. Jaksa, 2003.
because good mathematical models can save them a Settlement prediction of shallow foundations on
significant amount of cost and time. In this paper an granular soils using B-spline neurofuzzy models.
ANFIS model for cyclic swelling pressure estimation of Computers and Geotechnics, 30: 637-647.
mudstone is developed. This ANFIS learns the if–then 10. Zadeh, L.A., 1965. Fuzzy sets. Information and
rules between time dependent swelling pressure in Control, 8: 338-353.
various wetting cycles and swelling behavior of first 11. Jang, J.S.R., 1993. ANFIS: Adaptive network based
cycle. It has been observed that ANFIS outperforms fuzzy inference system. IEEE Transactions on
artificial neural networks, which has been found in the Systems Man Cybernetics, 23: 665-83.
literature, to perform better than multiple regression 12. Takagi, T. and M. Sugeno, 1985. Fuzzy identification
models. In summary, ANFIS is a good choice and of systems and its applications to modeling and
powerful tool for modeling cyclic swelling behavior of control. Transactions on Systems Man Cybernetics,
mudstone. 15: 116-132.
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