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Abstract: A 2-D computational analysis of steady magnetohydrodynamic free convection in a rectangular
enclosure with a fixed aspect ratio (length/height=4) and filled with an electrically conducting fluid has been
performed. The enclosure is differentially heated at two opposite vertical walls while the horizontal walls are
at adiabatic condition. A uniform magnetic field with different magnitudes and orientations is applied. The
governing equations (mass, momentum and energy) are formulated and solved by a Finite Volume Method
(FVM) subjected appropriate boundary conditions. A parametric study illustrating the influence of Grashof
number, Prantdl number of fluid, Hartmann number and orientation of magnetic field on the flow and heat
transfer characteristic such as average Nusselt number, streamlines and isotherms is performed. It is observed
that Nu rises with increasing Grashof and Prandtl numbers and decreasing Hartmann and orientation of
magnetic field.
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INTRODUCTION which is withdrawn horizontally from a furnace. Thus the

The effect of the magnetic field has many drives the end wall convection. In industry the quality of
applications in engineering problems such as plasma crystal is affected adversely by instabilities in the melt
studies, nuclear reactors, boundary layer control in the phase because instabilities impose temperature
field of aerodynamics, geothermal energy extraction and fluctuations at the solidification front and lead to
electromagnetic launch technology. Semiconducting and striations in the crystalline product. It is well known that
superconducting materials are special types of materials applying magnetic field to the system leads to damping
that they are used in electromagnetic launch technology. unavoidable hydrodynamic movement and consequently
Some applications in launch technology include growing high quality crystals. The external magnetic field
superconducting inductive pulsed power supply for effect on convection heat transfer by slowing or inhibiting
electromagnetic launchers, electromagnetic launcher with the motion of liquid and this cause to decrease the
a high temperature superconducting which launch a convection heat transfer rate. In general, the quality and
shuttle, superconducting electromagnetic projectile homogeneity of single crystals grown from dropped
launchers, superconducting ceramic rails and semiconductor melts are very important and interesting
semiconductor armature. for manufactures of semi- and superconductors.

In plasma studies the liquid metal is used as coolant Therefore, analysis of flow and heat transfer of liquid
for fusion reactor blanket and due to liquid metal metals in cavities subjected to external magnetic field is
susceptibility  to  the  magnetic  field  that  is present in interesting for researchers in this field.
the blanket, its heat transfer rate and flow pattern are Many investigators experimentally, numerically and
influenced. In manufacturing of semiconductors the analytically studied the natural convection of electrically
special manufacturing process is used like Bridgman conducted fluids in presence of magnetic field. For
configuration. This configuration is one of the important instance, Rudraiah et al. [1] numerically studied the effect
methods for growth of superconductor and of a transverse magnetic field on the natural - convection
semiconductor single crystals. In the horizontal Bridgman flow inside a rectangular cavity with adiabatic horizontal
technique, the molten crystal is contained in a crucible walls and isothermal vertical walls. They found that a

melt is subject to a horizontal temperature gradient, which



2 2
0arctan ( ),y

x y
x

B
B B B

B
= = +

Middle-East J. Sci. Res., 11 (4): 461-469, 2012

462

circulating flow is formed with a relatively weak magnetic number of hot wall. It is shown that using working fluid
field that the convection is suppressed and the role of with higher Prandtl numbers leads to higher Nusselt
convective heat transfer is decreased when the magnetic numbers. Furthermore, increasing Grashof number,
field strength increases. Pirmohammadi et al. [4] have decreasing orientation angle of magnetic field and
studied the effect of a magnetic field on the buoyancy decreasing Hartmann number cause the Nusselt number
driven convection in a differentially heated square cavity. decreases.
The results showed that the flow characteristics inside the
cavity and heat transfer mechanism depend strongly upon Mathematical  Modeling and Boundary Conditions:
both the strength of the Rayleigh number and magnetic Figure 1 shows a schematic diagram of the system
field. For a review of other numerical, experimental and considered  in  the  present  study. The system consists
analytical studies and interested reader may refer to Refs of  a  rectangular  cavity  with  length  of L and height of
[3-13]. H = L/4. A Cartesian co-ordinate system is used with

Most of the previous studies apply magnetic field in origin at the lower left corner of computational domain.
perpendicular or parallel direction with gravity vector, no The left and right walls of cavity are hot and cold and
more existing studies apply magnetic field in the direction they are considered at a constant temperatures of T  and
inclined with gravity vector. When the direction of a T respectively. The horizontal walls are kept adiabatic.
magnetic field is perpendicular to the gravity vector, the The flow in the rectangular cavity is subject to a uniform
flow induced by the buoyant force crosses it. In that case, magnetic field of B . The orientation of magnetic field
in the momentum equation for the vertical velocity forms an angle  with horizontal axis. All four walls are
component an additional term for the electromagnetic electrically insulated boundaries and the fluid within the
force appears. Therefore, the boundary layer cavity is assumed to have constant properties except
approximation is applicable, so the equation is simplified insofar as the buoyancy is concerned, i.e. the Boussinesq
as in [3-4]. However, for the case when the direction of approximation of linear temperature dependence of
magnetic field is parallel to gravity vector, a term for the density  is  utilized.  It is worth mentioning that the fluid
electromagnetic force appear in the momentum equation in  the  enclosure  received  both  the electromagnetic
for horizontal velocity component and the buoyancy force force resulting from convection of fluid in an uniform
appear in the momentum equation for the vertical velocity magnetic field and resulting from heat transfer through
component. Therefore, the momentum equations for side walls.
velocity components must be solved as in [7]. When the By using Ohm’s law without Hall effect and
direction of the magnetic field is tilted in angle with the electrically insulated boundaries, the magnetic current
gravity vector, it interact with the velocity components density is 
that are parallel and perpendicular to the gravity vector
and a term for magnetic force appears in the momentum J =  (V × B) (1)
equations for both velocity components and buoyancy
force appear in the momentum equation for the vertical The electromagnetic force is:
velocity component. Therefore, the vertical momentum
equation will consist electromagnetic field and buoyancy F  = J × B (2)
term and horizontal momentum equation contains only
electromagnetic force term. The ensemble average of the fluctuation

The main scope of the present paper is to study the electromagnetic force in the momentum equation was
effect of orientation of magnetic field on thermal and neglected. The induced magnetic field is small compared
hydrodynamic behavior of a rectangular cavity. Two to the applied magnetic field, so B = B  and B = B i + B j
different working fluid with Prandtl number of 0.15 and Where the magnitude and orientation angle of magnetic
0.015 will be compared. The fluid flow is in laminar regime field with horizontal axis are
and it is assumed to be Newtonian. The governing
equations for heat transfer and flow will be solved using (3)
finite volume approach in a collocated grid. The current
research will evaluate the effect of Hartmann and Grashof The two-dimensional governing equation for an
numbers as well as orientation of magnetic field, on stream incompressible, Newtonian liquid in laminar regime and in
function and temperature contour as well as Nusselt steady state conditions is given by:
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Fig. 1: Schematic of computational domain and coordinate
system

Continuity equation:

(4)

X-Momentum equation:

(5) (12)

Y-Momentum equation:

(6) Energy:

Energy: (14)

(7) With following boundary conditions

Where u,v are velocity components in x, y directions,
respectively. p and T are pressure and temperature,
respectively. , g, k, C ,  and  re the density,p

acceleration due to gravity, thermal conductivity of liquid,
heat capacitance of the liquid in the cavity, thermal (15a-d)
expansion coefficient and electrical conductivity of fluid,
respectively. It is important to note that in thermal energy Where
equation the radiation heat transfer, joule heating,
pressure work and viscous dissipation are ignored. The
boundary conditions are:

(8a-d)

The local Nusselt number at the heated wall is
evaluated by the following expression in dimensional form
as:

(9)

By using the following dimensionless variables the
above equations and boundary conditions take the
following form:

(10)

Continuity equation:

(11)

X-Momentum equation:

Y-Momentum equation:

(13)

(16)

Finally the average Nusselt number on the hot wall
can be calculated using:

(17)
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Fig. 2: Computational grid

Numerical Solution and Validation: Equations (11)-(14)
with their associated boundary conditions were solved
numerically using a finite volume code based on
collocated grid on a structured grid. In order to correctly
capture the viscous layer, the grids near the solid walls
were refined. Figure 2 shows the grid configuration used
in the present simulation. Discretized equations were
derived by integrating the governing equations over each
control volume and then approximating the resulting
integrals using multidimensional linear reconstruction
approach [14]. The convective terms are calculated from
face values by means of QUICK [15] scheme and a
second-order centered scheme was used to calculated
diffusive terms in the governing equations. The resulting
scalar system of equations for dependent variable in each
cell was solved using a point implicit (Gauss-Seidel) linear
equation in conjunction with an algebraic multigrid
(AMG) method. The SIMPLE [16] (Semi-implicit method
for pressure-linked equations) algorithm was used to
accomplish the pressure- velocity coupling. The
convergence of code was declared when the residual of
each component of velocity vector, pressure and
temperature become 10 , 10  and 10 , respectively.7 5 11

(26 a-c)

Where N  and N  are number of grid in x and y directions,x y

respectively. The subscripts i, j refer to i  and j  grid-cellsth th

in the x and y directions, respectively. Index° refers to the
previous iteration. As second criterion for convergence
and to further ensure the accuracy of the computation,
the total heat transfer rate was examined through
comparing the total input and output heats from the hot
and cold walls.

Table 1: Girds independency study

Number of grids Nu max

Gr = 10 30×20 0.19.26 5.695

 = 0 40×30 0.21560 7.56

Ha = 80 50×40 0.24990 8.19

60×50 0.25150 8.30

Gr = 10 30×20 0.46980 121.367

 = 90 40×30 0.59870 155.36

Ha = 40 50×40 0.68490 162.94

60×50 0.69130 163.78

To obtain better accuracy in the simulations, four
quadrilateral grids with total sizes of 30×20 (coarse), 40×30
(medium), 50×40 (fine), 60×50 (very fine) were generated
by discretizing the computational domain, for the grid
sensitivity study. Table 1 shows the comparison between
the calculated Nusselt number of the hot wall and
maximum value of stream function in the computational
domain in each grid.

As seen the maximum deviations among third and
fourth grid were very small, hence the solution becomes
independent of grid size in third grid. Therefore, based on
aforementioned parameters for grid independency test,
the third configuration with total number of 50×40 cells
seemed to be adequate to accurately capture fluid flow
and heat transfer behaviors in the cavity and further
increasing the grids will have negligible effect on the
solution and results.

In order to check the accuracy and reliability of
numerical procedure, the results should validate with
previous data from literature. Therefore, we analyzed a
system composed of fluid in an enclosure with different
Ra numbers and Pr= 0.7. this system has been studied by
other research groups, including Davis [17], Markatos and
Pericleous [18] and Hadjisophocleous et al. [19]. Table 2
shows a comparison of calculated maximum velocity
components and average Nusselt number with the data in
the literature base of same dimensions and boundary
conditions. Comparison of the previous data and present
numerical  results indicate that the results of our numerical
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Table 2: Comparison of present numerical results with previous works in an enclosure for Pr=0.7 with different Rayleigh numbers
Present Davis [17] Hadjisophocleous et al. [19] Markatos and Pericleous [18]
Ra = 104

u 16.15 16.178 15.955 16.18max

y 0.819 0.823 0.814 0.832
19.64 19.617 18.894 19.44max

x 0.112 0.119 0.103 0.113
2.241 2.243 2.29 2.201
Ra = 105

u 36.729 34.73 37.144 35.73max

y 0.858 0.855 0.855 0.857
68.269 68.59 68.91 69.08max

x 0.063 0.066 0.061 0.067
4.513 4.519 4.964 4.430
Ra = 106

u 66.462 64.63 66.42 68.81max

y 0.86851 0.85 0.897 0.872
222.341 217.36 226.4 221.8max

x 0.03804 0.0379 0.0206 0.0375
8.756 8.799 10.39 8.754

code are in good agreement with available results in the
literature. The above code verification tests indicate that
the present numerical simulations are sufficiently valid for
this study.

RESULTS AND DISCUSSIONS

Finite Volume simulation is applied to perform the
analysis of laminar free convection heat transfer and fluid
flow in a rectangular cavity under the effect of magnetic
field. Effects of the parameters such as Grashof number
(Gr), Hartmann number (Ha), orientation of magnetic field
and Prandtl number of fluid (Pr) on heat transfer and fluid
flow inside the cavity have been studied. We have
presented the results in two sections. The first section
has focused on flow and temperature fields, which
contains streamlines and isotherms for the different cases.
Heat  transfer  including  average   Nusselt   number at
the  heated   wall   has   been   discussed   in  the
following section. The ranges of Gr, Ha and  for this
investigation vary from 10  to 10 , 0 to 80 and 0 to 90,5 7

respectively  while the prandtl number is kept fixed at
0.015 and 0.15.

A distinct advantage of numerical simulations is that
they  can  be  used  to provide a full and detailed picture
of the model flow. The influence of Grashof number Gr
(from Gr = 10  to Gr = 10 ) on streamlines as well as5 7

isotherms for the present configuration at Ha = 0, Pr =
0.015,  = 0 has been demonstrated in Fig. 3(a,b). The flow
with Gr = 10  has been affected by the buoyancy force,5

thus creating a vortex at the center of cavity. This region
decreases with increasing Grashof number as shown in Fig. 3a: Effect of Grashof number on streamlines inside
Fig. 3(a). For Gr = 1.4×10 , the size of the existing the cavity6
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Fig. 3b: Effect of Grashof number on temperature field orientation of magnetic field so that it covers almost the
inside the cavity whole cavity. Fig. 4(b) illustrates the temperature field in

recirculation region becomes smaller while two other compressed at the hot and cold walls of the cavity with
vortex are beginning to develop at the right and left of the decreasing . Furthermore, the high temperature region
cavity. The size of these vortexes increases with remains near the hot wall of the computational domain
increasing Gr number. increases and the isothermal lines are become more linear

Fig. 3(b) illustrates the temperature field in the flow and parallel to the vertical walls with increasing . It is
region. The high temperature region remains near the left obvious that with increasing  the Nusselt number on the
side  of  the computational domain and the isothermal hot wall decreases because the thermal boundary layer on
lines are nearly linear and parallel to the vertical walls for the wall increases.
Gr = 10 . These lines become more curved because of Fig. 5(a,b) show the effect of Hartmann number Ha5

growing Gr. The isothermal lines concentrate near the hot (from 0 to 80) on flow field at Gr = 10 , Pr = 0.015,  = 0. In
and cold walls for larger values of Gr. As seen with the absence of magnetic field, the streamlines consist of
increasing Grashof number the thickness of thermal two recirculation cells including one at the left side of
boundary layer on the hot and cold walls decreases. cavity and a secondary eddy at the right side of cavity.
Therefore,  local  heat  transfer  coefficient on the walls As seen, these vortexes loss their strength and finally are
increase with increasing Grashof number. disappeared  with  rising Ha while larger vortex produced

Fig. 4a: Effect of orientation of magnetic field on
streamlines inside the cavity 

The effect of orientation of magnetic field on the flow
field is depicted in Fig. 4(a) where Gr = 1.4×10 , Pr = 0.0156

and Ha = 40. The streamlines contain a rotating cell at 
= 0. The size of this vortex increases with increasing

the flow region. The thermal field becomes more

7
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Fig. 4b: Effect of orientation of magnetic field on Fig. 5b: Effect of Hartmann number on temperature field
temperature field inside the cavity inside the cavity 

Fig. 5a: Effect of Hartmann number on streamlines inside number, magnetic field and its orientation affects the heat
the cavity transfer rate along the heated surface, the average Nusselt

at the center of cavity. The corresponding temperature
field shows that the concentrated region near the walls
becomes more compressed and the isothermal lines are
more bend from the right top corner due to the elevating
Hartmann number. It means that the magnetic field
significantly affects the flow and thermal fields in the
cavity.

Fig. 6(a,b) show the effect of Prandtl number Pr on
flow field at Gr = 1.4×10 , Ha = 40,  = 0. As seen at both6

Prantdl numbers, the streamlines consist of a recirculation
cell at the center of cavity but with rising Pr, the vortex
become stronger and finally is covered the most of
computational domain. The corresponding temperature
field shows that the concentrated region near the walls
becomes more compressed and the isothermal lines at the
whole of domain except near vertical walls are become
more linear and parallel to horizontal walls due to the
elevating Prandtl number. It is clear that with increasing
Prandtl number the thermal boundary layer on the walls
decreases so the heat transfer coefficient on the walls
increase.

In order to evaluate how the presence of Prandtl
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Fig. 6a: Effect of Prandtl number on streamlines inside adiabatic condition. The governing equations along the
the cavity appropriate boundary conditions for the present problem

Fig. 6b: Effect of Prandtl number on temperature field L Length of cavity (m)
inside the cavity p Pressure (pa)

Table 3: Effect of , Pr, Gr, Ha on Nusselt number

Gr 10 1.3×10 1.4×10 105 5 6 7

H  = 40  = 0 0.256 0.2616 0.5464 1.224

Pr = 0.015  = 45 0.2508 0.25103 0.2943 1.0487

 = 90 0.25067 0.2507 0.2650 0.6913

 = 0 H  = 0 0.2713 0.2792 0.5992 1.4027

Pr = 0.015 H  = 40 0.256 0.2616 0.5464 1.224

H  = 80 0.2515 0.2523 0.3646 1.11062

 = 0 Pr = 0.015 0.256 0.2616 0.5464 1.224

H  = 40 Pr = 0.15 0.549 0.6533 2.6345 6.21144

number is plotted as a function of Grashof number as
shown in Table 3. It is observed that Nu rises with
increasing Grashof and Prandtl numbers and decreasing
Hartmann and orientation of magnetic field. The maximum
heat transfer rate is obtained for the lowest Ha and the
highest Gr, because the magnetic field tends to retard the
motion. It is worth mentioning that the influence of
mentioned parameters on Nusselt number is not very
sensitive at lower Grashof numbers.

CONCLUSIONS

In the present numerical investigation, we studied the
effect of magnetic field on natural convection flow in a
rectangular enclosure filled with an electrically conducting
fluid. The enclosure is differentially heated at two
opposite vertical walls while the horizontal walls are at

are first transformed into a non-dimensional form and the
resulting non linear system of partial differential equations
are then solved numerically using finite volume method.
the influence of Grashof number, Prantdl number of fluid,
Hartmann number and orientation of magnetic field on the
flow and heat transfer characteristic such as average
Nusselt number, streamlines and isotherms is performed.
It is observed that Nu rises with increasing Grashof and
Prandtl numbers and decreasing Hartmann and orientation
of magnetic field.

Nomenclature

C Heat capacity of fluid at constant pressurep

H Height of cavity (m)
k Thermal conductivity 

Non-dimensional pressure
Pr Prandtl number
T Temperature (K)
Nu Nusselt number
Gr Grashof number
Ha Hartmann number
B Magnetic field
g Acceleration due to gravity
u,v Velocity components in x and y directions (m/s)

Non-dimensional velocity components in x and y
directions

N , N Number of grid in x and y directionsx y
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x, y Cartesian coordinates(m) 7. Seki, M., H. Kawamura and K. Sanokawa, 1979.
Non-dimensional Cartesian coordinates Natural convection of mercury in a magnetic field

Greek Symbols 101: 227-232.

orientation angle of magnetic field with liquid NaK under transverse magnetic field, J.
non-dimensional temperature Nuclear Science and Technol., 17: 98-105.

µ dynamic viscosity 9. Takhar, H.S., 1982. Dissipation effects on MHD free
density convection flow past a semi-infinite vertical plate,

thermal expansion coefficient 10. Kim, K.M., 1982. Suppression of thermal convection
electrical conductivity of fluid by transverse magnetic field, J. the Electrochemical

Subscripts 11. Langlois, W.E. and K. Lee, 1983. Czochralski crystal

h hot heating, J. Crystal Growth, 62: 481-486.
c cold 12. Kerr, O.S. and A.A. Wheeler, 1989. The effect of a
° previous iteration weak vertical magnetic field on the buoyancy-driven
x in x direction boundary-layer flow past a vertical heated wall, J.
y in y direction Fluid Mechanics, 199: 217-236.
z in z direction 13. Okada, K. and H. Ozoe, 1992. Experimental heat

REFERENCES under an external magnetic field in either the X, Y or

1. Rudraiah,  N.,  R.M.  Barron,  M. Venkatachalappa 14. Barth, T.J. and D. Jesperson, 1989. The Design and
and C.K. Subbaraya, 1995. Effect of a magnetic field Application of Upwind Schemes on Unstructured
on free convection in a rectangular cavity, Int. J. Eng. Meshes, AIAA Paper No.89-0366.
Sci., 33: 1075-1084. 15. Leonard, B.P., 1995. Order of Accuracy of Quick and

2. Pirmohammadi, M. and G.A. Ghassemi Sheikhzadeh, Related Convection-Diffusion Schemes, Appl. Math.
2009. Effect of a magnetic field on buoyancy driven Model., 19: 640.
convection in differentially heated square cavity, 16. Vandoormall, J.P. and G.D. Raithby, 1984.
IEEE Trans. Magn, 45(1): 407-411. Enhancements of the Simple Method for Predicting

3. Sparrow, E.M. and R.D. Cess, 1961. The effect of a Incompressible Fluid Flow, Numerical Heat Transfer,
magnetic field on fre convection heat transfer, Int. J. 7: 147-163.
Heat and Mass Transfer, 3: 267-274. 17. Davis, G.D.V., 1983. Natural convection of air in a

4. Lykoudis, P.S., 1962. Natural convection of an square cavity: a benchmark solution, Int. J. Numer.
electrically conducting fluid in the presence of a Meth. Fluids, 3: 249-264.
magnetic field,   Int.  J.   Heat   and    Mass  Transfer, 18. Markatos, N.C. and K.A. Pericleous, 1984. Laminar
5: 23-34. and turbulent natural convection in an enclosed

5. Papailiou, D.D. and P.S. Lykoudis, 1968, cavity, Int. J. Heat Mass Transfer, 27: 755-772.
Magnetofluid-mechanic laminar natural convection- 19. Hadjisophocleous,   G.V.,    A.C.M.    Sousa  and
and  experiment,  Int.  J.  Heat   and  Mass Transfer, J.E.S. Venart, 1998. Predicting the transient natural
11: 1385-1391. convection in enclosures of arbitrary geometry using

6. Papailiou, D.D. and P.S. Lykoudis, 1968. a no orthogonal numerical model, Numer. Heat
Magnetofluid-mechanic free convection turbulent Transfer A, 13: 373-392.
flow, Int. J. Heat and Mass Transfer, 17: 1181-1189.

parallel  to  the  gravity,  ASME  J.  Heat Transfer,

8. Fumizawa, M., 1980. Natural convection experiment

Applied Scientific Research, 36: 163-171.

Society, 129: 427-429.

growth in an axial magnetic field: effects of joule

transfer rates of natural of molten gallium suppressed

Z direction, ASME J. Heat Transfer, 114: 107-114.


