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Abstract: Histone Deacetylase (HDAC) inhibitors are an exciting new class of drugs that are targeted as anti-
cancer agents. These compounds can induce growth arrest, apoptosis and/ or terminal differentiation in a
variety of solid and hematological neoplasms in patients with advanced disease. Accumulation of acetylated
histones in both normal and tumour cells can be used as a marker of biological activity. Hydroxamic acid based
compounds are among the most promising HDAC inhibitors as potential anti-cancer drugs. There is still much
to be understood about the family of HDACs, including the varying functions of different HDACs and the
range of HDAC substrates. The development of selective HDAC inhibitors might be important in defining their
biological role and potential as therapeutic agents. Clinically, the optimal dose, timing and duration of therapy,
as well as the most appropriate agents to combine with HDAC inhibitors, are still to be defined.
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INTRODUCTION acetylation. Aberrant acetylation has been linked to

Nucleosomes the fundamental unit of chromatin suggesting that both HATs and HDACs play an
structure, provides the first order and, at least in part, the important role in carcinogenesis.
higher-order packaging and compaction of the DNA Histone deacetylase inhibitors are small molecules
about 10,000 fold. The nucleosome core particle consists and restore the acetylation to normal level, induce cell
of a highly conserved basic proteins, histone around cycle arrest, differentiation and apoptosis, suggesting
which 146 bp of DNA are wrapped. Over the past decade, their promising anticancer activity. Results  of  clinical
extensive genetic, biochemical and cytological studies trials  with several of these agents have indicated that
have revealed that in addition to their structural role, the they are well tolerated at dose that have anti-tumor
histones proteins are  also  involved  in  regulation of activity [2. Apart from this, HDAC inhibitors are also
gene  expression.  As  the  maintenance  of  health investigated in other diseases such as polyglutamine
depends on the coordinated and tightly regulated disease [3], Huntington disease [4] and have shown
expression of genetic information, this becomes a very promising result.
important function of histones [1]. Post-translational Histone deacetylase (HDAC) inhibitors have been
modifications of histone tails, such as acetylation, shown to be potent inducers of growth arrest,
phosphorylation and methylation has emerged as differentiation and/or apoptotic cell death of transformed
common denominators in regulating several biological cells in vitro and in vivo.
functions. Histones are part of the core proteins of

Acetylation is probably the best understood of these nucleosomes. Acetylation and deacetylation of these
modification reactions. The enzymes involved in this proteins play a role in the regulation of gene expression
process are Histone acetyl transferases (HATs) and [5]. There are two classes of enzymes involved in
Histone deacetylases (HDACs). Thus HAT and HDAC determining the state of acetylation of histones, histone
activity control the level of acetylation and in turn, can acetyl transferases (HATs) and histone deacetylases
regulate the gene expression and its biological functions. (HDACs). There are several reports [6-9] that altered HAT
Any alterations in the enzyme activity leads to aberrant or HDAC activity is associated with cancers.

cellular transformation and in development of cancer
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A histone is a basic protein that can be found in the Histone Deacetylase Transferases (HDACs): Histone
nucleus of a eukaryotic cell. This protein is found as a deacetylases are involved in the reversible acetylation of
complex with DNA and it is specifically found in histone and nonhistone proteins (p53, tubulin and various
chromatin and chromosomes and may function as a transcription factor). Mammalian HDACs have been
repressor of gene transcription. Because histones are ordered in to three classes based upon their similarity to
involved in transcription, one of the first steps in cell known yeast factors.
division and cancer is caused, generally by uncontrollable
cell replication, they are prime targets for cancer research. Class I HDACs: It includes HDACs 1, 2, & 13 and are
A histone can be in one of two forms: acetylated, or more similar to the transcriptional repressor yRpd3p and
deacetylated. share homology in their catalytic sites.

Histone acetyltransferase causes the acetylation of
histones, while histone deacetylase reverses this process. Class II HDACs: It includes HDACs 3, 4, 11, 12, 14 & 16
Deacetylation, in this case, involves the removal, through and are more similar to yHDA1p. HDACs 3, 4, 12 and 14
hydrolysis, of an acetyl group from the -amino group of share homology in two regions: the C-terminal regulatory
the histone’s lysine side chains. This process restores a domain and N-terminal regulatory domain. HDACs 13 and
positive charge to the lysine side chains [12], keeping the 17 have two regions homology with the class II catalytic
structure of the histone intact. When HDAC is inhibited, site.
the counter-enzyme HAT becomes in excess and
hyperacetylation occurs. The charge on the lysine tails Class III HDACs: The third class of HDACs is the
then becomes neutralized, disrupting the histone structure conserved nicotinamide adenine dinucleotide dependent
and allowing its DNA to unfold. The unfolded state of the Sir2 family of deacetylases and include SIRT-1 to SIRT-7
histone then permits transcription factors to reach deacetylases. This class shows the homology with the
previously hidden genetic information and the gene yeast transcriptional repressor by Sir2 and no homology
expression of the histone is changed [10]. to class I & II HDACs.

Acetylation-deacetylation: Acetylation of specific lysine (TSA), suberoylanilide hydroxamic acid (SAHA) and
residues in the amino termini of the core histones plays a related compounds; class III HDACs are not inhibited by
fundamental role in transcriptional regulation. All core these compounds. Sel 
histone proteins are reversibly and dynamically acetylated
at multiple sites in their N-terminal tails (Lysine 14, 19, 22 Class II HDAC 7 is a regulator of T-cell differentiation
and 27 in H3; and 4, 13, 17 and 21 in H4)). Hyperacetylated in the thymus
histones are generally found in transcriptionally active Class II HDACs regulate skeletal muscle
genes and hypoacetylated histones in transcriptionally differentiation and neural development.
silent regions, such as heterochromatin. The level of Class I is critically involved in regulation of p53 [2].
histone acetylation at a particular locus in chromatin
reflects the competing activities of histone Compounds that are shown to inhibit HDACs activity
acetyltransferases and histone deacetylases [11]. fall into six structurally diverse classes. Butyrate was the

Histone Acetyl Transferases (HATs): Histone acetyl compound phenylbutyrate has been successfully
transferases catalyze the transfer of acetyl groups from employed in experimental cancer therapy. However,
acetyl co-enzyme-A (Acetyl Co A) onto histone acceptors butyrates are far less potent than other HDAC inhibitors
(i.e. the e-amino groups of conserved lysine residues and only at mili molar concentrations do they inhibit
within the core histones).There are two types of the HDACs in vivo by a nonspecific noncompetitive
HATs: cytoplasmic B-type HATs likely catalyze mechanism that is not fully understood. Other HDAC
acetylation events linked to the transport of newly inhibitors are more specific and are active at much lower
synthesized histones from the cytoplasm to the nucleus concentrations. Trapoxin and depudecin irreversibly bind
for deposition onto newly replicated DNA. Conversely to and inactivate HDAC enzymes and Hydroxamic acids
nuclear A-type HATs likely catalyze transcription-related such as TSA and SAHA and other HDAC inhibitors
acetylation events [14]. reversibly inhibit HDAC enzymes [1].

Class I and II HDACs are inhibited by trichostatin A

first HDAC inhibitor to be identified and the related
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Identification of HDAC Inhibitors: The HDAC inhibitors
that are currently in clinical trials were not discovered
based on their ability to inhibit HDAC activity, rather they
were identified based on their ability to change the
behavior of transformed cells in culture. For example,
depsipeptide is a fermentation product isolated from
Chromobacterium violaceum that was identified during
a screening project for agents that reverse the malignant
phenotype of H-ras-transformed NIH 3T3 cells [22-29].

Classification of HDAC Inhibitors: On the basis of
mechanism of inhibition [1];

Reversible inhibitors e.g. TSA, SAHA
Irreversible inhibitors e.g. Trapoxin, Depudecin

On the basis of chemical structure [22];
Hydroxamates e.g. TSA, SAHA, Oxamflatin, LAQ-
824
Cyclic tetrapeptide e.g. Depsipeptide, Apicidine
Aliphatic acid e.g. Valproic acid
Benzamide e.g. MS- 27-275
Electrophilic ketones e.g. Trifluromethyl ketone
Miscellaneous e.g.Depudecin.

Butyric Acid

MS-27-275
SUBEROYLANILIDE HYDROXAMIC ACID (SAHA)
Trichostatin A 

Oxamflamtin

Apicidin

Depsipeptide

Trapoxin

The essential characteristics of hydroxamic acid-
based HPCs are a polar site, the hydroxamic group, a six-
carbon hydrophobic methylene spacer, a second polar
site and a terminal hydrophobic group. Substitution of the
hydroxamic acid with a carboxylic acid or amide oxime
group results in inactive compounds. Modification of the
hydroxamic acid, such as introduction of a methyl group
on an adjacent carbon or N-methylation, results in
inactive compounds. The benzene ring in the
hydrophobic moiety can be modified in the meta and para
positions without loss of activity; however, in general,
larger substituents are associated with loss of activity.
The optimal methylene spacer is six methylenes, five- and
seven-carbons spacers being less active.

SBHA

SAHA
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CBHA butyrate half life and difficulties in achieving mili molar

Pyroxamide Recently, a well - tolerated antiepileptic drug, valproic

Hydraxamates and metastasis formation in animal studies [46].

HDAC inhibitors can induce growth arrest, more potent in a molar basis than HMBA (hexamethyl
differentiation and/or apoptotic cell death in a wide enebisacetamide), a first generation hybrid polar
variety of cultured transformed cells, including compound,inducing maturation in murine erythroleukemia
neuroblastoma, melanoma and leukemia cells, as well as cells (MEL) [50]. In malignant human hematopoietic cells,
cells from breast, prostate, lung, ovary and colon cancers SAHA related maturation was relatively limited, although
[30-38]. accompanied by marked cytoxicity. In studies involving

Short chain fatty acids (eg.sodium butyrate, growth and ultimately induced apoptosis [51].
phenylbutyrate; valproic acids; ) Recently, a trapoxin analog has been synthesized in
Hydrosyaminic acids (SAHA, pyrocamide, TSA, which the epoxyketone group was replaced by a
oxamflatin and CHAPAs); hydroxamic acid. The hybrid compound, designated cyclic
Synthesis benzamides derivatives (eg.MS-275 AND hydroxamic acid -containing peptide 1(CHAP1), is a
CL 994) reversible inhibitor of HDACs at low nanomolar
Cyclic tetrapeptides (such as depsipeptide, trapoxin, concentrations [52]. A series of CHAP derivatives have
apicidin.) [39-40]. been obtained and assayed for structure activity. Among

Short Chain Fatty Acids: Compounds of this class, including increased stability relative  to  established
particularly sodium butyrate have been the subject of HDAC inhibitors like TSA and impressive antitumor
interest. Sodium butyrate is a non toxic short chain fatty activity in nude mice bearing various tumor cell types [53].
acid found naturally in the gastrointestinal tract and Another novel hybrid polar compounds that has recently
appears to be responsible for the protective effects been described is pyroxamide.At micromolar
associated with high fiber diets [41]. It is well  known  that concentrations, pyroxamide induced terminal
butyrate, at concentrations similar to those encountered differentiation in murine erythroleukemia (MEL) cells and
within the colonic lumen causes growth inhibition caused growth inhibition by cell cycle arrest and/or
differentiation and apoptosis in a variety of colon-cancer apoptosis in MEL, prostate carcinoma bladder carcinoma
cell lines [42]. Moreover in a rat model of colon and neruoblastoma cells [54].

carcinogenesis interracial administration of butyrate was
effective in reducing the incidence of cancers.In human
leukemia cells, butyrate is also a parent inducer of growth
arrest and differentiation [43]. However, the short sodium

plasma concentrations mimicking those shown to be
active in vitro studies have limited its use. To overcome
these difficulties, other derivatives have been
investigated. For example, arrest and differentiation in
primary leukemia cell in vitro [44, 45].

acid, has also been shown to posses HDAC inhibitor
activity in vitro and to induce differentiation of carcinoma
cells, transformed hematopoitic progenitor cells and
leukemia  blasts from  acute  myeloid  leukemia  patients.
In addition, it was also effective in reducing tumor growth

Hydroxyamic Acid Derivatives: SAHA (suberoylanidile
hydroxamic acid) is a second -generation polar planar
compounds that induces growth arrest, differentiation and
/ of apoptosis that is currently undergoing Phase I clinical
evaluation in both hematologic and non hematologic
malignancies [47-49]. SAHA is approximately 1000-fold

human breast cancer cells SAHA inhibited clonogenic

them, CHAP31 displayed several promising characteristic
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Synthetic Benzamide Derivatives: This class of Histone deacetylase (HDAC) inhiibitors are currently
compound consists of a structurally diverse group of being tested in clinical trials as anti cancer agents [2]
agents that contain a benzamide moiety. This group is HDAC inhibitors represent a new approach for anticancer
postulated to enter the catalytic site and bind the active drugs and are an exciting prospect for the tretmeant of
zinc [39]. Two compounds have been described as cancer [79].
members of this group, MS-275and CI-994. MS-275 is a The link between altered HDAC activity and
novel agent with HDAC-inhibitory activity that is tumorigenesis is probably best demonstrated in acute
structurally dissimilar from other HDAC-inhibitors [55, 56]. promyelotic leukemia (APL) the retinoic acid receptors
As in the   case   of  other  compounds  of  this  class, (RAR) transcription factors RAR and its
MS-275-associated      HDAC-inhibitory        activity     is heterodimerization partner RXR bind to retinoic acid
accompanied  by  an  increase  in  expression  of  the response element(RARES) and in the absence of retinoid,
CDKI p21  and accumulation of cell in GI-phase [56]. repress transcription through a complex involvingCIPI/WAFI

MS-275 displays antiproliferative activity toward several sin3/HDAC, NCOR and SMRT. Addition of retinoic acid
human cancer cell lines including breast, colorectal, enables HATs (such as TIF2 and CBP) to replace the
leukemia, lung, ovary and pancreas [56].The second HDACs, thereby activating transcription. This step is
compound with a benzamide structure is CI-994. CI-994 is important for myeloid cell development [79, 80].
an investigation anticancer drug with a board spectrum of Histone deacetylase inhibitors are emerging as an
activity in marine and human tumor xenografts, although exciting new class of potential anticancer agents for the
it’s specific mechanism of action remains unknown [57]. treatment of solid and malignancies. Several HDAC

Cyclic Tetrapeptides: Depsipeptides (FK228, FK901228) in vivo with remarkably littly toxicity in preclinical studies
is a novel HDAC inhibitor isolated from chromobacterium and are currently in phase1 clinical trial [39].
violaceum that possesses potent antitumor activity It has been show that the level of histone acetylation
against human cancer cell lines and inhibits the growth of directly correlates to a wide variety of biological activity.
tumor generated in mice [58]. In human leukemia cells Specifically, inhibition of HADC can causes over
(U937), depsipeptide was a strong inhibitor of cell growth expression of variety of genes [64]. HDACs are typically
with IC50 at nanomolar concentrations [59] and proved over expressed in tumor cell, thus inhibition of HDACs
very active in inducing apoptosis in cells from patients can be a selective mean for inducing differentiation of
with chronic lymphocitic leukemia [60]. tumor cells, converting them form a malignant to abnormal

Apicidin is another novel cyclic tetrapepide phenotype. This makes inhibition of HDAC a promising
compound whose structure is related to that of trapoxin. approach for the treatmeant of various cancers [80].
It has a potent broad spectrum of antiprotozoal activity Phase I and Phase II clinical trials with HDAC
against aplcomplexan parasites, which appear to involve inhibitors either as monotherapy or in combination with
HDAC inhibitor [61]. Apicidin displayed marked cytotoxic and differentiation agents are ongoing.
antiproliferative effects in a wide variety of human cancer
cell lines including breast osteosarcoma, stomach and v- HDAC Inhibitors Currently in Clinical Trials [64]:
ras-transformed NIH3T3 cells [62].

These are the agent or drugs which prevents
excessive growth of tumor cells. Next to heart disease,
cancer is the major killed of mankind. The majority of
antineoplastic drugs appear to act by affecting either
enzyme of substrates acted upon by enzyme system [62].

They may be classed into six major groups [63]:
Aklylating agents; 
Antimetabolites;
Natural products;
Hormones and antagonists;
Radioactive isotopes;
Misscellaneous agents.

inhibitors  have   shown   impressive   antitumor  activity

Molecule Clinical trial status SAHA Phase II
PXD101 Phase I
LAQ-824  Phase I
CI-994  Phase I
Valproic acid  Phase I
MS-275  Phase II
Butyrate  Phase I/II
Depsipeptide  Phase II
Pyroxamide  Phase I

Suberoylanilide Hydroxamic ACID: Suberoylanilide
hydroxamic acid (SAHA) is a hydroxamate-containing
small-molecule HDAC inhibitor that directly interacts with
the hydrophobic catalytic site of HDACs [22]. SAHA has
reached  Phase  II  clinical  trials  for  the treatment of both
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solid tumors and hematological malignancy. in vitro and use of fluoropyrimidines such as  5-fluorouracil-(5-FU)
in vivo studies demonstrated the potential for synergy [64, 65]. Studies performed  with  several  colon  cancer
using combinations of HDAC inhibitors with several cell lines showed that exposures to phenyl butyrate
mechanistically different antitumor agents. markedly reduced the recovery of 5-FU-pertreated cells

In breast cancer cells, SAHA induces growth [66, 67]. 
inhibition, cell cycle arrest and apoptosis by regulating
genes such as p21, p27 Rb and gelsolin, contrasting with HDAC Inhibitor and Differentiation-inducing Agents
the  growth arrest  seen  in  prostate  cells  in  vitro  and [Retinoic Acid (RA); Phorbol Myristate Acetate (PMA)]:
in vivo [64]. The concept of combining HDAC inhibitors with retinoids

PXD101: PXD101 is a highly potent HDAC inhibitor that consideration:both groups of compounds are potent
blocks proliferation of diverse tumor cell lines at low differentiation inducing agents; and retinoids exert their
macromolecular potency (IC 50 0.08-2.43ìM) and HDAC effects via a nuclear receptor complex that interacts with
enzyme activity (IC50 9-110 nM). In xenograft models, the promoters of RA-responsive genes.
PXD101 slows tumor growth in a dose-dependent manner Furthermore, an HDAC subunit is an integral part of
and is particular active in leukemic mouse models. As with this corepressor complex, which is involved in
other HDAC inhibitors PXD101 causes cell cycle arrest transcriptional silencing in the absence of the ligand [68].
and apoptosis in rapidly proliferating cells and could have The use of RA as an inducer of growth arrest and/or
widespread applications in diseases other than cancer differentiation in neuroblastoma has been extensively
that are marked by aberrant proliferation [63]. studied and has potentially important clinical implications

LAQ-824: The clinical candidate LAQ-824 is a neuroblastoma cell number could be significantly
hydroxamate-based HDAC inhibitor. in vitro, LAQ-824 enhanced by coexposure to the HDAC inhibitor CBHA
inhibits HDAC enzyme activity (IC 10 nM), inhibits tumor [48]. In general, relatively low doses of both drug
cell growth at submicromolar csssoncentrations and achieved considerably more dramatic results than either
induces apoptosis. In vivo, the molecule possesses agent alone. The effects of the drugs combination
antitumor activity in several xenograft models, including involved induction of apoptosis and G1 growth arrest.
breast (MDA-MA-435), colon (HCT116) and lung (A549). The combination CHBA-RA was also effective in vivo, in
LAQ- 824 is in phase l trial for solid tumors [63]. suppressing the growth of tumor xenotgrafts in a dose

Depsipeptide (FR-901228): This natural HDAC inhibitor Other HDAC inhibitors tested in combination with
is currently progressing through Phase II clinical trials for RAs include phenylbutyrate, sodium butyrate, TSA and
coetaneous T cell lymphoma. It is a natural product depsipeptide.
purified from Chromobacterium violceum that undergoes
intracellular reduction to generate an active HDAC HDAC Inhibitors and Demethylating Agents:
inhibitor. Initial toxicity (cardiac and inflammatory Reexpression Strategies: A growing number of tumor-
responses) has been overcome by using intermittent suppressor and other cancer-related genes have been
dosing schedules as opposed to daily dosing, allowing shown to be silenced by aberrant methylation of CpG
higher drug administration with reduced side effects. As islands in their respective promoter region [71, 72].
with other HDAC inhibitors, this cycle peptide is a pro- Numerous studies have shown that several pyrimidine
apoptotic, anti-proliferative and  ant-angiogenic.  Despite nucleoside analogs including 5-aza-2’-deoxycytidine and
bearing an anti-tumor activity and results from clinical 5-azacytidine, by inhibiting DNA methayltransferases
trials against T cell lymphoma have demonstrated (DMTs), can induce DNA demethylation and thereby
encouraging activity [63]. reverse the silencing of tumor suppressor genes [73, 74].

HDAC Inhibitors and Conventional  Cytotoxic  Drugs: synergistically enhance 5-aza-dC apoptotic effects in
The use of HDAC inhibitors in combination with human long cancer cells [75].
established cytotoxic agent has shown potentially
promising results in human colon cancer cells. The HDAC Inhibitors and Cell Cyclic Modulators
treatment of advanced colorectal cancer has resisted most (Flavopiridol): As noted previously, HDAC-inhibitors
therapeutic efforts and continues  to  rely  heavily  on  the induce  the  expression  of  the  CDK  inhibitor  p21 ,

such as all transretinoic acid (ATRA) is based on dual

[69]. Recent studies indicate that RA-induced decrease in

dependent manner [70]. 

Both depsipeptide and TSA have also been shown to

WAFI/CIPI
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Which leads in turn to growth arrest in the G1 phase of CONCLUSIONS
the cell cycle and ultimately cellular differentiation [44, 76].
Works from various laboratories have focused on the
factors that determine whether HDAC-inhibitors such as
SB and SAHA induce apoptosis versus differentiation in
leukemia cells with a particular emphasis on p21 WAFI/CIPI

[43, 50, 75]. These studies demonstrated a functional role
for p21 WAFI/CIPI in promoting differentiation and
preventing apoptosis induced by sodium butyrate in
human leukemic cells [43]. Similar result was observed in
cells exposed to SAHA [50].

HADC Inhibitors and Other Signal Transduction Cell
Survival Modulators: Two novel classes of compound
have recently been examined in combination with HDAC
inhibitors:

Activation of the extrinsic, receptor mediated
apoptotic pathway including TRAIL and TNF ; and
Signal transduction modulators, such as STI571.

Recent studies have characterized interactions
between HDAC inhibitors and TRAIL (Tumor necrosis
factor -related apoptosis including ligand) in human colon
cancer cell lines [76, 77]. TRAIL unlike FAS-L, appears to
induce apoptosis in tumor cell preferentially versus
normal cells [78]. Sodium butyrate sensitized colon cancer
cells to TRAIL by decreasing FLIP (Flice-like inhibitory
protein) protein expression while significantly increasing
cell death in all cell lines analyzed [76, 77]. Similar effects
were observed with other TNF family members, such as
TNF and anti-FAs antibody and the HDAC inhibitor
TSA [77].

HDAC inhibitors are an exciting new class of drugs
that are targeted as anti-cancer agents. These compounds
can induce growth arrest, apoptosis and/ or terminal
differentiation in a variety of solid and hematological
neoplasms in patients with advanced disease.
Accumulation of acetylated histones in both normal and
tumor cells can be used as a marker of biological activity.
Hydroxamic acid based compounds are among the most
promising HDAC inhibitors as potential anti-cancer drugs.
The members of different classes of HDACs are shown to
involve in a particular function or in a specific tissue.
Thus, the development of the inhibitors for a particular
HDAC will help in treatment of the condition involving
these functions or the tissue. Currently many efforts are
being made to expand our knowledge of the HDACs and
to develop potent and stable HDAC inhibitors [17].

HDAC inhibitors are an exciting new class of drugs
that are targeted as anti-cancer agents. These compounds
can induce growth arrest, apoptosis and/ or terminal
differentiation in a variety of solid and hematological
neoplasms in patients with advanced disease.
Accumulation of acetylated histones in both normal and
tumour cells can be used as a marker of biological activity.
Hydroxamic acid based compounds are among the most
promising HDAC inhibitors as potential anti-cancer drugs.
There is still much to be understood about the family of
HDACs, including the varying functions of different
HDACs and the range of HDAC substrates. The
development of selective HDAC inhibitors might be
important in defining their biological role and potential as
therapeutic agents. Clinically, the optimal dose, timing and
duration of therapy, as well as the most appropriate
agents to combine with HDAC inhibitors, are still to be
defined. The search for more potent HDAC inhibitors will
continue.

The members of different classes of HDACs are
shown to involve in a particular function or in a specific
tissue. Thus, the development of the inhibitors for a
particular HDAC will help in treatment of the condition
involving these functions or the tissue. Currently many
efforts are being made to expand our knowledge of the
HDACs and to develop potent and stable HDAC
inhibitors. In the future, this might give rise to the tailored
use of HDAC-specific inhibitors in order to dissect the
complex functions of HDACs in a cell-type specific
manner.
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