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Abstract: Acetyl cholinesterase (AchE) and N-methyl-D-aspartate antagonists are at present the only
commercially available treatment for Alzheimer's disease (AD). Histamine H3 receptor antagonists are used for
the treatment of several neurodegenerative disorders such as Epilepsy, Alzheimer‘s and Parkinson‘s diseases.
Both H3 and AchE inhibitors alleviate the symptoms of Alzheimer’s disease by enhancing the acetylcholine
levels in the brain but the mechanism of action involved in both the cases is different. Here, it is proposed that
histamine H3 antagonist with AchE inhibitor activity can be used as a novel class of drugs to treat Alzheimer‘s
disease with lesser adverse peripheral effects than excessive AchE inhibitor alone. Thus the main objective of
this work is to design multifunctional inhibitors for reduction of the side effects of the already available drugs.
This study is divided into two parts. In the first part, homology modeled structure of histamine H3 active site
and available crystal structure of AchE was used to collect the information for identification of pharmacophore.
The important descriptors were identified based on comparative 2D-QSAR and 3D-QSAR study of 28 drug-like
compounds for histamine H3 receptors collected from the literature. In the second part, five hybrid molecules
were generated based on the pharmacophore of histamine H3 receptor and known pharmacophore of AchE
inhibitors. All five hybrid molecules were screened through ADME/Tox filters. The hybrid molecule was
validated through GOLD docking score in both AchE and histamine H3 receptors. The best hybrid compound
was then evaluated by molecular dynamics (MD) simulation in water solvent model using 3D model of human
histamine H3 receptor (build based on bovine rhodopsin structure). 
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INTRODUCTION which symptoms become worse as AD can’t be cured [3].

The neurodegenerative dementias are progressive the acetylcholinesterase (AchE) inhibitors, which promote
and irreversible due to deterioration of brain cells and memory function and delay the cognitive decline without
their interconnections. Alzheimer's disease (AD) is the altering the underlying pathology [4]. However, their
most common form of progressive and irreversible efficacy is limited and they are associated with unpleasant
neurodegenerative dementia [1]. It is characterized by side effects. 
cognitive deterioration of neurons and synapses in the Histamine receptors are G-protein coupled receptor
cerebral cortex and certain subcortical regions [2]. AD and can be broadly classified into 4 subtypes as H1, H2,
affects the memory, thinking and behavioral skills as well H3 and H4 [5]. H3 receptors are widely expressed in the
as causes problems with language, decision-making mammalian brain especially in the areas involved in
ability, judgment and personality. It is caused due to cognitive processes and arousal such as the cerebral
genetic or environmental factors but the exact cause is cortex, hippocampus, basal ganglia  and hypothalamus
still unknown. The goal in treating AD is to decrease the [6].  Selective  antagonists  of  histamine  H3  receptors
progression of the disease and manage the behavior can increase the release of neurotransmitters like
problems, confusion, sleeplessness and agitation. Acetylcholineestrase (AchE) involved in cognitive
Therapeutic treatment is aimed at slowing the rate at processes in vivo and may have implications for the

The most frequently prescribed anti-Alzheimer’s drugs are
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treatment of degenerative disorders associated with Molecular Redocking Studies H3 and Ache Receptors
impaired cholinergic function [6, 7]. AchE inhibitors with Known Active Molecules
increase the synaptic levels of acetylcholine by Preparation of Ligands and Protein: Since ligands are not
preventing release of AchE into the synaptic cleft, thus peptides, Gasteiger charges were assigned to the ligands
promoting cholinergic neurotransmission whereas and then non-polar hydrogen atoms were merged. Tacrin
histamine H3 receptor antagonists via a discrete was used as histamine H3 receptor inhibitor and
mechanism increase the neurotransmitter release from the Rivastigmine was used as AchE inhibitor for docking
synaptic vesicle [8]. Histamine H3 receptor antagonists studies. The rigid roots were defined automatically for
increase cholinergic neurotransmission and AchE each compound and the amide bonds were made non-
inhibitors enhance the half life of AchE in the synapse rotatable. The homology model structure was used for
thus increasing the probability of interaction with docking study and Kollman charges were added to each
receptors on postsynaptic cell to elicit a biological atom of the modeled protein. 
response [9]. A molecule that combines the properties of
AchE inhibitor and histamine H3 receptor antagonist Grid Generation for H3 Receptor: The Grid box was
would  enhance the levels of chemical signaling than centered on the Asp 114 of the human histamine H3
either an AchE inhibitor or a histamine H3 receptor receptor.  The   binding   site  includes  the  catalytic
antagonist alone. A combination molecule will require center  (Asp 114 and Glu 206) and several subsites as
lower dosage and have a higher potency for increasing (Ser-79,  Lec-82,  Val-83, Gly-84, Phe-86, Cys-87, Ile-88,
acetylcholine  levels  thus improving the side effect Pro-89, Leu-90,   Tyr-91,   Trp-100,   Leu-106,  Cys-107,
profile. Lys-108,  Leu-109, Val-112, Val-113, Asp-114, Tyr-115,

This study describes the molecular modeling efforts Leu-116, Leu-117, Cys-118, Thr-119, Ser-120, Trp-60,
that lead to the identification of an AchE inhibitor- Trp160,  Tyr-167,  Gly-168,  Ile-171,   Glu-175,  Phe-192,
histamine H3 receptor antagonist. The use of available Phe-198,  Glu-206, Trp-371, Tyr-374, Met-378, Tyr-394,
crystal structure information of AchE receptor, homology Phe-398, Leu-401, Ser-405). The spacing between the Grid
model structure of H3 receptor based on bacterial points was 0.375 angstroms. 
rhodopsin crystal structure, pharmacophore modeling,
QSAR, rigid docking and molecular dynamic simulation Grid Generation for AchE Inhibitor: The Grid box was
lead to this discovery. centered on the Ser 199, His 439 and Glu 326 of the AchE.

MATERIALS AND METHODS Trp84, Gly118, Tyr 121, Tyr130, Glu199, Ser200, Trp279,

Methodology: Sequence alignment and homology and His440). The spacing between the Grid points was
modeling: The transmembrane portion of the histamine H3 0.375 angstroms. 
receptor was built by homology modeling techniques
using 2.8 angstrom resolution  crystal  structure of Qsar Study of Histamine H3 Receptor 
Bovine Rhodopsin (PDB 1HZX) as template structure [13]. Dataset: Dataset of 28 non-peptide inhibitor molecules
The primary sequence of the histamine H3 receptor was described by [15], were considered in this study (Fig. 4).
aligned with Bovine Rhodopsin based upon highly All the molecules studied had the same parent skeleton.
conserved amino acid residues in the seven helices, using
the CLUSTALW program (http://www2.ebi.ac. uk/ 2D QSAR Study 
CLUSTALW) [14]. The initial sequence-structure Generation of Molecular Descriptors: PRODRG software
alignment  was based on multiple sequence alignments. was used to build and perform energy minimization on the
All homology models were  constructed  with  the 28 selected inhibitors and the output files were saved in
SWISS-MODEL   server    (http://expasy.org/swissmod) mol2 format [16]. The inhibitors were divided into Test set
[9-11] and amino acid side chain conformations were and Training set in 1:4 ratio such that the Test set had
added using program SCWRL3.0. [12]. The stereo maximum and minimum IC  value that falls within the IC
chemical qualities of the model were checked with values of Training set. The output files were loaded into
(http://nihserver.mbi.ucla.edu/SAVS/). Finally, the ‘VlifeMDS QSAR’ module (VLifeMDS: Molecular Design
structural properties of the target protein were validated Suite, 2010) for evaluation of several molecular descriptors
by using the Ramachandran plot score. and to build a QSAR equation, which can further be used

The binding site includes several sub sites as (Tyr70,

Leu282, Ile287, Phe288, Phe290, Glu327, Phe331, Tyr334
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to predict the activity of test/new molecules geometry [22]. It provides information about covalent
(www.vlifesciences.com). This module can calculate all geometry, Planarity, Dihedral angles, Chirality and Non-
the physiochemical descriptors such as Individual, Chi, bonded interactions. The Ramchandran plot of the protein
Chiv, Path count, Chi Chain, Chiv chain, chain path count, model (Fig. 2) was generated by PROCHEK. 
Cluster, Path cluster, Kappa, Element count, Estate
numbers, Estate contributions, Information theory index. Redocking Study: All the 28 molecules were docked with
Deselect Dipole Moment, Electro Static, Distance Based the homology modeled structure of histamine H3 receptor
Topological Indices, Semi Empirical and Hydrophobicity using Autodock4 software [23]. The docking results were
base logP descriptors (as these are 3D descriptors). ranked according to the decreasing docking energies of

3D QSAR Study that molecules with lowest docking energies interacted
k-Nearest Neighbor QSAR: In k-nearest neighbor quite well with the receptor in the pocket. The molecules
algorithm for classifying a new pattern (molecule), the 11, 18, 23, 25 and 26 had scores less than -8.00 kcal/mol
system finds the ‘k’ number of nearest neighbors among (Table 1). The AchE receptor‘s PDB structure 1EVE and
the  training  set and uses the different categories of the 1GQR were considered for docking studies with
k-nearest neighbors to weight the category candidates Rivastigmine as ligand molecule [24-25]. Rivastigmine
[17]. The nearness is measured by an appropriate distance interacted better with the receptor binding pocket of PDB
metric (e.g. a molecular similarity measure, calculated structure 1EVE (Fig. 3) with a docking score  -11.30
using descriptors of molecular structures). kcal/mol (Table 2) and hence 1EVE was used for further

Molecular Synamic Simulation Study: MD simulations
were performed using the GROMACS molecular dynamics Residue Interacting with the Ache Receptor: The 28
program [18] version 3.3.1 with the OPLS-AA force field molecules used divided into two parts; one is Test set and
[19-20]. Berendsen thermostat was used for maintaining other being Training set. Different 2D QSAR methods
the temperature. The pressure was maintained to a were used such as SW, GA, MR using the Training set
reference pressure of 1 bar with a coupling time of 1 ps. and Test set. 2D QSAR showed different q  values which
Interactions within the larger cut-off were updated every ranged from 0.4986 and 0.8222, with different q  values for
10 steps. The time step used was 2 fs. The simulations different descriptors. To make a common set out of the
lasted for 1 ns and  were  carried  out  at  temperature  of entire 20 different descriptors, a QSAR model was built
310°K. The potential energy  and   root   mean   square using the neural network. The q  value thus generated
distance (RMSD) values were plotted versus the was more than 0.89 (i.e. around 90% in prediction of IC50
simulation time to judge whether the simulations had value).
reached a level of equilibrium. 

RESULTS AND DISCUSSION Training set size=23, Test set size=5 selected descriptors-

Sequence Alignments and Modeling H3 Receptor: T_T_N_4, T_2_2_6, T_2_2_5, T_O_O_2, SssOcount,
Sequence alignment was done with the help of T_2_C_4, T_2_2_5,T_C_N_7, SssOHcount, T_C_F_3,
CLUSTALW software using default parameters. Because SsCH3E-index, T_C_N_6, T_2_2_5, SssOE-index,
of an overall 60% sequence identity between the template T_O_O_7,T_O_O_2,T_O_O_0, , T_2_2_0,
and the target (Fig. 1), the generation of homology model T_T_N_3,CHIv0,T_2_2_4, SsOHE-index. Statics- N=23,
of the human histamine H3 receptor was done using degree  of  freedom=1,  r2  =0.9595,  F Test =1.1278,
online Swiss model server (www.expasy.ch/swissmod/ pred_r2 =0.7382, pred_r2se =0.3132. 
SWISS-MODEL.html) based on the backbone coordinates
of the crystal structure 1HZX of bovine Rhodopsin [21]. Interpretation and Comparison of  SW-KNNMFA  and
he missing side chain was added using the program SA-KNNMFA 3D QSAR Model: Two variable selection
SCWRL3. methods have been used to obtain the KNNMFA models.

PROCHEK was used to check the stereo chemical The study shows that steric potential (1 out 3 in SW and
quality of the protein structure generated, by analyzing 3 out of 3 in SA) and the descriptors S_275  are common
residue-by-residue geometry and overall structural in   both     generated    models.    Descriptors   range  for

the 100 conformers for each of the molecules. It was found

investigations.

2

2

2

QSAR Model Using Neural Network: Back propagation

ChiV1, Polar surface area excluding PandS, SaaCHcount,
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Table 1: Binding free energies for the 28 molecules after docking with histamine H3 receptor.
Estimated Final Final total Torsional Unbound
Free Energy Estimated intermolecular energy internal free system
of Binding inhibition (Vdr +H-bond +Dissolved energy energy energy

Sl.No. Compounds (kcal/mole) (µm) energy) in kcal/mole (kcal/mole) (kcal/mole) (kcal/mole)
1 Compound 1 -7.84 1.75 -8.45 +0.12 +1.10 -0.62
2 Compound 2 -7.71 2.23 -8.62 -0.61 +1.10 -0.42
3 Compound 3 -7.31 4.41 -8.16 -0.65 +1.10 -0.41
4 Compound 4 -6.37 3.83 -8.22 -0.67 +1.10 -0.41
5 Compound 5 -7.85 1.75 -8.68 -0.69 +1.10 -0.42
6 Compound 6 -7.08 6.48 -7.96 -0.68 +1.10 -0.44
7 Compound 7 -6.20 28.59 -6.91 0.73 +1.10 -0.35
8 Compound 8 -7.18 5.41 -8.94 -0.59 +1.92 -0.43
9 Compound 9 -5.64 72.90 -7.10 -0.89 +1.92 -0.43
10 Compound 10 -6.88 9.03 -8.09 -0.80 +1.37 -0.64
11 Compound 11 -8.15 1.07 -9.04 -0.64 +1.10 -0.44
12 Compound 12 -6.17 30.26 -7.15 -0.50 +1.10 -0.38
13 Compound 13 -6.14 31.36 -7.95 -0.85 +2.20 -0.46
14 Compound 14 -7.14 5.86 -9.17 0.64 +2.20 -047
15 Compound 15 -7.57 2.81 -8.68 -0.72 +1.37 -0.46
16 Compound 16 -7.14 3.71 -8.82 -0.43 +1.37 -0.47
17 Compound 17 -7.57 2.84 -8.85 -0.63 +1.37 -0.54
18 Compound 18 -8.54 0.547 -9.45 -0.61 +1.65 -0.43
19 Compound 19 -7.85 1.70 -8.48 -0.12 +165 -0.43
20 Compound 20 -6.88 8.99 -7.91 -0.53 +1.10 -0.45
21 Compound 21 -7.06 6.68 -7.87 -0.74 +1.10 -0.45
22 Compound 22 -7.60 2.07 -8.97 -0.80 +1.65 -0.53
23 Compound 23 -8.43 0.66 -9.60 -0.72 +1.37 -0.52
24 Compound 24 -7.45 3.46 -8.96 -0.57 +1.65 -0.43
25 Compound 25 -8.01 1.34 -9.48 --0.61 +1.65 -0.43
26 Compound 26 -8.00 1.37 -8.88 -0.65 +1.10 -0.43
27 Compound 27 -7.27 4.71 -8.28 -0.44 +1.10 -0.36
28 Compound 28 -6.44 19.01 -7.08 -0.84 +1.10 -0.38

Table 2: Binding free energies for the pharmaceutical compound Rivastigmine with PDB structures (1EVE, 1GQR). 
Estimated Final intermolecular Final total Torsional Unbound
Free Energy Estimated energy (Vdr +H-bond internal free system
of Binding inhibition + Dissolved energy) energy energy energy

Sl.no Compounds (kcal/mole) (µm) in kcal/mole (kcal/mole) (kcal/mole) (kcal/mole)
1 1EVE-RIVASTGMINE -11.35 4.75nm -12.98 -0.70 +1.65 -0.68
2 1GQR-RIVASTGMINE -9.63 86.82nm -10.18 -0.20 -1.37 -0.01

Fig. 1: Structure Analysis and Verification. region.

SA-KNNMFA are Electrorostatic -E_ 655(30.0000,
30.0000), E_584 (10.0000, 10.00000) Steric potential -S_725
(7.7104, 30.0000). Descriptors range for SW-KNNMFA are
Steric potential -S_725 (7.7104, 30.0000), S_795 (-0.3099,
30.0000) and S_675 (-0.0113, 30.0000). Positive range
indicates that positive electrostatic potential is favorable
for increase in the activity and hence a less
electronegative substituent group is preferred in that
region. Negative range indicates that negative steric
potential is favorable for increase in the activity and
hence less bulky substituent group is preferred in that
region. Positive range indicates that positive steric
potential is favorable for increase in the activity and
hence more bulky substituent group is preferred in that
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Fig. 2: Ramchandran plot of human histamine H3 receptor
protein from PROCHECK. The three disallowed
residues are not part of the active site of the
receptor and thus the derived model is stable.

Fig. 3: Rivastigmine within the binding pocket of 1 EVE. with the selected test set molecule. b) in the Sw

Pharmacophore Study of AchE Inhibitor: After redocking selected test set molecule.
study using crystal structure of Rivastigmine in the active
site of AchE, two sets of key interactions between the Molecular Hybrid: Hybrids can be designed as histamine
protein and the ligand were deduced. One set of H3 receptor antagonist capable of inhibiting AchE using
interaction between the Trp83 (located at the base of the the crystal structure data of AchE (1EVE) and knowledge
active site) and quaternary amine of Rivastigmine and obtained from 2D QSAR, 3D QSAR and 3D
second interaction of Trp278 located at the opening of the pharmacophore of histamine H3 receptor. Molecular
cavity. hybridization  of  histamine H3 receptor antagonists and

Fig. 4: Plot of the observed vs. calculated pki values of
the binding affinities to the H3 receptors.

(a)

(b)

Fig. 5: Comparison of two variable selection models used
for QSAR study. Distribution of chosen points a)
in the SA kNN-MFA for the aryl benzo data set

kNN-MFA for the aryl benzo data set with the
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(a)

(b)

Fig. 6: Redocking study. a) Pharmacophore of
Rivastigmine and b) Pharmacophore of Tacrine
based on redocking study.

AchE inhibitors was carried out using their Hybrid 4
pharmacophores and it was found that quaternary amine
of both structures fit well. A total of 5 hybrids with best
IC value were designed using Rivastigmine for AchE50

inhibitor activity (Fig. 6a) and Tacrine for histamine H3
antagonist activity (Fig. 6b). The hybrid molecules (Fig. 7) Hybrid 5
were passed through Lipinski five rules and toxicity
predictions were done through ADME/TOX filter [26-27]. Fig. 7: Molecular hybrids with arylbenzofuran. Hybrid 1

Validation of Five Hybrids: Out of the five hybrids, the Tacrine with arylbenzofuran. And Hybrids 3, 4, 5
binding mode of hybrid 3, 2, 4 very much overlaid with the were derived by molecular hybridization of
crystal structure binding mode of decamethonium 1EVE. Rivastigmine with arylbenzofuran.
Good superposition between the Donepezil structure
oriented with GOLD and the same molecule in the and simulated for 1ns after initially equilibrating with
crystallographic orientation suggest the appropriateness water molecules for 50 ns. An average structure was
of the used method as shown in Fig. 8 [28-30]. The energy minimized under conjugated gradient and periodic
conformation of highest score obtained with GOLD for boundary  condition. The dynamic behavior and
this proposal-3 (score=81) and it almost align with the structural change of the receptor was analyzed by
Rivastigmine. Donepezil in PDB and for histamine H3 calculating the RMSD value for structural movement and
receptor proposed compound shows highest score. changes in the secondary structural elements of the

Molecular Dynamic Simulation MD Simulation: The best changes  of  histamine  H3  receptor  model were
ligand-receptor complex determined by docking evaluated during 1ns MD simulation using GROMACS
calculation, were placed in a box of water using algorithms 3.3.1 [32-33].

Hybrid 1

Hybrid 2

Hybrid 3

and 2 were derived by molecular hybridization of

receptor model during the MD simulation. The structural
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(a) (C)

(C)

Fig. 8: Validation of the top ranked hybrids. Details of the
AchE active site in which the superposition of the
crystallographic orientation of donepezil with the
top 3 ranked solution suggested by GOLD is
shown. Donepezil is shown in green colour.

Fig. 9: Potential energy graph of protein-ligand molecule and enzyme were analyzed and after calculating
complexes. The potential energy graph during 1ns the average of all H-bond candidates total 3 H-bonds were
molecular simulation in the active site showing observed between ligand and receptor molecule. The
stability of the complex formed using GROMACS RMSD plots of protein backbone and the drug were
3.3.1. obtained  separately  (Fig.  10  a)  and  b) respectively).

It can be seen from Figure 9 that the potential energy structure equilibrates rather quickly in this simulation
of the histamine H3 receptor model Ligands reaches to the (after 20 ps). The drug does not equilibrate until after 30
plateau (2.0 A) within the first 200 ps. Potential energy of ps. The RMSD for the drug is more variable indicative of
protein-ligand complex remain in range between - 2.12e+06 its mobility within the binding pocket. The RMSD close to
to -2.13e+06 KJ/mol [34]. 3.5A0 (for backbone) and 2.5 A0 (for drug molecule) and

It can be clearly seen from the plots that the complex fairly low potential energy close to -2.12e+06 to - 2.13e+06
as well as the protein become stable after 460ps simulation KJ/mol shows high stability of protein-ligand complex
and the histamine H3 receptor backbone reaches a shows the likeliness of ligand molecule to be drug like
constant level after 250 ps at  86  2.0   A°,  but  suddenly candidates.

(a)

(b)

Fig. 10 a: Plot showing the RMSD deviation of ligand in
the solvated protein during 1ns molecular
simulation  in  the  active  site  using
GROMACS 3.3.1 b) RMSD graph showing
solvated protein. 

increases after 460 ps at 2.5 A° and then remain same for
1ns simulation time period. The H-bond between drug

The backbone RMSD indicates that the rigid protein



Global J. Biotech. & Biochem., 7 (4): 100-109, 2012

107

CONCLUSION common   in    both    g enerated   model.   Statistically,

In the above study, combined 2D QSAR study was compared to SA kNN-MFA with respect to q =0.6154. In
carried out using various statistical models. Using all the the second  part of this work, five novel molecular
models, 20 best descriptors were selected and used in hybrids  of  the  pharmaceuticals Tacrine, Rivastigmine
neural network back propagation model as a training set and  aryl  benzofuran  used  in the treatment of
to conclude to a given result (Table 3 and 4). The value of Alzheimer‘s disease (AD) were designed and evaluated
cross validated squared correlation coefficient -q for further investigation and experimental validation.2

generated more than 0.89 (i.e. around 90% accurate in Based on this work, the hybrids proposed have shown
prediction of IC50 value) suggests a good internal very close orientations to the original pharmaceuticals.
productivity of the equation. The equation generated Our results suggest that the Proposal-3 with highest
describes the positive contribution of Chiv 0, SssOE- synthetic viability has more interactions with both AchE
index, SssCH3-index, Polar Surface Area excluding P and and histamine H3 receptor. During molecular dynamic
S whereas Chiv1, SssO count, SaaCHcount descriptors studies done with H3 receptor using GROMACS, the
contributed negative to the inhibitory activity. From 3D amino  acid  residues  responsible  for  the formation of
QSAR study using SW kNN-MFA and SA kNN-MFA the   hydrogen   bonding   with   TYR-59   (tyrosine
shows that steric potential (1 out of 3 descriptors in SA, residue number  59)  were  identified.  We  propose that
3 out of 3 descriptors in SW are steric potential this  molecule  is  an  interesting  pharmaceutical
descriptors) plays major role in determining biological candidate for preparation and further investigation in
activity.  The   descriptor   S_725   (7.7104,   30.0000)  was Laboratory.

SW  kNN-MFA model is comparatively better as
2

Table 3: Comparison of the MR, SA-MR, GA-MR, PLS, SA-PLS, GA-PLS, PCR, SA-PCR, GA-PCR models for the aryl benzo data set using the selected data set. 
Parameter/molecule MR SA-MR GA-MR PLS SA-PLS GA-PLS
r 0.7602 0.7637 0.5977 0.8222 0.4986 0.71482

q 0.4869 0.4224 0.2859 -0.2345 -0.2630 0.25702

F-Test 20.0721 10.9900 9.4098 29.2872 9.9458 25.0679
r  se 0.2933 0.2850 0.3517 0.2338 0.3827 0.28862

q  se 0.4290 0.4455 0.4686 0.6161 0.6074 0.46592

pred_r 0.3206 0.6649 0.7019 0.8041 0.4175 0.74652

pred_r  se 0.5046 0.4602 0.4340 0.3519 0.6067 0.40022

Polar surface T_T_N_3,
Polar surface T_2_2_5, T_C_N_7, Polar surface area excluding ChiV5, Polar CHIv0,
area excluding SssOHcount, area excluding PandS, T_2_2_5, surface area T_2_2_4,

Selected P and S, SssOE-index, T_C_F_3, PandS, SssOE-index, excluding PandS, SsOHE-index,
Descriptors Actual T_2_C_4. SsCH3E-index T_C_N_6, T_O_O_0. T_O_O_7, T_O_O_2. T_2_2_0. SsCH3E-index.
Molecule-2 9.569 9.3298 9.0263 9.0230 9.1737 8.8160 9.1278
Molecule-4 8.658 8.2758 8.3146 8.3474 8.3263 8.1845 8.4352
Molecule-8 8.244 8.3478 8.3650 8.3474 8.3263 8.1427 8.2833
Molecule-14 7.959 8.2537 8.3273 8.2184 8.2390 8.5731 8.2339
Molecule-27 8.699 9.5460 9.0197 9.0230 9.1737 9.0109 8.9878

Table 4: Comparison of the PCR, SA-PCR, GA-PCR model for the aryl benzo data set using the selected data set
Parameter/molecule  PCR(Forward) SA-PCR GA-PCR
r2 0.7646 0.7017 0.3254
q2 0.3449 0.2556 -0.0750
F-Test 20.5721 10.5836 10.1298
r2 se 0.2690 0.3112 0.4332
q2 se 0.4488 0.4916 0.5469
pred_r2 0.8450 0.6729 0.0858
pred_r2 se 0.3130 0.4546 0.7601

Polar surface T_2_2_5, T_C_N_7,
area excluding SssOHcount, Polar surface area
P and S, SssOE-index, T_C_F_3, excluding PandS,

Selected Descriptors Actual T_2_C_4. SsCH3E-index T_C_N_6, T_O_O_0.
Molecule-2 9.569 9.3298 9.0263 9.0230
Molecule-4 8.658 8.2758 8.3146 8.3474
Molecule-8 8.244 8.3478 8.3650 8.3474
Molecule-14 7.959 8.2537 8.3273 8.2184
Molecule-27 8.699 9.5460 9.0197 9.0230
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