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Abstract: The aim of this study was to evaluate the effect of flavonoids quercetin and epicatechin on the
transcript expression and activity of antioxidant enzymes. Tobacco seedlings were exposed to 50 and 100 µM
quercetin and epicatechin. The transcript expression level and the activity analysis of various antioxidant
enzymes were monitored in their root and shoot. Interestingly, 50 µM epicatechin and 100 µM quercetin
exposures were found to increase the expression of genes encoding antioxidant enzymes in shoot. In tobacco
root, only GST and GPx expression were increased with 50 µM epicatechin and 100 µM quercetin exposures.
Activity assay of all the enzymes showed similar trend to that of the transcript expression in shoot tissue. While
in root, except CAT and SOD other enzymes activity also showed similar trend to that of expression pattern.
Results have suggested the possible regulation of antioxidant enzymes by these two flavonoids at
transcriptional and post-transcriptional level. Additionally, appropriate levels of such flavonoids seem to be
essential for such regulations.
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INTRODUCTION reactive oxygen species (ROS) such as superoxides, H O

Flavonoids represent a large family of low molecular damage by triggering off a chain reaction [8, 9]. Under
weight polyphenolic secondary metabolites. They are stress, plants produce some defense mechanisms to
widespread throughout the plant kingdom [1]. In nature, protect themselves from harmful effects of oxidative
they are involved in wide range of functions. These stress. ROS are detoxified either directly by non-enzymatic
polyphenolic compounds are well documented for their antioxidants reduced glutathione (GSH), ascorbate (ASH),
antioxidant properties. The term antioxidant refers to free tocopherols and carotenoids etc. or by antioxidant
radical scavengers, inhibitors of lipid peroxidation and enzymes like ascorbate peroxidase (APx), glutathione
chelating agents [2]. These antioxidant properties of peroxidase (GPx), glutathione reductase (GR) and
flavonoids have been suggested to provide the protection glutathione-S-transferase (GST), Catalase (CAT),
against the oxidative damage, coronary heart diseases, Superoxide dismutase (SOD) etc [10-12].
certain cancers and other age related  diseases  [3-5]. There are many reports relating to the reactivity of
Their chemical structures appear to be ideal for free radical flavonoids with active oxygen species, thus emphasizing
scavenging. The in vitro studies have  shown  that their antioxidant potential via a direct radical scavenging
majority of flavonoids like quercetin and epicatechin mechanism in animals [13, 14]. Flavonoids have been well
gallate have five fold higher total antioxidant activities characterized for both in vitro and in vivo antioxidant
than vitamins E and C [6, 7]. For this reason, there is activity [15-17]. However, the relevance of this property
currently a growing interest in the development of for flavonoid function in planta is still a topic of debate
agronomical important food crops with the optimized [18]. The vascular  localization  of  many  flavonoids
levels and composition of such flavonoids. allows for their light-screening, photoprotective and

The free radical scavenging property of flavonoids pigmentation functions but probably not their
also provides protection to plants against the different antioxidative functions [19]. Therefore, we studied the
stresses. Stresses on the plants lead to the generation of effect of flavonoids on the expression of genes encoding
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and hydroxyl molecules. These ROS cause rapid cell
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antioxidant enzymes in plants to see relation of these two and Reverse 5’- CCACAAGCAACCCTTCCACC-3’).
pathways. For this, tobacco seedlings were exposed with These genes encoded enzymes as APx, GR and Cu/Zn
50 and 100 µM quercetin and epicatechin and thus the SOD are present in chloroplast, GST is in mesophyll
transcript expression level and the activity analysis of protoplast, while GPx and catalase are in  peroxisomes.
various antioxidant enzymes was monitored in their root The various gene specific primers used for gene
and shoot. expression were analyzed for linearity between the amount

MATERIALS AND METHODS and confirmed. After standardizing the optimal

Plant Material: For germination, tobacco seeds under the conditions of 94°C-4min, 94°C-30s, 50 to 58°C-
(Nicotiana tabacum var. Xanthi) were treated with 10% 40s, 72°C-1min for 25 cycles and fractionated on agarose
Tween-20 for 5 min and then with 70% ethanol for 30 sec. gel electrophoresis and visualized with ethidium bromide
Thereafter, seeds were surface sterilized with 0.001% staining. The 26S rRNA-based gene primers were used as
mercuric chloride for 3 min and washed thrice with sterile internal control for expression studies [20]. The intensity
distilled water. Seeds were germinated on Murashige and of bands was analyzed densitometrically and presented in
Skoog (MS) medium (Sigma) in petri dishes at 25±2°C for the form of bar diagram.
7 days, until cotyledons had emerged and roots reached
the length of 1-1.5 cm. Seedlings at this stage were Antioxidant Activity Assay: Activity analysis of different
transferred to the plates containing either 50µM or 100µM antioxidant enzymes was also conducted in tobacco shoot
quercetin and epicatechin (Sigma). The stock solution of and root. APx activity was assayed following the
10 mM quercetin and epicatechin were prepared by oxidation of ascorbate to  dehydroascorbate  at  265  nm
dissolving in 50% dimethyl sulfoxide (DMSO). Finally, MS (e = 13.7 mM  cm ) by the modified method of Nakano
medium contained 50µM or 100µM quercetin and and Asada [21]. GST and GR activities  were  determined
epicatechin with 1% DMSO. For controls, seedlings were by  the  standard  methods  described   earlier  [22, 23].
transferred to MS medium containing 1% DMSO alone. GPx activity was also followed by decrease in A ,
The pH of the medium was adjusted to 5.8 with resulting from NADPH oxidation [24]. CAT activity was
NaOH/HCl. Seedlings were allowed to grow for the next 21 measured following the standard method [25]. SOD
days. Thereafter, seedlings were carefully removed from activity was determined by nitro blue tetrazolium (NBT)
the plates and root and shoot were separated and frozen photochemical assay method [26].
in liquid nitrogen for further use.

Transcript Expression Analysis: Total RNA was isolated triplicate and all values are represented as
from 100mg of treated and untreated tissues by using means±standard deviation (SD). The p < 0.05 was
RNAeasy mini kit (Qiagen). cDNA was synthesized using considered significant.
1µg of RNA in the presence of 200 U reverse transcriptase
SuperscriptTM III (Invitrogen, USA), 1 µl of 10 mM RESULTS AND DISCUSSION
dNTPs and 250 ng oligo (dT)12–18. Resulting cDNA was
used to carry out the PCR reactions with gene specific The influence of exogenous application of quercetin
primers encoding for GR (Forward 5’- and epicatechin was studied on the transcript level and
CATTGCCAATAAAAATGCCGAGT-3’ and Reverse 5’- enzymatic activities of six antioxidant enzymes i.e. GST,
ATGATATGAGAGAAACCTTCAAC-3’), GST (Forward GPx, APx, GR, CAT and SOD in tobacco shoot and root.
5’-GTTTGTCCCTGTTGATATGGCCT-3’and Reverse 5’- In tobacco shoot, 50 µM epicatechin exposures enhanced
CACAGCAGCATCATCTGTGGTC-3’), APx (Forward the expression of all the six enzymes GST, GPx, APx, GR,
5’GAAGCTTAAGATTTGAAGTTGAA-3’ and Reverse CAT and SOD. In contrast to other enzymes, GR
5’CTTAAAGTAGGAATTGTCAAAC-3’), GPx expression was still increased with 100 µM epicatechin.

(Forward 5’-GAAATTTTAGCATTTCCTTGT-3’ and The 50 µM quercetin either decreased or has no effect on
Reverse 5’- ACGTGGTGAAATGTTCAAX(GA)AAX(CT)- the expression of genes encoding antioxidant enzymes in
3’), CAT (Forward 5’ CTGGCCTGAGGATATCTTGCC-3’ tobacco shoot. However, application of 100 µM quercetin
and Reverse 5’ GACGACAAGGATCAAACCTTGA-3’), increased the expression of all six genes encoding
SOD (Forward 5’- GTCACGGGACCACATTACAAT-3’ antioxidant enzymes (Fig. 1). Results suggest  that  these

of input RNA and the final RT-PCR products was verified

amplification at exponential phase, PCR was carried out

1 1

340

Statistical Analysis: All the measurements were made in
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Fig. 1: Changes in the transcript level of A) Glutathione peroxidase (GPx), B) Ascorbate peroxidase (APx), C) Glutathione
reductase (GR) and D) Glutathione S- transferase, E) Catalase (CAT) and F) Superoxide dismutase (SOD) in
tobacco shoots in response to epicatechin (EC; 50 and 100 µM) and quercetin (Quer; 50 and 100 µM) different
treatments. Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands.
Expression analysis was repeated at least three times and representative one time gel pictures are presented. Data
are means of three measurements±SD. Black and grey bars showed 26S rRNA and antioxidant enzyme transcript
levels, respectively. C, control; EC, epicatechin; Quer, quercetin.

two flavonoids have effected transcript expression of with 50 µM epicatechin and 100 µM quercetin exposures,
genes encoding antioxidant enzymes. However, they were whereas CAT and SOD expression showed reverse
effective at different concentrations. Epicatechin was behaviour (Fig. 2). Earlier literature has suggested
effective at lower concentration while quercetin was at differential level of expression of genes encoding
higher concentration. antioxidant enzymes in various parts of the plant [27, 28].

In tobacco root, GR expression was not affected upon Our results support this and further  documented  that
application of either of flavonoids. The APx expression this differential expression seem to be under the
was not affected by epicatechin. But the expression of regulation of flavonoids. Results also documented that
APx was decreased upon quercetin application. While expression is dependent on the concentration and nature
GST and GPx expression was increased in tobacco root of flavonoids.
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Fig. 2: Changes in the transcript level of A) Glutathione peroxidase (GPx), B) Ascorbate peroxidase (APx), C) Glutathione
reductase (GR) and D) Glutathione S- transferase E) Catalase (CAT) and F) Superoxide dismutase (SOD) in
tobacco roots in response to epicatechin (EC; 50 and 100 µM) and quercetin (Quer; 50 and 100 µM) different
treatments. Below gel picture, bar diagram shows relative transcript levels of the respective amplified bands.
Expression analysis was repeated at least three times and representative one time gel pictures are presented. Data
are means of three measurements±SD. Black and grey bars showed 26S rRNA and antioxidant enzyme transcript
levels, respectively. C, control; EC, epicatechin; Quer, quercetin. 

To check whether transcriptional or post- both the treatments. However, CAT and SOD activity
transcriptional regulation, activity analysis of all these showed the reverse trend to that of expression pattern in
enzymes was conducted in tobacco shoot and   root tobacco root (Table 1). This has suggested the
tissues exposed to epicatechin and quercetin. In tobacco transcriptional regulation of APx, GR, GST and GPx and
shoot, activity of all the enzymes showed similar trend to post transcriptional regulation of CAT and SOD enzymes
that of the transcript expression (Table 1). This has in tobacco roots. Further, results have suggested that
suggested the transcriptional regulation of all the higher mRNA production does not always correlate with
antioxidant enzymes in tobacco shoot. In root, APx, GR, higher activity. There could be two reasons for this, either
GST and GPx enzyme activity pattern was found to be the rate of such mRNA degradation is higher or inactive
similar to that of respective transcript expression data with protein enzyme is produced.
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Table 1: Antioxidant enzyme activity in tobacco shoots and roots in response to epicatechin and quercetin treatments
Epicatechin Quercetin
----------------------------------------------------- ---------------------------------------------------------

Samples Control 50 µM 100 µM 50 µM 100 µM
Shoot
GPx 967.0± 10.8 1680± 50.24 940±58.2 884±34.4 1760± 62.8a b a a b

APx 54.2±1.2 88.6± 1.4 62.9±1.8 89.0±1.2 58.0±1.3a b c b d

GR 10.3±0.4 12.9±0.7 10.96±0.6 11.0±0.7 25.4±0.9a b a a c

GST 31.7±0.9 50.2±1.0 34.9±0.8 64.8±1.3 60.0±1.2a b a c c

CAT 17.0±0.8 22±1.2 8.8±0.2 15.2±0.5 25±1.0a b c a d

SOD 5.8±0.2 13.5±0.9 8.5±0.1 15.8±0.6 21.7±0.9a b c b d

Root
GPx 325±21.2 373±22.5 273±14.8 305±20.7 334±25.8a a b a a

APx 137±2.5 152.1±4.8 162.8±6.3 125.1± 5.9 110.4±5.2a b c a d

GR 10.96±0.6 9.16±0.4 11.6±0.6 15.0±0.8 13.8±0.9a b a c c

GST 14.58±0.9 24.2±1.0 9.99±0.4 30.4±0.7 12.8±0.8a b c d a

CAT 9.2±0.2 11.3±0.4 13.4±0.7 20.5±1.2 15.3±0.8a b c d c

SOD 10.2±0.7 11±0.5 15.16±0.8 20.8±1.2 15.6±0.9a a b c b

*Enzyme activity of APx, GST and GR is expressed in µmoles min g FW, CAT and GPx is expressed in nmoles min g FW and SOD is expressed1 1 1 1

in U min g FW. All results are presented as mean±SD (n=3). Different alphabet superscript to numeric in the same row represents signi?cant difference in1 1

the mean values of estimates at 5% level.

Though several independent studies have been [18, 30]. Furthermore, few biochemical studies have been
conducted documenting the functions of flavonoid and conducted that showed the interaction of flavonoid and
antioxidant systems in plants, studies pertaining to the antioxidant pathways. The GPx enzyme activity has been
effect of flavonoids on antioxidant systems are lacking. reported to be activated by the action of flavonoids,
Perhaps one of the greatest challenges is to prove the quercetin and catechin [31]. The quercetin and its
molecular mechanism(s) through which these flavonoid derivatives have been found to prevent oxidative cell
compounds exert beneficial activity in plants itself. damage by either increasing glutathione or reducing the
Flavonoids are synthesized mainly in the cytosol by multi- activity of glutathione peroxidase [16]. Flavonoids have
enzymatic complexes that are linked to the membrane of also been reported to protect cells from glutathione
endoplasmic reticulum [29]. From the site of synthesis, depletion with the cooperation of ascorbic acids [32].
flavonoids are transported to their subcellular However, the results of this study documented that
destinations. Owing to their potent redox activities, this flavonoids might be regulating antioxidant system by
subcellular trafficking is tightly regulated to avoid acting at transcriptional as well as post-transcriptional
undesired chemical or enzymatic reactions. It is presumed levels.
that inside the plants either these flavonoids undergo In this study, exogenous application of quercetin and
modification by glycosylation and prenylation, or epicatechin flavonoids has resulted in the influence on
undergo conjugation with glutathione. Interestingly, expression of antioxidant enzymes. Effect of these
specific flavonoid-conjugate transporters move them flavonoids was concentration dependent and tissue
across the membranes and through intracellular transport specific. Results have first time  documented  the  effect
reaches to the vacuoles. From vacuole, these flavonoids of  flavonoids  on  the  antioxidant   system  of plants.
get remobilised and bind to the targets or receptors This study would help in further understanding the cross
directly or indirectly to activate ROS-scavenging genes talk between flavonoid and antioxidant pathways.
[19]. Results of this study show that flavonoids have
affect on antioxidant enzymes at transcription levels. ACKNOWLEDGEMENTS
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